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Quantum walks and entanglement in cavity networks
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For harnessing the full potential of quantum phenomena, light-matter interfaces and complexly connected
quantum networks are required, relying on the joint quantum operation of different physical platforms. In this
work, we analyze the quantum properties of multipartite quantum systems, consisting of an arbitrarily large
collection of optical cavities with two-level atoms. In particular, we explore quantum walks in such systems and
determine the resulting entanglement. Realistic imperfections are included in the model as optical losses and
spontaneous decays of atoms. The topology of torus and the nonorientable Möbius strip serve as examples of
complex networks that we consider, demonstrating the versatility of our approach and resulting in interesting
quantum dynamics and interference effects for quantum simulation applications.

DOI: 10.1103/PhysRevA.110.013705

I. INTRODUCTION

Entanglement has attracted a lot of attention since the early
days of quantum mechanics [1–3] as it presents a fundamen-
tal physical concept [4–6]. Nowadays, quantum correlations
receive ever increasing recognition within the rapidly develop-
ing fields of quantum technology, quantum information, and
quantum computation; see, e.g., Refs. [7–9] for overviews. In
particular, quantum entanglement is considered to be the char-
acteristic feature that allows one to share quantum information
beyond classical limitations, and it provides a central resource
for realizing quantum communication protocols [10–14].

One prominent quantum application is the quantum sim-
ulator that is able to simulate any quantum process [15–17].
As random walks can mimic any classical stochastic process,
their quantum counterpart, named quantum walks, can realize
the dynamics of arbitrary quantum systems, thus satisfying the
defining features of a quantum simulator [18–23]. Since quan-
tum walks concern the quantum evolution of large composite
systems, a natural connection between this concept and the
notion of highly multipartite entanglement exists.

Because of the aforementioned relevance, quantum walks
have been implemented in a large variety of physical systems.
In quantum optics, for example, this is usually achieved via
various linear optical networks [24–30]. For instance, input
nonclassicality is converted to output entanglement in such
scenarios via simple beam splitters [31–33]. Other optical
schemes are based, for example, on photonic lattices [34–38].
Moreover, quantum simulators with a nonlinear quantum-
walk evolution have been studied [39–45], and imperfect
quantum walks on graphs with decoherence have been in-
vestigated [46,47]. Furthermore, quantum walks have been
realized with single optically trapped atoms [48] and in ion
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traps [49,50]. Another promising quantum-walk platform is
optomechanical and electromechanical systems [51–53].

In general, trapped atoms and ions interacting with quan-
tized light fields are well-suited candidates for the realization
of hybrid quantum information processing [54–57]. The com-
bination of long-lived atomic states and light fields can be
highly beneficial in quantum networking and for distributed
quantum computation [58–60]. Moreover, various achieve-
ments in cavity QED and in tapped-ion techniques have
rendered it possible to experimentally generate pairs of en-
tangled atoms [61], to create entangled states of several atoms
[62], and to maintain robust entanglement of macroscopic en-
sembles of atoms [63]. Light-matter interfaces also naturally
provide a link between the continuous-variable entanglement
of photons [64] and cold atoms [65].

In the present contribution, we combine entanglement
theory, quantum simulation, and cavity QED to study the
generation and distribution of entanglement in networks. In
view of the widespread applications of cavity-assisted single-
photon sources, we analyze composite quantum systems
consisting of atom-cavity nodes that are connected in a cas-
caded configuration [66–68]. As found for smaller cascades
[69–71], one of the advantages of using such configurations is
that the open-system evolution itself creates the entanglement
[72–75], even extending to other scenarios, such as optome-
chanical systems [76]. Here, we consider an arbitrary network
of cavities that are optically coupled, including realistic im-
perfections. Initializing the system with a single excitation,
we explore how this excitation propagates between quantized
radiation fields and the matter and is simultaneously spread
across the network. This implements a quantum walk that
can be compared with the analogous classical random walk.
Moreover, we analyze the multipartite entanglement dynamics
that is established in the networks between the different nodes,
as well as the light-matter entanglement, by applying tailored
multipartite entanglement witnesses. Elaborate network con-
figurations as nontrivial graphs are characterized.
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FIG. 1. Elementary building block of the cascaded network. A
cavity mode of frequency ω(C) is detuned from a two-level atomic
transition of frequency ω(A). All optical losses are collected in the
decay rate �(C), and �(A) is the spontaneous emission rate of the atom,
|1〉 → |0〉.

