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Stochastic correction to the Maxwell-Bloch equations via the positive P representation
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Focusing on two-level atoms, we apply the positive P representation to a full-wave mixed bosonic and
fermionic system of Jaynes-Cummings type and identify an advantageous degree of freedom in the choice
of the involved nonorthogonal fermionic basis states. On this basis, we propose a stochastic correction to the
Maxwell-Bloch equations by relating them to a stochastic differential equation on a nonclassical phase space,
which captures the full second quantization dynamics of the system. This approach explores the connection
between semiclassical and field-quantized treatments of light-matter interaction and can potentially be used for
the simulation of nonclassical light sources while retaining the main advantages of a semiclassical model.
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I. INTRODUCTION

Nonclassical light is expected to enable breakthrough
applications in emerging quantum technologies, such as quan-
tum computing and quantum simulation as well as quantum
sensing and metrology [1–4]. Therein, effects like photon anti-
bunching, entanglement, and squeezing play a significant role
[5]. On the other hand, field-quantized numerical simulations
of the light-matter interaction in, e.g., optoelectronic devices
are challenging [6]. Realistic devices often exhibit consider-
able complexity, i.e., they may feature coherent interactions
of many optical modes with a large number of atomic sys-
tems, as well as additional incoherent decay mechanisms and
losses. Hence, straightforward approaches using orthogonal
basis state expansion or moment recursion rapidly encounter
computational hardware limitations or excessive simulation
durations, primarily due to exponential scaling issues [7].

Semiclassical simulations have a greatly reduced numer-
ical load and provide a viable alternative to full quantum
modeling of optoelectronic devices such as quantum cascade
[8–13] and quantum dot (QD) [14–18] lasers in the classical
optical field limit. However, in the case of devices like single-
photon sources based on QDs [19,20], which depend on the
quantization of the optical field, these semiclassical methods
fall short in delivering an accurate description. For compar-
isons between semiclassical and full quantum models, see,
e.g., [21–23]. Semiclassical formalisms have been stochas-
tically enhanced to include spontaneous emission [24–27],
a nonclassical feature which is useful for the investigation
of noise in lasers [11,28], laser line widths [29,30], ran-
dom lasers [31,32], and active metamaterials [33,34]. This
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has been achieved by adding specific noise terms to the
widely used Maxwell-Bloch (MB) equations (see [10,35]).
Superfluorescence [36–40], optical bistability [41], and ther-
mal cavity noise [42] have also been statistically modeled
in the MB framework by adding decay-induced fluctuations
or in-coupled black-body radiation in the latter case. The
fluctuation statistics up to second order can be derived by
the Heisenberg-Langevin method, where expressions for the
correlations are obtained by the generalized Einstein relations
and the fluctuation-dissipation theorem [43,44]. Intuitively,
this type of noise is colored by the quantum system but does
not account for the inherent quantum noise, which is indepen-
dent of the decay in an open system (see [45]) and instead has
its roots in the noncommutative nature of quantum mechanics
itself [46].

To address this limitation, we adopt the positive P repre-
sentation [47], a quantum optical phase space method [4,48]
which, under specific conditions, allows us to use classical
statistical physics according to the quantum-classical corre-
spondence [49]. The underlying probability distribution of
the abstract phase-space variables is then governed by a
Focker-Planck equation (FPE) and can be directly sampled
by means of a corresponding stochastic differential equa-
tion (SDE) [50]. Since the positive P representation was
initially developed for purely bosonic systems, the litera-
ture dealing with SDEs for fermionic or mixed bosonic and
fermionic systems [7,51–55], as required for the treatment of
light-matter interaction, is sparse. Indeed, the resulting SDEs
are prone to suffer from inherent instabilities, nonlinearities,
and singularities. Alternatively, a few other stochastic ap-
proaches applicable to fermions exist. These include Gaussian
phase space representations [56–59], Grassmann phase space
methods [60–63], and operator algebra techniques involv-
ing characteristic functions (Haken-Risken-Weidlich method)
[40,46,64–66]. Generally the last method, originating in the
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FIG. 1. Outline of the derivation of the stochastic MB equa-
tions and their relation to the MB equations. Some of the key
concepts involved are highlighted: (a) nonorthogonal basis state
expansion (positive P representation), (b) dipole approximation for
the interaction Hamiltonian, (c) change of fermionic and bosonic
variables.

investigation of lasers, is correct in the small noise limit,
which may not be applicable in the strong coupling regime
of cavity quantum electrodynamics (cavity QED) [49]. In this
contribution, we show that some of the problems associated
with mixed bosonic and fermionic systems can be remedied
by engineering a set of diffusion-optimized nonorthogonal
basis states for the expansion of the fermionic system com-
ponent in terms of the positive P representation. Moreover, by
a multistep process, we derive stochastic partial differential
equations (SPDEs) [67,68] for a dissipative two-level atom
(TLA) in a perfect optical cavity featuring phase space vari-
ables with a direct physical interpretation, namely, inversion,
coherence, as well as electric and magnetic fields. This corre-
sponds to a stochastic correction to the MB equations, where
the evolution of the deterministic part of the SPDE represents
the standard MB equations. The outline of the aforementioned
derivation process is shown in Fig. 1.

Previous approaches for the derivation of modified or cor-
rected MB equations rely on, e.g., the Wigner quasiprobability
distribution [69], the orthogonal projection of single-atom
cavity QED [70], a FPE in the bad cavity limit [71], or the Itô
formula applied to a suitable stochastic ansatz [38,39]. Our
stochastic correction to the MB equations by means of the
inherent quantum noise supplied by the positive P represen-
tation SDE goes beyond adding decay-induced fluctuations
with second-order accurate statistics. In this way, we propose
to integrate key quantum effects while maintaining compati-
bility with existing semiclassical solvers [72–74], leveraging
their numerical efficiency. This connection between stochastic
modeling and proven simulation methods allows for a more
intuitive understanding of light-matter interaction.