The paper is organized as follows. In Sec. II, the master
equation describing the dynamics of a single atom-cavity sys-
tem is reviewed. In Sec. III, the master equation describing
the dynamics of an arbitrary multicavity system is formu-
lated, and the evolution is solved analytically by means of
the quantum trajectory method. In Sec. IV, we study different
network geometries, specifically a network with a toroidal
structure and one with a Möbius-strip configuration. We fur-
ther analyze how an initial excitation propagates, providing
a light-matter-interfacing quantum walk. In Sec. V, the entan-
glement between the different constituents of the full quantum
system is analyzed, including the impact of attenuations. Fi-
nally, concluding remarks are offered in Sec. VI.

II. DAMPED LIGHT-MATTER DYNAMICS

Before considering an entire network, we analyze a single
building block that is used in the next section as a node to
construct the cascaded network. Specifically, we consider a
high-Q optical cavity, supporting one monochromatic mode
ω(C) that is coupled to a two-level atomic transition ω(A);
see Fig. 1. The detuning is given by the difference of both
frequencies. The included imperfections are as follows: the
cavity mode is damped by losses through partially transmit-
ting cavity mirrors; in addition to wanted in- and out-coupling,
the atom can spontaneously emit out of the side of the cavity;
and photons may be absorbed and scattered by cavity mirrors
[77].

To describe the open quantum dynamics [78–80] of the
system under study, we can apply the following master equa-
tion for the density operator ρ̂(t ) of the atom-cavity system:

d ρ̂(t )

dt
= 1

ih̄
[Ĥ , ρ̂(t )] + �(C)

[
âρ̂(t )â† − 1

2
{â†â, ρ̂(t )}

]

+ �(A)

[
Â(0,1)ρ̂(t )Â(1,0) − 1

2
{Â(1,1), ρ̂(t )}

]
. (1)

Therein, â and â† are annihilation and creation operators for
the cavity field, respectively. For the two-level atom, we de-
fine the operators Â(i, j) = |i〉〈 j|, with i, j ∈ {0, 1}. The rate
�(C) includes all optical losses, and �(A) is the spontaneous
emission rate of the atom.

The Hamiltonian Ĥ in Eq. (1) describes the free evolution
as well as the atom-cavity interaction,

Ĥ

h̄
= ω(C)â†â + ω(A)Â(1,1) + gâÂ(1,0) + g∗â†Â(0,1), (2)

with g denoting the atom-cavity coupling constant. Note that
an intercavity interaction, coupling the incoming and outgoing
fields, is not present here but is introduced in the next section.
It is also worth recalling that solving the master equation, as
commonly written in the Lindblad form [81], can be achieved
through the quantum trajectory approach [78–80].

III. CASCADED NETWORK DYNAMICS

With a single node of a network explained in the previ-
ous section, we can proceed with connecting those building
blocks. To this end, we analyze the dynamics of a cascaded
network consisting of multiple cavities. For simplicity, we
assume that all cavities are identical.

A. Full multipartite system

1. Equations of motion

For formulating the dynamics of the full open quantum
system, the corresponding master equation in Lindblad form
reads [78]

d ρ̂(t )

dt
= 1

ih̄
[Ĥ , ρ̂(t )] +

∑
Ĵ∈J

[
Ĵρ̂(t )Ĵ† − 1

2
{Ĵ†Ĵ, ρ̂(t )}

]
, (3)

where J denotes the set of all jump operators (also known as
Lindblad operators). The full Hamiltonian is given by

Ĥ =
∑

k

Ĥk + Ĥint. (4)

Akin to Eq. (2), Ĥk here describes the atom-cavity interaction
of each network node and is similarly given by

Ĥk

h̄
= ω(C)â†

k âk+ω(A)Â(1,1)
k +gâkÂ(1,0)

k +g∗â†
k Â(0,1)

k , (5)

where the subscript k indexes the cavity mode and the atom
at a specific node. Moreover, the interaction Hamiltonian Ĥint

describes the coupling between the various quantized cavity
modes,

Ĥint = h̄
∑
l,m

κl,mâ†
l âm, (6)

with the coupling κl,m between cavities l and m, obeying
the conditions κl,m = κ∗

m,l and κl,l = 0 (no self-coupling). For
coupling multiple cavities, other than in Fig. 1, one can, for
example, utilize a ring-cavity configuration with multiple mir-
rors, each of which provides additional input and output ports
for coupling [82,83].