The paper is structured as follows: In Sec. II we compare
suitable existing second-quantization and semiclassical mod-
els for light-matter interaction in optical cavities. We apply
the positive P representation to the field-quantized model in

FIG. 2. Two-level atom located at position x0 in an otherwise
empty optical cavity without mirror losses, i.e., we assume perfect
electric conductors (PECs) on either end. The first three cavity modes
with angular frequencies ω1, ω2, and ω3 are shown.

Sec. III and state the associated full-wave Jaynes-Cummings-
type SDE, introducing diffusion-optimized nonorthogonal
fermionic basis states. The simulation of these SDEs poses
some general and practical problems, which are discussed
in Sec. IV. Ultimately, we want to simulate realistic op-
toelectronic devices. Therefore, we incorporate unavoidable
dissipation into our SDE in Sec. V. Our main result, the
stochastic correction to the MB equations, is given in
Sec. VI.

II. LIGHT-MATTER INTERACTION

We consider one of the simplest possible systems for study-
ing light-matter interaction: a TLA with lower level |↓〉 and
upper level |↑〉 placed in a perfect optical cavity (see Fig. 2).
The energies of the levels are −h̄�/2 and h̄�/2 where � is
the angular frequency of this transition and h̄ denotes the re-
duced Planck constant. We now look at two possible models,
differing by whether the optical field is treated quantum me-
chanically or classically. The latter is only an approximation
that precludes the treatment of all effects due to atom-field
entanglement. This section sets the stage for our approach to
the MB equations (see right branch of Fig. 1) and establishes
a uniform notation that is used throughout the paper.

A. The second quantization case

The details of the optical field quantization in the perfect
cavity depend on its geometrical features length l , transverse
area A, and volume V = lA [75]. Let x0 ∈ (0, l ) be the po-
sition of the TLA in the cavity. We also need the vacuum
speed of light c = 1/

√
μ0ε0 and the impedance of free space

Z = √
μ0/ε0. Here ε0 and μ0 denote the vacuum permittivity

and permeability, respectively.
The nth cavity mode for n ∈ N has the angular frequency

ωn = πcn

l
(1)

and wave number kn = ωn/c. The electric field per photon in
the cavity is given by

ep(ωn) =
√

h̄ωn

ε0V
, (2)

and of course depends on the energy of the photon (by way of
the angular frequency). Then the electric and magnetic field
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operators

Êz(x, t ) =
∞∑

n=1

ep(ωn)[â†
n(t ) + ân(t )] sin(knx) ,

Ĥy(x, t ) = − 1

Z

∞∑
n=1

ep(ωn)i[â†
n(t ) − ân(t )] cos(knx) (3)

can be written in terms of the bosonic creation â†
n and annihi-

lation ân operators of each cavity mode and the corresponding
spatial mode functions sin(knx) and cos(knx). For later use,
we introduce the notation

en = 〈â†
n + ân〉,

hn = i〈â†
n − ân〉 (4)

since we are mostly interested in the electric and magnetic
fields

Ez(x, t ) =
∞∑

n=1

ep(ωn)en(t ) sin(knx) ,

Hy(x, t ) = − 1

Z

∞∑
n=1

ep(ωn)hn(t ) cos(knx) , (5)

which are obtained by taking the expectation values of the
respective operators.

Now directing our attention to the TLA, we introduce the
pseudospin operators

Ŝz = − 1
2 |↓〉〈↓| + 1

2 |↑〉〈↑| ,
Ŝ+ = |↑〉〈↓| ,
Ŝ− = |↓〉〈↑| = Ŝ†

+ .

(6)

It is also common to use the operators σ̂z = 2Ŝz, σ̂+ =
Ŝ+, and σ̂− = Ŝ− [49] but we follow the same convention
as [52].

The second quantization description of the system leads to
the Hamiltonian

ĤJC = ĤA + ĤF + ĤI

= h̄�Ŝz +
∞∑

n=1

h̄ωnâ†
nân

+
∞∑

n=1

h̄g(ωn) sin(knx0)(â†
n + ân)(Ŝ+ + Ŝ−) . (7)

Here ĤA and ĤF are the free Hamiltonians of the atom and
optical field, respectively. The interaction Hamiltonian ĤI

contains the frequency-dependent bosonic-fermionic coupling
constants g(ωn) and position factors sin(knx0). Note that (7)
reduces to the analytically solvable Jaynes-Cummings model
[76] if we consider only one cavity mode and moreover drop
the two energy non-preserving counterrotating terms âŜ− and
â†Ŝ+ in the interaction Hamiltonian, which corresponds to the
rotating-wave approximation (RWA) [43]. An investigation of
the RWA’s influence on the TLA’s stochastic dynamics can be
found in [77].

B. The semiclassical case

If we treat the optical field classically, we can eliminate
the bosonic degrees of freedom in the Hamiltonian (7) by
introducing the dipole moment operator

m̂ = m21Ŝ+ + m∗
21Ŝ− , (8)

and using the dipole approximation

ĤI,DA = −m̂Ez (9)

for the interaction Hamiltonian. In this section, ρ̂ = ρ̂A de-
notes the atomic density operator, which fully determines the
mixed state of the TLA, i.e., the only remaining quantum
mechanical system. The corresponding matrix entries are[

ρ11 ρ12

ρ21 ρ22

]
=
[〈↓ |ρ̂| ↓〉 〈↓ |ρ̂| ↑〉
〈↑ |ρ̂| ↓〉 〈↑ |ρ̂| ↑〉

]
. (10)

Applications involving the simulation of realistic optoelec-
tronic devices make it necessary to also account for scattering
and dephasing [10]. For this reason, we consider the following
dissipation superoperator in Lindblad form [78,79]

D(ρ̂) = rp
(
2Ŝzρ̂Ŝz − 1

2 ρ̂
)

+ r21
[
Ŝ−ρ̂Ŝ+ − 1

2 (Ŝzρ̂ + ρ̂Ŝz + ρ̂)
]