The jump operators in Eq. (3) describe optical losses and
spontaneous emission by the two-level atom in each cavity
subsystem k. These operators read

Ĵ (C)
k =

√
�(C)âk and Ĵ (A)

k =
√

�(A)Â(0,1)
k , (7)

013705-2



QUANTUM WALKS AND ENTANGLEMENT IN CAVITY … PHYSICAL REVIEW A 110, 013705 (2024)

where �(C) is the optical loss rate and �(A) is the spontaneous
emission rate. Without loss of generality, we chose real-valued
and non-negative rates, �(C), �(A) ∈ R�0.

2. State description

As a proof of concept, we restrict ourselves to a single ex-
citation (likewise, one quantum walker) throughout this work.
For the purpose of quantum walks, the kth mode acts as the
positionlike degree of freedom, and the state of the two-level
atom functions as the quantum coin. For convenience, we
further define the following state vectors:

|g〉 =
⊗

k

(|0〉 ⊗ |0〉) =
⊗

k

|0k, 0k〉,
∣∣1(C)

k

〉 = â†
k |g〉, and

∣∣1(A)
k

〉 = Â(1,0)
k |g〉. (8)

Here, |g〉 is the state of the network in which all the atoms are
found in their ground state and all the cavity modes are void of
photons, i.e., a vacuum state. In addition, |1(C)

k 〉 says that the
kth cavity is occupied with one photon, and |1(A)

k 〉 indicates
that the kth two-level atom is excited.

In order to evaluate the evolution, one can utilize a quan-
tum trajectory approach [78–80]. That is, the evolution of the
system is governed by a nonunitary Schrödinger equation that
evolves the normalized initial state |ψ̄ (t0)〉 into an unnormal-
ized state vector |ψ̄ (t )〉, as explained in more detail below.
Furthermore, this linear evolution can be randomly interrupted
by one of the jumps Ĵ in Eq. (7). Once a jump has occurred at
time tJ , the wave vector is found to be collapsed into the state
|g〉 because of the action of the jump operator, Ĵ|ψ̄ (tJ )〉 	→ |g〉.
Thus, for the problem under study, we may have one jump,
at most. After the collapse, the state |g〉 remains unchanged.
Therefore, the density operator ρ̂(t ) is an ensemble average
over the different trajectories, yielding the incoherent mixture

ρ̂(t ) = |ψ̄ (t )〉〈ψ̄ (t )| + [1 − 〈ψ̄ (t )|ψ̄ (t )〉]|g〉〈g|. (9)

B. Analytic solution

For the linear (no jump) contribution of the evolution,
the system’s initial, normalized state is |ψ̄ (t0)〉. To deter-
mine the state vector of the system at a later time t > t0, we
solve the nonunitary Schrödinger equation [78–80],

ih̄
d

dt
|ψ̄ (t )〉 = Ĥ ′|ψ̄ (t )〉, (10)

where Ĥ ′ is the non-Hermitian Hamiltonian that takes the
form

Ĥ ′ = Ĥ − ih̄

2

∑
Ĵ∈J

Ĵ†Ĵ. (11)

Thus, the system evolves via Eq. (10) into the unnormalized
state

|ψ̄ (t )〉 =
∑

k

[
αk (t )

∣∣1(C)
k

〉 + βk (t )
∣∣1(A)

k

〉]
= |�α(t ), �0〉 + |�0, �β(t )〉, (12)

where we combined cavity and atomic probability amplitudes
for one excitation in the vectors �α(t ) = [αk (t )]k and �β(t ) =
[βk (t )]k , respectively, and �0 = [0]k .