+ r12
[
Ŝ+ρ̂Ŝ− + 1

2 (Ŝzρ̂ + ρ̂Ŝz − ρ̂)
]
, (11)

where r12 denotes the scattering rate from |↓〉 to |↑〉 (vice
versa for r21) and rp the pure dephasing rate. From the com-
plete time evolution equation for our system

d ρ̂

dt
= − i

h̄
[ĤA + ĤI,DA, ρ̂] + D(ρ̂) , (12)

we can derive the familiar full-wave Bloch equations

dρ21

dt
= −i�ρ21 − i

h̄
m21Ezν − γ2ρ21 ,

dν

dt
= 2

i

h̄
(m21Ezρ

∗
21 − m∗

21Ezρ21) − γ1(ν − ν0) (13)

for the coherence ρ21 and population inversion ν = ρ22 − ρ11

(by virtue of the hermiticity ρ̂† = ρ̂ no separate equation for
ρ12 = ρ∗

21 is needed). Here the relaxation rates γ1, γ2 and the
steady-state inversion ν0 are given by

γ1 = r12 + r21 ,

γ2 = 1
2 (r12 + r21) + rp ,

ν0 = r12 − r21

r12 + r21
.

(14)

Indeed, the form of (11) was chosen specifically to yield these
results, which are in agreement with an intuitive understand-
ing of the scattering and dephasing process.

Now, the Bloch equations are closed by coupling them to
the 1D Maxwell equations

∂Ez

∂x
= μ0

∂Hy

∂t
,

∂Hy

∂x
= ε0

∂Ez

∂t
+ ∂Pz

∂t
,

(15)

containing the macroscopic polarization

Pz = n3D〈m̂〉 = 2n3DRe (m∗
21ρ21) . (16)
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Here n3D denotes the number density of atoms. The resulting
semiclassical MB equations are well suited for optoelectronic
device simulations whenever the reduction of the 3D Maxwell
equations to 1D can be justified. For example, semiconductor
lasers often possess a waveguide geometry where the cavity
cross section remains constant along the optical axis. In this
case the transverse mode profile calculation can be decoupled
from the longitudinal propagation simulation [10]. The stan-
dard finite-difference time-domain (FDTD) method [80,81]
for the numerical solution of the 1D Maxwell equations of-
fers a huge computational benefit compared to the numerical
treatment of the quantized optical field from Sec. II A. Further
details concerning the combined numerical solution of the MB
equations, including the appropriate treatment of the coupling
between them, can be found in [10].

In conclusion of this section, we note that plugging an
ansatz of the form (5) into (15) (without the polarization term)
yields the conditions

den

dt
= ωnhn ,

dhn

dt
= −ωnen ,

(17)

which can be regarded as the cavity mode form of the 1D
Maxwell equations. We make use of this observation in the
derivation of the stochastic MB equations in Sec. VI.

III. FROM THE POSITIVE P REPRESENTATION TO SDES

Given a quantum mechanical system with Hamiltonian
Ĥ , our goal is to specify a c-number stochastic process that

captures the dynamics of the von Neumann equation

d ρ̂

dt
= − i

h̄
[Ĥ, ρ̂] , (18)

for the density operator ρ̂. To this end, we make the ansatz

ρ̂(t ) =
∫

P(x, t )�̂(x) dμ(x), x = (x1, . . . , xn) , (19)

where P should behave like a probability distribution on a
complex nonclassical phase space [49]. As noted in [40],
a consistent replacement of operators by c-numbers gener-
ally requires a nonclassical phase space. Here the integration
measure

dμ(x) = d2x1 · · · d2xn (20)

calls for separate integration over all real and imaginary parts.
Let us assume that the kernel �̂ of this integral representation
satisfies

[Ĥ , �̂(x)] =ih̄

[
n∑

i=1

Ai(x)
∂

∂xi
+ 1

2

n∑
i, j=1

Di j (x)
∂2

∂xi∂x j

]
�̂(x) ,

(21)

i.e., only partial derivatives with respect to the phase space
variables of order one and two occur. Combining (18), (19),
and (21) yields

∫
�̂(x)

∂

∂t
P(x, t ) dμ(x) = − i

h̄

∫
P(x, t )[Ĥ , �̂(x)] dμ(x)

=
∫

P(x, t )

⎛
⎝ n∑

i=1

Ai(x)
∂

∂xi
+ 1

2

n∑
i, j=1

Di j (x)
∂2

∂xi∂x j

⎞
⎠�̂(x) dμ(x)

=
∫

�̂(x)

⎛
⎝−

n∑
i=1

∂

∂xi
Ai(x) + 1

2

n∑
i, j=1

∂2

∂xi∂x j
Di j (x)

⎞
⎠P(x, t ) dμ(x) , (22)

provided that all boundary terms from partial integration van-
ish. By getting rid of the integrals, we obtain the FPE

∂

∂t
P(x, t ) =

[
−

n∑
i=1

∂

∂xi
Ai(x) + 1

2

n∑
i, j=1

∂2

∂xi∂x j
Di j (x)

]
P(x, t ) ,

(23)

with a drift vector A(x) = [Ai(x)] ∈ Cn and a diffusion matrix
D(x) = [Di j (x)] ∈ Cn×n. It is understood that in the last line
of (22) as well as in (23) the differential operator ∂/∂xi acts
on the whole product Ai(x)P(x, t ) and analogously for the
remaining second-order differential operators. If we can find
a (nonunique) factorization

D(x) = B(x)B(x)T (24)

with a noise matrix B(x) ∈ Cn×m, then (23) is equivalent to
the Itô SDE

dXt = A(Xt ) dt + B(Xt ) dW t , (25)

driven by the m-dimensional Wiener process W [50,67]. Its
solution X = {X (t ) = Xt |t ∈ [0, T ]} on a time interval [0, T ]
is the stochastic process we are looking for. Note that we
clearly distinguish between stochastic processes and their re-
alizations (e.g., X and x) by using uppercase and lowercase
letters, respectively.