The non-Hermitian Hamiltonian in Eq. (11) acts on the
single-excitation states |1(C)

k 〉 and |1(A)
k 〉 as follows:

Ĥ ′∣∣1(C)
k

〉 =
(

h̄ω(C) − ih̄

2
�(C)

)∣∣1(C)
k

〉 + h̄g
∣∣1(A)

k

〉
+ h̄

∑
j

κ j,k

∣∣1(C)
j

〉
,

Ĥ ′∣∣1(A)
k

〉 =
(

h̄ω(A) − ih̄

2
�(A)

)∣∣1(A)
k

〉 + h̄g∗∣∣1(C)
k

〉
. (13)

From Eqs. (10), (12), and (13), we thus deduce the following
equation of motion for the probability amplitudes:

i
d

dt

[�α(t )
�β(t )

]
= η

[�α(t )
�β(t )

]
with

η =
[(

ω(C)− i
2�(C)

)
1+K g∗1

g1
(
ω(A)− i

2�(A)
)
1

]
,

(14)

which includes the identity matrix 1 = [δi, j]i, j and the cou-
pling matrix K = [κi, j]i, j = K†. This yields the solution[�α(t )

�β(t )

]
= exp (−itη)

[�α(t0)
�β(t0)

]
. (15)

More explicitly, the propagator exp (−itη) can be decom-
posed as follows:

exp (−itη)

=
[

E 0
0 E

]([
cos(t�) 0

0 cos(t�)

]

−i

[
�−1 0

0 �−1

][
sin(t�) 0

0 sin(t�)

][
� g∗1
g1 −�

])
,

(16)

which itself contains the matrices defined via

2� =ω̄1 + K, �2 = �2 + |g|21,

and E =e−it ν̄/2 exp

(
− it

2
K

)
, (17)

where ω̄ = ω(C) − i�(C)/2 − ω(A) + i�(A)/2 and ν̄ = ω(C) −
i�(C)/2 + ω(A) − i�(A)/2. Note that all matrices commute
with the coupling matrix K, thus sharing a joint diagonaliza-
tion.

The above solution is applied to our computations, leading
to the results presented in the remainder of this work. In
particular, we use the time-step iteration [�α(t + dt ), �β(t +
dt )]T = S[�α(t ), �β(t )]T, with S = exp (−i dt η), to propagate
probability amplitudes over a small-time differential, dt .

IV. CONTINUOUS-IN-TIME QUANTUM WALKS
ON DIFFERENT GEOMETRIES

In this section, we study different network geometries by
analyzing how the initially localized excitation propagates
through the network. By exploring specific examples of a
nontrivial quantum-walk dynamics, we demonstrate the flex-
ibility of the model. The two cases under study pertain to
a network on a closed surface with a toroidal structure and
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FIG. 2. Random walks on graphs. We consider different, interesting geometries, i.e., (a1) a torus as a nontrivial topology and (b1) a
Möbius strip as a nonorientable manifold, where vertices are depicted as black circles and connecting edges as black lines. Vertices are located
as pairs of positions across and around the torus and Möbius strip. For later comparisons with the quantum walks, classical random walks are
implemented in (a2) and (b2) for both graphs [84]. The walker is initialized at vertex (3,3) and randomly proceeds to neighboring positions.
With propagation in time, we see a diffusive behavior, eventually leading to a uniform distribution. Here we made the particular choice of
25 vertices, i.e., N1 = N2 = 5. In (a3) and (b3), the probability distribution of an intermediate time is shown for the two geometries. For the
quantum walk, cavities resemble the vertices of the graphs and the coupling between cavities is indicated by edges.

a network on a two-dimensional nonorientable surface in a
Möbius-strip configuration; see, also, Fig. 2, including the
classical random-walk evolution.

A. Considered scenarios and random walk

The characterization of the chosen geometry is realized
by specifying the particular interaction Hamiltonian, given by
Eq. (6), that describes the interaction between the different
cavities. This requires one to specify the matrix K = [κi, j]i, j

in Eq. (14). To investigate different geometries, we consider
a network as a graph wherein the vertices, i.e., nodes, are the
cavities together with the two-level atom, and edges of the
graph define the network connectivity. By applying Eq. (15),
the dynamics of the system in the chosen network geometry is
then fully determined.

In the scenarios described above, the adjacency matrix A,
well known from graph theory [85], is proportional to the cou-
pling matrix. Further, we assume a uniform κ coupling, where
κ > 0, between connected vertices and undirected channels,
A = AT. Therefore, we can write K as

K = κA = κ[Ai, j]i, j, (18)

where Ai, j = 1 if the vertices i and j share an edge, and zero
otherwise. While not considered here, we could also model
nonuniform couplings between nodes (i.e., weighted graphs)
and one-way network connections (i.e., directed graphs)
through values of the adjacency matrix other than zero and
one and A �= AT, respectively.