Before continuing, a few comments are in order: Another
way to write the SDE, namely,

dXt

dt
= A(Xt ) + B(Xt )ξt , (26)
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uses the concept of white noise ξ = dW/dt and highlights
the connection to Langevin forces [82]. Furthermore, un-
der the necessary assumption of D = DT, the existence of
a corresponding B satisfying (24) is guaranteed by the
Autonne-Takagi factorization [83]. For numerical reasons, it
is important to be able to specify such a factorization ex-
plicitly. As exemplified later in this section, the freedom to
choose a wide rectangular (i.e., more columns than rows)
instead of quadratic B can prove useful here, but the additional
noise dimensions are also a numerical drawback by them-
selves. Regarding the attainable simulation time, numerical
diffusion gauges realized by algorithmically solving for B in
each time step can even be beneficial [59]. In general, the
inherent nonuniqueness of the diffusion matrix factorization
can always be interpreted as a diffusion gauge [84], which
manifests itself as a degree of freedom in the statement of
the SDE but does not affect its solution, i.e., the stochastic
process.

A. Bosonic and fermionic projectors

We want to apply the procedure above to the full-wave
Jaynes-Cummings-type system described in Sec. II A, cul-
minating in an SDE. For that, we first need to construct
an appropriate kernel (see Sec. III B). Owing to the mixed
bosonic and fermionic nature of the involved Hamiltonian, the
preparatory work is done in two separate but related steps.

The case of purely bosonic systems is well known: For the
bosonic projector

�̂F(α, β ) = |α〉〈β∗|
〈β∗|α〉 (27)

onto the normalized coherent states

|α〉 = e− |α|2
2 exp(αâ†)|0〉 , (28)

our ansatz (19) corresponds to the positive P representation,
which has proven to be very useful in quantum optics [47,85–
87]. The off-diagonal projectors double the phase space di-
mension [i.e., (α, β ) replaces (α, α∗)], and these additional
dimensions are known to capture nonclassical light features
[48]. Because of the projector differential identities

â†�̂F =
(

∂

∂α
+ β

)
�̂F ,

â�̂F = α�̂F ,

�̂Fâ† = β�̂F , (29)

�̂Fâ =
(

∂

∂β
+ α

)
�̂F ,

we get an expression of the desired form (21) for suitable
Hamiltonians. In this context, it is also important that there
is an explicit formula for an initial probability distribution in
terms of a given initial density operator, even though such a
probability distribution need not be unique.

Next, we need to find a way to also deal with the fermionic
component of a given system. An existing approach [7,52,54]
is based on coherent spin states [88]. For spin s = 1/2 and

|s, s〉 = |↑〉 their definition boils down to

|z〉 = (1 + |z|2)−s exp(zŜ−)|s, s〉

= 1√
1 + |z|2

(z|↓〉 + |↑〉) . (30)

This motivates the more general ansatz for nonorthogonal
fermionic states

||z〉 = f (z)|↓〉 + g(z)|↑〉 , (31)

with analytic coefficient functions f and g. The notation ||·〉
(see [84]) is chosen to remind us of the fact that these states
might be unnormalized. Not only will the resulting freedom to
fine-tune f and g pay off later, but the extra generality is also
helpful for separating inherent features of the problem from
details due to a specific choice of these analytic coefficient
functions. However, an obvious drawback of renouncing the
coherent spin states is that an extension to the case of an
n-level atom is not straightforward. It is clear from the local
power series expansions

f (z) =
∞∑

k=0

fk (z − z0)k ,

g(z) =
∞∑

k=0

gk (z − z0)k ,

(32)

that f̃ and g̃ defined by

f̃ (z) = f (z∗)∗ =
∞∑

k=0

f ∗
k (z − z0

∗)k ,

g̃(z) = g(z∗)∗ =
∞∑

k=0

g∗
k (z − z0

∗)k (33)

are also analytic functions. Moreover h = g/ f and h̃ = g̃/ f̃
are analytic where they are defined. Now, we define the
fermionic projector

�̂A(z,w) = ||z〉〈w∗||
〈w∗||z〉

= 1

1 + h(z)h̃(w)
[|↓〉〈↓| + h̃(w)|↓〉〈↑|

+ h(z)|↑〉〈↓| + h(z)h̃(w)|↑〉〈↑|], (34)

in analogy to (27). It can be shown by a lengthy but direct
calculation that the projector differential identities

Ŝ+�̂A =
[

1

h′(z)

∂

∂z
+ h̃(w)

1 + h(z)h̃(w)

]
�̂A ,

Ŝ−�̂A =
[
−h(z)2

h′(z)

∂

∂z
+ h(z)

1 + h(z)h̃(w)

]
�̂A ,

Ŝz�̂A =
{

h(z)

h′(z)

∂

∂z
− 1 − h(z)h̃(w)

2
[
1 + h(z)h̃(w)

]
}

�̂A ,

�̂AŜ+ =
[
− h̃(w)

2

h̃′(w)

∂

∂w
+ h̃(w)

1 + h(z)h̃(w)

]
�̂A ,
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�̂AŜ− =
[

1

h̃′(w)

∂

∂w
+ h(z)

1 + h(z)h̃(w)

]
�̂A ,

�̂AŜz =
{

h̃(w)

h̃′(w)

∂

∂w
− 1 − h(z)h̃(w)

2[1 + h(z)h̃(w)]

}
�̂A (35)

hold. This is a generalization and unification of some of
the projector differential identities arising from coherent spin
states that can be found in [52,54]. As already discussed for
the bosonic case, it is essential to specify an explicit way
to write an initial atomic density operator, in the form of
(19), where P is a probability distribution. Otherwise, the
states (31) would turn out to be unusable since it is not suf-
ficient to state an SDE; one also has to be able to supply it
with initial values. The details are quite technical and can be
found in Appendix A. Compared to their counterpart (29), the
projector differential identities (35) are highly nonlinear and
have singularities. Another positive P representation approach
[51,53,55], which uses Schwinger bosons [89] for dealing
with the fermionic system component, can mitigate this prob-
lem at the expense of much broader and therefore harder to
sample initial probability distributions.

B. The full-wave Jaynes-Cummings-type SDE

Now we are ready to focus on the full-wave Jaynes-
Cummings-type system. For the rest of the discussion, we
restrict ourselves to a finite number N � 1 of cavity modes
in the Hamiltonian (7) since we are not equipped to deal with
an infinite dimensional phase space. It is natural to consider
the phase space variables

φ = (φ1, . . . , φ2(N+1)) = (α1, β1, . . . , αN , βN , z,w) , (36)

which belong to the kernel

�̂JC(φ) = �̂F(α1, β1) ⊗ · · · ⊗ �̂F(αN , βN ) ⊗ �̂A(z,w) ,

(37)

built from the bosonic and fermionic projectors (27) and (34),
respectively. Evaluating [ĤJC, �̂JC] with the help of the pro-
jector differential identities (29) and (35) leads to a FPE with
drift vector

AJC(φ) = i

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−ω1α1 − g(ω1) sin(k1x0) h(z)+h̃(w)
1+h(z)h̃(w)

ω1β1 + g(ω1) sin(k1x0) h(z)+h̃(w)
1+h(z)h̃(w)

...

−ωNαN − g(ωN ) sin(kN x0) h(z)+h̃(w)
1+h(z)h̃(w)

ωNβN + g(ωN ) sin(kN x0) h(z)+h̃(w)
1+h(z)h̃(w)

−� h(z)
h′ (z) +∑N

n=1 g(ωn)(αn + βn) sin(knx0) h(z)2−1
h′(z)

� h̃(w)
h̃′(w)

−∑N
n=1 g(ωn)(αn + βn) sin(knx0) h̃(w)

2−1
h̃′(w)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(38)

The diffusion matrix

DJC(φ) = i

⎡
⎢⎢⎣

0 · · · 0 D1(φ)
...

. . .
...

...

0 · · · 0 DN (φ)
D1(φ) · · · DN (φ) 0

⎤
⎥⎥⎦ (39)

is built from 2 × 2 blocks. The nonzero blocks

Dn(φ) =
[

dn(φ) 0

0 −d̃n(φ)

]
(40)

contain the entries

dn(φ) = g(ωn) sin(knx0)
h(z)2 − 1

h′(z)
,

d̃n(φ) = g(ωn) sin(knx0)
h̃(w)

2 − 1

h̃′(w)
,

(41)

which depend on the cavity mode number, the bosonic-
fermionic coupling constants, the position of the TLA in the
cavity, and the fermionic phase space variables. In this way,
we have identified all factors contributing to the inherent
quantum noise. Before we can state the desired SDE for the
system, we need to factorize DJC. To this end consider

Pn(φ) =
√

dn(φ)

2

[
i −1
0 0

]
,

Qn(φ) =
√

d̃n(φ)

2

[
0 0
−i −1

]
,

Rn(φ) =
√

dn(φ)

2

[−i −1
0 0

]
, (42)

Sn(φ) =
√

d̃n(φ)

2

[
0 0
−i 1

]
,

and set

Bn(φ) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 · · · 0 0 0 · · · 0 0
...

. . .
...

...
...

. . .
...

...

0 · · · 0 0 0 · · · 0 0
0 · · · 0 Pn(φ) 0 · · · 0 Qn(φ)
0 · · · 0 0 0 · · · 0 0
...

. . .
...

...
...

. . .
...

...

0 · · · 0 0 0 · · · 0 0
0 · · · 0 Rn(φ) 0 · · · 0 Sn(φ)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(43)

where the nonzero blocks are located in row n or N + 1 and
column n or N + 1 of the block matrix. Then it is straightfor-
ward to check that

BJC(φ) =
√

i[B1(φ) · · · BN (φ)] (44)

satisfies the requirement BJCBT
JC = DJC. This construction is

inspired by [52] where the structure of (43) can be found for
the special case n = N = 1, RWA, and h(z) = z (implying
h̃(w) = w), which corresponds to the coherent spin states
(30). It would be an improvement to find a smarter factoriza-
tion that requires fewer noise dimensions. The resulting SDE

d�t = AJC(�t ) dt + BJC(�t ) dW t (45)

is nonscalar and nonlinear, and generally has nonadditive
noise, i.e., the noise matrix (44) is not constant. There-
fore, searching for analytic solutions is probably out of the
question, and even numerical solution methods can struggle.
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Surprisingly, we are able to address the nonadditive noise
issue: For the parameter δ ∈ C the ordinary differential equa-
tion (ODE)

h′(z) = 1

δ
[h(z)2 − 1] (46)

has the family of solutions

h(z) = 1 − exp
(

2z
δ

+ κ
)

1 + exp
(

2z
δ

+ κ
) , κ ∈ C . (47)

Here the parameter δ is a degree of freedom directly linked
to the diffusion via (41). Consequently, the new full-wave
additive noise states with, e.g., κ = 0,

||z〉 = (
1 + e

2z
δ

)|↓〉 + (
1 − e

2z
δ

)|↑〉 , (48)

have the special property that the diffusion matrix (39) and the
noise matrix (44) are constant. We note that this kind of opti-
mization, which can also apply to other system Hamiltonians,
is not achievable with the well-known diffusion gauges (see
Sec. III). It is an interesting fact that the coherent spin states
(30) themselves lead to additive noise for the SDE associated
with the RWA Jaynes-Cummings model. The benefit can lie
in the order of convergence of a numerical solution method:
For example, the basic Euler-Maruyama method (weak order
�t , strong order

√
�t) is equivalent to the Milstein method

(weak order �t , strong order �t) for the case of additive noise
[90]. Moreover, it is plausible that the stability of numerical
solution methods can improve as well. A discussion of the
role of additive versus nonadditive noise in physics can be
found in [91].

IV. SDE SIMULATION CHALLENGES

Even though SDE simulations are not the focus of this pa-
per, we want to present a simple example for three reasons: to
test the results of Sec. III while demonstrating the desirability
of additive noise in particular, to explain some aspects of SDE
postprocessing that are relevant for Sec. VI, and to recapitulate
some general problems that affect SDE based approaches (see
Sec. VII).