1. Torus

The first geometry we consider is a closed surface with
a toroidal structure; see Fig. 2(a1). Topologically speaking,
the torus has a nontrivial genus of one. A graph on a torus
is characterized by nodes i = (i1, i2), and a two-dimensional
grid with 1 � i1, j1 � N1 and 1 � i2, j2 � N2. In addition,
a periodic boundary condition is separately imposed on the
nodes in both components. Therefore, the entries of the adja-
cency matrix A can be expressed as

Ai, j = A(i1,i2 ),( j1, j2 )

= δi1, j1+1 mod N1δi2, j2 + δi1, j1−1 mod N1δi2, j2

+ δi1, j1δi2, j2+1 mod N2 + δi1, j1δi2, j2−1 mod N2 . (19)
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In Fig. 2(a2), we show the classical random walk on this
graph, using a common rate equation [84]. Starting with a
determined position of the walker, neighboring nodes become
excited, spreading across and around the torus. As one would
expect, the classical evolution is a dispersion process that
converges to the uniform probability distribution of the walker
on the graph.

2. Möbius strip

The second example pertains to a two-dimensional graph
configuration on a Möbius strip; cf. Fig. 2(b1). In contrast to
the previous graph, this strip corresponds to a nonorientable
surface. For this graph, the adjacency matrix A is determined
by the entries

A(i1,i2 ),( j1, j2 ) = δi1, j1+1δi2, j2 + δi1, j1−1δi2, j2

+ δi1, j1δi2, j2+1 + δi1, j1δi2, j2−1

+ δi1,1δ j1,N1δi2+ j2,N2+1

+ δi1,N1δ j1,1δi2+ j2,N2+1, (20)

with 1 � i1, j1 � N1 and 1 � i2, j2 � N2. Figure 2(b2) de-
picts the classical random walk for such a Möbius-strip
configuration. The resulting diffusion behaves rather simi-
larly to the previous example of a torus in this classical
dynamics, converging to a uniformly spread probability of the
walker’s position.

B. Quantum evolution

After having introduced the geometries of interest and the
dynamics of classical random walks, we now analyze the
quantum evolution described by our model. For this purpose,
we compute the dynamics of a quantum walk according to
Eq. (15) for both geometries. For the sake of comparison,
we analyze the same scenario presented in Fig. 2; that is, a
network of N1 = N2 = 5 cavities and, as the initial condition,
a single excitation of the cavity field located at vertex (3,3) and
no excitation of atoms, |ψ̄ (t0 = 0)〉 = |1(C)

k 〉 with k = (3, 3).
The results of our computation are presented in Fig. 3,

where the top row corresponds to the torus and the bottom
one to the Möbius strip. The evolution of the probability is
given as a time line in the first two columns. The probability
of finding the excitation as a photon across the nodes, |αk|2,
appears in Figs. 3(a1) and 3(b1), whereas the probability of
finding an excited atom, |βk|2, is presented in Figs. 3(a2) and
3(b2). Note that occupation probability significantly alternates
between light and matter degrees of freedom with a frequency
modulated by �; cf. Eqs. (16) and (17). The most striking sig-
nature of the quantum behavior is the interference between the
probability amplitudes, which gives rise to rich interference
patterns in the probability distribution.

This interference, which can already be seen in the four
time lines, is even more clear if we inspect one specific
time step. This is shown in Figs. 3(a3) and 3(b3) for photon
probabilities and in Figs. 3(a4) and 3(b4) for excited-atom
probabilities. By comparing the same time step in the torus
and Möbius strip, one can see the difference between the
structures of the interference, which is not observable in the
random walk analysis in Fig. 2. In particular, there is a clear

asymmetry between the vertices’ position component 1 and
2 for the probability distribution in the Möbius strip. By
contrast, position components 1 and 2 appear interchangeable
for the torus in this particular scenario. Importantly, we em-
phasize that all interference patterns noticeably contrast with
the interference-free distribution in the random-walk scenario;
compare Figs. 2(a3) and 2(b3) with Figs. 3(a3), 3(a4), 3(b3),
and 3(b4).

For the sought-after comparison with the random walk, we
assumed lossless cases here; the impact of quantum jumps
is discussed in the next section together with characterizing
the systems’ entanglement. Furthermore, one way to extend
our model is to introduce an optical intercavity field that
couples to the internal field of connected cavities studied here.
Losses of intercavity fields act as an additional decoherence
mechanism, leading to a transition from strong interfer-
ence to classical diffusion as observed in a random walk
[47,48,72].