The big advantage of SDEs derived by means of a
nonorthogonal basis state expansion is that the sizes of the
associated drift vector and noise matrix scale linearly with the
complexity of the system Hamiltonian, as opposed to the ex-
ponential complexity scaling for a straightforward orthogonal
basis state expansion [7,53]. Contrary to this observation, we
reduce the complexity by considering only one cavity mode
in the Hamiltonian (7), which yields the full-wave Jaynes-
Cummings model. This does not play to the strengths of
SDEs, but it makes it easy to compare the results of the SDE
simulation with those of an independent Heisenberg picture
reference simulation resorting to a truncated number state
basis for the representation of the operators by matrices. We
note that before the semiclassical limit is eventually reached,
the high photon number cutoff for the truncated number state
basis of each bosonic mode causes trouble for this Hilbert
space approach. Due to its c-number nature, the SDE is not
negatively affected at all.

Unless otherwise indicated, we use the full-wave additive
noise states (48) with parameter δ = 4. Then we obtain the
drift vector

AJC(φ) = i

⎡
⎢⎢⎢⎢⎢⎣

−ωα + gs tanh
(

z
δ

+ w
δ∗
)

ωβ − gs tanh
(

z
δ

+ w
δ∗
)

−�δ
2 sinh

(
2z
δ

)+ gsδ(α + β )
�δ∗

2 sinh
(

2w
δ∗
)− gsδ∗(α + β )

⎤
⎥⎥⎥⎥⎥⎦ (49)

and noise matrix

BJC(φ) =
√

igs

2

⎡
⎢⎢⎢⎣

i
√

δ −√
δ 0 0

0 0 −i
√

δ∗ −√
δ∗

−i
√

δ −√
δ 0 0

0 0 −i
√

δ∗ √
δ∗

⎤
⎥⎥⎥⎦ (50)

[see (38) and (44)], where we have set ω = ω1, k = k1, α =
α1, β = β1, g = g(ω1), and s = sin(k1x0), in order to con-
dense the expressions. We observe that limδ→0 BJC = 0, but
the naive idea—the less noise, the better—is a bit treacherous.
In this context, it would be interesting to investigate whether
in the limit δ → 0 chaos in the drift ODE

dφ

dt
= AJC(φ) (51)

counterbalances the vanishing noise. This question exceeds
the scope of the present work but, e.g., [92] deals with chaos in
the MB equations. Now we specify the setup of the full-wave
Jaynes-Cummings SDE simulation. Let the TLA be posi-
tioned in the center x0 = l/2 of the cavity. Since our interest
lies in the qualitative behavior of the SDE determined by (49)
and (50), we consider the set of parameters h̄ = 1, � = 1000,
ω = 1100 and g = 200 with arbitrary units. The initial density
operator is taken to be of the form ρ̂0 = ρ̂F,0 ⊗ ρ̂A,0 with
ρ̂F,0 = |α〉〈α| and

ρ̂A,0 = 1

1 + e−β h̄�
|↓〉〈↓| + 1

1 + eβ h̄�
|↑〉〈↑| . (52)

Here the coherence parameter is α = 5, i.e., there are on
average |α|2 = 25 photons in the cavity and the thermal
parameter is β = 1/(h̄�), i.e., the TLA is inverted with prob-
ability 1/(1 + e) ≈ 0.27. The initialization of the bosonic
phase space variables poses no problems. As mentioned in
Sec. III A, Appendix A contains all that is necessary to convert
ρ̂A,0 into initial values for the fermionic phase space vari-
ables. For reasons of speed and simplicity, we choose the
basic Euler-Maruyama method on the equidistant temporal
grid tn, n = 1, . . . , N = 8193 with t1 = 0 and tN = π/ω (i.e.
tn+1 − tn = �t ≈ 3.5 × 10−7).

From R independent SDE runs we obtain independent re-
alization paths φr

n with r = 1, . . . , R and n = 1, . . . , N for the
phase space variables. Figure 3 demonstrates the impact of the
choice of nonorthogonal fermionic basis states on our ability
to adequately sample the SDE statistics. For the coherent
spin states (30) in Fig. 3(a) 1000 SDE runs quickly become
insufficient to resolve the statistical expectation values of the
fermionic phase space variables (z,w) in the time interval
[0, tN ]. In contrast, 1000 SDE runs suffice for all of [0, tN ]
when we instead use the full-wave additive noise states (48)
by virtue of an overall slower diffusion [see Fig. 3(b)]. The
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FIG. 3. Trajectory (for the same time interval) of the fermionic
phase space variables (z,w) in the complex plane averaged over 1000
runs of the full-wave Jaynes-Cummings SDE for (a) coherent spin
states and (b) full-wave additive noise states. The blue and orange
lines belong to z and w, respectively.

fact that more and more SDE runs are needed to resolve the
time evolution for longer time scales constitutes a general
disadvantage. However, those SDE runs are independent of
each other and can thus be parallelized. Figure 3 also illus-
trates that because of the phase space dimension doubling,
z and w are complex conjugates only on average, and the
same does not apply for individual (or averages of too few)
realizations. Most of the time, we are not directly interested in

these phase space variables because they might lack a direct
physical interpretation. Instead, given an operator, e.g., Ŝ−, we
ultimately want to compute associated independent realization
paths σ r

n such that

〈〈σ 〉〉n = 1

R

R∑
r=1

σ r
n → 〈Ŝ−〉(tn) = tr[Ŝ−ρ̂(tn)] , (53)

in the limit R → ∞. Here we choose the notation 〈〈·〉〉 for the
statistical expectation value to distinguish it from the quantum
mechanical expectation value. The required postprocessing
of the data generated by the SDE runs is described below.
Because of (27) and the completeness of the number states,
it is easy to see that

∞∑
n=0

〈n|�̂F(α, β )|n〉 = 1 . (54)

After introducing the function

σ = v(φ) = h(z)

1 + h(z)h̃(w)
, (55)

we can write

〈↓ |Ŝ−�̂A(z,w)| ↓〉 = v(φ) ,

〈↑ |Ŝ−�̂A(z,w)| ↑〉 = 0 (56)

by using (34). Plugging in (19) and simplifying with the help
of these results yields

tr[Ŝ−ρ̂(t )] =
∞∑

n=0

[〈n,↓|Ŝ−ρ̂(t )|n,↓〉 + 〈n,↑|Ŝ−ρ̂(t )|n,↑〉]

=
∫

P(φ, t )v(φ) dμ(φ) . (57)

Hence, it is possible to just set σ r
n = v(φr

n) in (53) because
due to the equivalence of the SDE and FPE, realizations φr

n
come to lie in the neighborhood B� with the relative frequency∫

B�
P(φ, tn) dμ(φ). Although this method for computing σ r

n
is sufficient for most applications, we now discuss a way to
get better accuracy at the expense of increased computational
load. The derivative of the stochastic process � = v(�) is

d�t =
⎡
⎣ n∑

i=1

AJC,i(�t )
∂v

∂φi
(�t ) + 1

2

m∑
j=1

n∑
p,q=1

BJC,p j (�t )BJC,q j (�t )
∂2v

∂φp∂φq
(�t )

⎤
⎦dt +

m∑
j=1

n∑
i=1

BJC,i j (�t )
∂v

∂φi
(�t ) dWj,t (58)

by Itô’s formula [90]. This stochastic modification of the chain
rule also lies at the heart of the derivation of the stochastic
MB equations in Sec. VI. For further recent examples of its
usefulness in the investigation of light-matter interaction we
refer to [38,39,51]. Incorporating (58) into (45) yields an SDE
of the form

d

[
�t

�t

]
=
[

AJC(�t )
a(�t )

]
dt +

[
BJC(�t )
b(�t )

]
dW t (59)

for the expanded phase space variables (φ, σ ) (note that the
time evolution of the φ part is unaffected because σ does not

couple back into φ). The desired realization paths σ r
n can be

computed directly from this SDE.
In this way, we can determine the time evolution of the

coherences

ρ21(t ) = 〈Ŝ−〉(t ) ,
(60)

ρ12(t ) = 〈Ŝ+〉(t ) ,

and the population inversion

ν(t ) = ρ22(t ) − ρ11(t ) = 〈2Ŝz〉(t ) , (61)
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FIG. 4. Time evolution of the atomic density operator. The di-
agonal entries ρ11 (blue), ρ22 (orange), and off-diagonal entries ρ21

(real part blue, imaginary part orange), and ρ12 (real part dark blue,
imaginary part green) are shown in (a) and (b), respectively. The solid
lines belong to the full-wave Jaynes-Cummings SDE simulation,
the dashed lines to an independent truncated number state basis
Heisenberg picture reference simulation, and the dash-dotted lines to
a complementary semiclassical MB simulation without dissipation.

from 2995 SDE runs. Actually 3000 SDE runs were started,
of which five diverged. Discarding divergent runs interferes
with the statistics, so it can only be done on a small scale.
Therefore, it is not a fix for significant stability issues.

The results are shown in Fig. 4. It can be seen that
our SDE solutions (solid) are in good agreement with the
Heisenberg picture reference simulation (dashed). For com-
parison, we also depict a complementary semiclassical MB
simulation (dash-dotted) utilizing (13) without dissipation,
i.e., γ1 = γ2 = 0 and (15), which only initially follows the
full quantum solutions and quickly deviates. These vanishing
relaxation rates are justified by the fact that the full-wave
Jaynes-Cummings model does not include collisional dephas-
ing, i.e., spontaneous emission is the only remaining cause

for dissipation/fluctuation in the perfect cavity from the view-
point of the Lindblad formalism with classical optical fields.
However, it turns out that in our case, where the dipole mo-
ment is parallel to the mirrors and the half-wavelength of
the atomic transition does not fit into the cavity, spontaneous
emission is strongly suppressed [93]. Indeed, the phenomeno-
logical cavity-modified spontaneous emission rate derived by
means of the Weisskopf-Wigner approximation equals zero
[94]. This unfavorable case for the traditional Heisenberg-
Langevin approach demonstrates the benefits of using tools
from quantum optics that avoid a priori semiclassical approx-
imations in the derivation of the MB equations (see Sec. VI)
while yielding stochastic corrections that do not rely on the
fluctuation-dissipation theorem. We note that the full-wave
Jaynes-Cummings model from our SDE and semiclassical
MB simulations in Fig. 4 can be applied to the physical sit-
uation of a single trapped cold atom in a detuned high-quality
optical cavity with low-intensity optical fields [95].

For timescales that are too long, positive P representation
SDEs for nonlinear quantum optical systems are known to
sometimes produce wrong simulation results, and the causes
and accompanying warning signs are analyzed in [96]. For
example, the critical assumption in the derivation of the FPE,
namely, that boundary terms from partial integration van-
ish (see Sec. III) can lose its validity in the course of the
time evolution [49]. For some bosonic systems, drift gauges
have been successfully used to remove these boundary terms
and thereby extend the time interval that can be simulated
correctly [84,97]. Our full-wave Jaynes-Cummings SDE sim-
ulation does not reach this natural time limit (if it exists)
because stability issues set in beforehand. This is not par-
ticularly surprising given the singularities of the tanh terms
in (49). Unfortunately, we were unable to find nonorthogonal
fermionic basis states such that both the resulting drift vector
and noise matrix are singularity-free. A more sophisticated
SDE simulation might be able to circumvent this issue by
employing a set of complementary nonorthogonal fermionic
basis states and switching between them on the fly.

V. INCORPORATION OF DISSIPATION

It turns out that the dissipation model from Sec. II B is com-
patible with the nonorthogonal basis state expansion method
for deriving SDEs, which was developed in Sec. III. This
observation has the potential to pave the way for future, more
realistic SDE simulations of light-matter interaction.