V. MULTIPARTITE ENTANGLEMENT EVOLUTION

In the previous section, we focused on the classical and
quantum probabilities to find the walker in a certain configu-
ration. However, this does not necessarily prove that quantum
correlations are generated through the evolution. Therefore,
we now provide a detailed entanglement analysis of the sys-
tems under consideration.

A. Entanglement witnesses

One experiment-friendly way to assess entanglement is
given in terms of measurable operators, dubbed entanglement
witnesses [86–89]. One way to construct such witnesses is
based on finding the maximal (likewise, minimal) expectation
values of an observable L̂ for separable states via general-
ized eigenvalue problems [90,91], the so-called separability
eigenvalue equations. The thereby constructed witnesses are
directly applicable to detecting multipartite entanglement in
experiments [92–94].

1. Characterization of entanglement

The separability criterion under study, for an observable L̂,
is expressed by the following bound [88,91]:

〈L̂〉 = tr[ρ̂sepL̂] � sup
|ψ〉∈S

{〈ψ |L|ψ〉} = gmax, (21)

where ρ̂sep is a nonentangled state and S denotes the set of all
pure separable states. We have indicated with gmax the largest
possible expected value of L̂ for separable states. This maxi-
mal expectation value is identical to the maximal separability
eigenvalue from the construction approach mentioned before
[90,91].

A violation of the inequality in Eq. (21) certifies entan-
glement. As a consequence, an expected value exceeding the
discussed maximum can be utilized to quantify the amount of
entanglement present in the state,

E =
{

0 if Eq. (21) is obeyed
〈L̂〉−gmax

λmax−gmax
otherwise,

(22)
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FIG. 3. Dynamics of the quantum walk for a network with toroidal structure (top row) and a Möbius strip (bottom row). The probability
of finding the walker at a certain position as a cavity excitation and atom excitation is shown in the first and second columns, respectively.
Accordingly, the evolution of the cavity probability |αk=(k1,k2 )(t )|2 on each configuration is shown in (a1) and (b1), and the evolution of
the atomic probability |βk=(k1,k2 )(t )|2 is shown in (a2) and (b2) for discrete time steps t → t + dt . In the last two columns, the probability
distribution of an intermediate time is depicted. In particular, for a chosen time step t = 40 dt , the cavity probability |αk=(k1,k2 )|2 is shown in
(a3) and (b3), and the atomic probability |βk=(k1,k2 )|2 is shown in (a4) and (b4). For the strong-coupling regime illustrated here, the considered
parameters in units of the coupling κ are �(C)/κ = �(A)/κ = 0, ω(A)/κ = 1, ω(C)/κ = 0.9, and g/κ = 105, while defining dt = 1/κ in the
numerical analysis.

where λmax denotes the maximal expected value for all
separable and inseparable states, i.e., the maximal ordinary
eigenvalue of L̂, and is, for all examples considered here,
λmax = 1. Thus, E yields a value between zero and one and
is zero for separable states, hence quantifying the witnessed
entanglement [95].

2. Observables under consideration

For distinguishing quantum correlations, we specif-
ically consider four kinds of entanglement: multipar-
tite entanglement of the full system, multipartite en-
tanglement between the atoms, multipartite entanglement
between the cavity modes, and bipartite light-matter
entanglement.

For the former three forms of multipartite entanglement,
we take an observable that is based on a generalized, N-partite

W state with phases

L̂ = |W 〉〈W | with

|W 〉 = 1√
N

N∑
k=1

eiϕk |0〉⊗(k−1) ⊗ |1〉 ⊗ |0〉⊗(N−k), (23)

where the phases ϕk are adjusted such that they coincide with
the single-excitation state under study for maximizing the
expectation value 〈L̂〉. Regardless of the phases, the maximum
expected value for separable states, i.e., maximal separability
eigenvalue, reads [96,97]

gmax =
(

N − 1

N

)N−1

. (24)

Recall that λmax = 1 holds true for this rank-one operator L̂
that is based on a normalized state.
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(a1) (a2) (a3) (a4)

(b1) (b2) (b3) (b4)

FIG. 4. Evolution of the entanglement in the quantum walk for a network with toroidal structure (top row) and a Möbius strip (bottom
row) in terms of the entanglement quantifier in Eq. (22). Lines (in bright color) represent the ideal, lossless entanglement evolution (�(C)/κ =
�(A)/κ = 0), whereas decaying curves (in gray) show attenuated situations (�(C)/κ = �(A)/κ = 0.0025). The multipartite entanglement of the
full system is shown in (a1) and (b1) for the two geometries. The multipartite entanglement between the cavity modes alone is shown in (a2)
and (b2), and the analogous case for atoms in (a3) and (b3). In (a4) and (b4), the bipartite light-matter entanglement is shown. The other
parameters—in addition to the decay rates—are the same as in Fig. 3.

With the observable described thus far, we probe how
similar the system’s state is to an N-partite, maximally
multipartite-entangled state in a W configuration that includes
one excitation. For the states produced in our quantum-walk
scenario, i.e., Eqs. (9) and (12), we can directly compute
the sought-after expectation values. Since we have N = N1N2

atoms and cavities for the considered geometries, for the
cavity-only entanglement, we find

〈L̂〉 = 1

N

(∑
k

|αk|
)2

, (25)

where the phases of the N-partite W state are ϕk = arg αk .
Analogously, the entanglement between atoms is determined
through the expectation value

〈L̂〉 = 1

N

(∑
k

|βk|
)2

. (26)

When considering the entire system consisting of N cavities
and N atoms together, we have a 2N-partite W state and

〈L̂〉 = 1

2N

[∑
k

(|αk| + |βk|)
]2

. (27)

Note that the separable bound in Eq. (24) here straightfor-
wardly generalizes to gmax = ([2N − 1]/[2N])2N−1.

For the bipartite light-matter entanglement, we similarly
consider an observable L̂ = |〉〈|, but here with a normal-
ized state |〉 parallel to the unnormalized system state in
Eq. (12),

|〉 = |�α, �0〉 + |�0, �β〉√
〈�α|�α〉 + 〈�β|�β〉

, (28)

also yielding λmax = 1. Note that |�0〉 is free of excitations
and, thus, perpendicular to the single-excitation cavity state
|�α〉 and the single-excitation atomic state |�β〉. As |〉 is thus
given in its Schmidt decomposition, the bipartite cavity-atom
separability bound gmax can be readily found via the maximal
Schmidt coefficient [90],

gmax = max{〈�α|�α〉, 〈�β|�β〉}
〈�α|�α〉 + 〈�β|�β〉 . (29)

Also, the expectation value can be readily determined as
〈L̂〉 = 〈|ρ̂|〉 = 〈�α|�α〉 + 〈�β|�β〉, using Eqs. (9) and (12).

B. Entanglement evolution

The evolution of the aforementioned four kinds of entan-
glement is displayed in Fig. 4 for the torus (top row) and
Möbius strip (bottom row). In the four depicted scenarios,
using E as given in Eq. (22), we consider both a lossless
evolution (brighter colors) and an evolution subject to at-
tenuations (gray). The multipartite entanglement of the full
system is shown in the first column. This includes all quantum
correlations between the 2N elements (all cavity modes and
atoms) and is E = 1 for a maximal entanglement in a W -state
configuration of the single excitation. The second column
similarly depicts the entanglement between all cavity fields
alone, being the W entanglement of the system after tracing
over the atomic degrees of freedom. Likewise, the entangle-
ment between the atoms is shown in the third column. Finally,
the bipartite light-matter entanglement, i.e., the entanglement
between the collection of all atoms and the collection of all
cavity fields, is presented in Figs. 4(a4) and 4(b4).

When there are no optical losses and no spontaneous de-
cays in the system, we can see in the fourth column of Fig. 4
how the entanglement between light and matter is constant
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and maximum, E (t ) = 1, except for the initial time, E (t0 =
0) = 0, as we prepare the system in the separable config-
uration |ψ̄ (t0)〉 = |1(C)

k 〉, with k = (3, 3). This discontinuous
behavior reflects the fact that as soon as the evolution of the
initial photon excitation gives a nonzero probability of finding
an atomic excitation, the light and matter subsystems become
entangled. When losses are included, however, these perfect
correlations decay, as seen in Figs. 4(a4) and 4(b4).

The multipartite entanglement of the full system, shown in
Figs. 4(a1) and 4(b1), is the most robust kind of entanglement
against losses since it is the one with the highest degree of sep-
aration, i.e., each atom and cavity mode is considered as one
subsystem. Note that even if concrete values are not identical
for both geometries, the general behavior is analogous for the
quantum walks on torus and Möbius-strip graphs, including
the time decay due to losses, for all kinds of entanglement.
Furthermore, we observe several instances of increasing and
decreasing entanglement, including so-called sudden deaths
and sudden births [98]. In general, for the four kinds of entan-
glement analyzed here, one can observe that a considerable
amount of entanglement is created during the evolution and
sustained over time, as described by the envelopes of E (t ) and
notwithstanding short-time oscillations within.

VI. CONCLUSIONS

The performance of a multipartite light-matter network
with arbitrary configurations as a quantum walk has been
considered. The quantum dynamics and the multipartite en-
tanglement have been analyzed, focusing on two highly
nontrivial geometries: a torus as a genus-one topology and
a Möbius strip as a nonorientable manifold. Clear signatures
of quantumness—distinct from the dispersive random-walk
evolution—were observed in our computation, which was
based on the exact solutions we derived. Also, the impact of
optical losses and spontaneous, atomic decays were included
in our model.

Quantum interference patterns in the probability dis-
tributions were found for both geometries. This included
oscillatory features in the optical part and in the atomic part,
as well as between them. A comparison of random walks and
quantum walks further showed that the quantum interference
is highly sensitive to the underlying geometry, while no dis-
tinctive features were observable in the classical diffusion.

Additional quantum properties of the network are con-
firmed by the entanglement created through the open-system
evolution. The analysis of entanglement includes the mul-
tipartite entanglement of the full system, the multipartite
entanglement between the atoms, the multipartite entangle-
ment between the cavity modes, and the bipartite light-matter
hybrid entanglement. For all these cases and both concrete
examples of geometries, we compared the ideal scenario with
situations when optical losses and spontaneous emissions are
taken into account.

Beyond the specific examples, our approach allows for an-
alyzing quantum interference in other geometries, tailored to
different, even continuous-in-time quantum simulation tasks.
One advantage of using a cascaded configuration is that the
evolution itself creates interesting kinds of entanglement from
an initially nonentangled state. In addition to the system
considered here, arrays of optomechanical systems present
a promising platform in which our approach may be valu-
able for implementing quantum walks [99,100]. Thus, we
presented a flexible and versatile model that can be used
to characterize scalable light-matter networks for interfacing
different physical platforms in quantum technologies.

ACKNOWLEDGMENTS

C.D.F. would like to thank the TQS group for the kind hos-
pitality at Paderborn University. J.S. and L.A. acknowledge
financial support through the Ministry of Culture and Science
of the State of North Rhine-Westphalia (Project PhoQC).

[1] E. Schrödinger, Die gegenwärtige situation in der quanten-
mechanik, Naturwiss. 23, 844 (1935).

[2] E. Schrödinger, Discussion of probability relations between
separated systems, Math. Proc. Camb. Phil. Soc. 31, 555
(1935).

[3] E. Schrödinger, Probability relations between separated sys-
tems, Math. Proc. Camb. Philos. Soc. 32, 446 (1936).

[4] A. Einstein, B. Podolsky, and N. Rosen, Can quantum-
mechanical description of physical reality be considered
complete? Phys. Rev. 47, 777 (1935).

[5] J. S. Bell, On the Einstein-Podolsky-Rosen paradox, Phys.
Phys. Fiz. 1, 195 (1964).

[6] J. S. Bell, Speakable and Unspeakable in Quantum Mechanics
(Cambridge University Press, Cambridge, 1987).

[7] M. A. Nielsen and I. L. Chuang, Quantum Computation and
Quantum Information (Cambridge University Press, Cam-
bridge, 2010).

[8] S. Haroche and J.-M. Raimond, Exploring the Quantum (Ox-
ford University Press, Oxford, 2006).

[9] M. M. Wilde, Quantum Information Theory (Cambridge Uni-
versity Press, Cambridge, 2017).

[10] M. A. Nielsen, Cluster-state quantum computation, Rep. Math.
Phys. 57, 147 (2006).

[11] R. Horodecki, P. Horodecki, M. Horodecki, and K.
Horodecki, Quantum entanglement, Rev. Mod. Phys. 81, 865
(2009).

[12] O. Gühne and G. Tóth, Entanglement detection, Phys. Rep.
474, 1 (2009).

[13] J. W. Pan, Z. B. Chen, C. Y. Lu, H. Weinfurter, A. Zeilinger,
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