In order to check the validity of this claim, we calculate
the effect of the three terms of the dissipation superoperator
(11) on the projector �̂ = �̂JC from (37). Using the projector
differential identities (35) we obtain

2Ŝz�̂Ŝz − 1

2
�̂ =

[
− h(1 − hh̃)

h′(1 + hh̃)

∂

∂z
− h̃(1 − hh̃)

h̃′(1 + hh̃)

∂

∂w
+ 1

2

(
2hh̃

h′h̃′
∂2

∂z∂w
+ 2hh̃

h′h̃′
∂2

∂w∂z

)]
�̂ ,

Ŝ−�̂Ŝ+ − 1

2
(Ŝz�̂ + �̂Ŝz + �̂) =

[
− h(1 + 3hh̃)

2h′(1 + hh̃)

∂

∂z
− h̃(1 + 3hh̃)

2h̃′(1 + hh̃)

∂

∂w
+ 1

2

(
h2h̃2

h′h̃′
∂2

∂z∂w
+ h2h̃2

h′h̃′
∂2

∂w∂z

)]
�̂ ,

Ŝ+�̂Ŝ− + 1

2
(Ŝz�̂ + �̂Ŝz − �̂) =

[
h(3 + hh̃)

2h′(1 + hh̃)

∂

∂z
+ h̃(3 + hh̃)

2h̃′(1 + hh̃)

∂

∂w
+ 1

2

(
1

h′h̃′
∂2

∂z∂w
+ 1

h′h̃′
∂2

∂w∂z

)]
�̂ . (62)
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As in (21), only partial derivatives with respect to the phase space variables of orders one and two occur. Therefore, these terms
can be incorporated into the FPE described by the drift vector (38) and diffusion matrix (39). Note that owing to the form of the
left-hand sides of these expressions, one would actually expect an atypical FPE featuring a potential term VJC+,

∂P

∂t
(φ, t ) =

[
VJC+(φ) −

n∑
i=1

∂

∂φi
AJC+,i(φ) + 1

2

n∑
i, j=1

∂2

∂φi∂φ j
DJC+,i j (φ)

]
P(φ, t ) , (63)

which cannot be translated into an SDE directly. Here one needs to first introduce an additional phase space variable designed to
remove the potential term [84]. However, this has the drawback of not only increasing the computational load but also making
the physical interpretation of the phase space variables more complicated. In our case, we are fortunate that because of a series
of cancellations, VJC+ = 0 holds. From (62), it follows that the updated drift vector becomes

AJC+(φ) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−iω1α1 − ig(ω1) sin(k1x0) h+h̃
1+hh̃

iω1β1 + ig(ω1) sin(k1x0) h+h̃
1+hh̃

...

−iωNαN − ig(ωN ) sin(kN x0) h+h̃
1+hh̃

iωNβN + ig(ωN ) sin(kN x0) h+h̃
1+hh̃

−i� h
h′ +∑N

n=1 ig(ωn)(αn + βn) sin(knx0) h2−1
h′ − rp

h(1−hh̃)
h′(1+hh̃) − r21

h(1+3hh̃)
2h′(1+hh̃) + r12

h(3+hh̃)
2h′(1+hh̃)

i� h̃
h̃′ −∑N

n=1 ig(ωn)(αn + βn) sin(knx0) h̃2−1
h̃′ − rp

h̃(1−hh̃)
h̃′(1+hh̃) − r21

h̃(1+3hh̃)
2h̃′(1+hh̃) + r12

h̃(3+hh̃)
2h̃′(1+hh̃)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (64)

Moreover, the updated diffusion matrix

DJC+(φ) =

⎡
⎢⎢⎢⎣

0 · · · 0 iD1(φ)
...

. . .
...

...

0 · · · 0 iDN (φ)
iD1(φ) · · · iDN (φ) D(φ)

⎤
⎥⎥⎥⎦ (65)

contains the additional nonzero block

D(φ) = d (φ)

[
0 1
1 0

]
, (66)

with the entry

d (φ) = rp
2h(z)h̃(w)

h′(z)h̃′(w)
+ r21

h(z)2h̃(w)
2

h′(z)h̃′(w)
+ r12

1

h′(z)h̃′(w)
.

(67)

Thus, the additional quantum noise due to dissipation depends
on the scattering and pure dephasing rates as well as the
fermionic phase space variables. For the updated SDE, we
need to again factorize DJC+. To this end, consider

T (φ) =
√

d (φ)

2

[−i 1
i 1

]
, (68)

and set

B(φ) =

⎡
⎢⎢⎣

0 · · · 0 0
...

. . .
...

...

0 · · · 0 0
0 · · · 0 T (φ)

⎤
⎥⎥⎦ , (69)

where the nonzero block is located in row N + 1 and column
N + 1 of the block matrix. Then modifying (44) to

BJC+(φ) = [
√

iB1(φ) · · ·
√

iBN (φ) B(φ)] (70)

suffices to satisfy the requirement BJC+BT
JC+ = DJC+.

VI. THE STOCHASTIC MB EQUATIONS

We are almost in the position to accomplish our main goal
of using the SDE for the full-wave Jaynes-Cummings-type
system, including dissipation derived in Sec. V to gain new
insight into the MB equations from Sec. II B. All that remains
to be done in preparation is to bring this SDE into a more
convenient form by two subsequent changes of variables.

First, consider the change of variables

φ → ψ = (α1, β1, . . . , αN , βN , ρ21, ρ12, ν) , (71)

with the new fermionic phase space variables

ρ21 = h(z)

1 + h(z)h̃(w)
,

ρ12 = h̃(w)

1 + h(z)h̃(w)
,

ν = h(z)h̃(w) − 1

1 + h(z)h̃(w)
. (72)

Their symbols are motivated by (55) and analogous results
arising from Ŝ+ and Ŝz. For later use we introduce the stochas-
tic processes P21, P12, and N belonging to the new fermionic
phase space variables. They are denoted by uppercase Greek
letters (i.e., ρ � P and ν � N) in accordance with our nam-
ing convention (see Sec. III). Note that we have introduced
an additional fermionic phase space dimension (see Sec. IV).
This is a convenient choice for our purposes, but it is actually
not necessary. It should also be kept in mind that there is no
reason for realizations ρ21 and ρ12 being complex conjugates.
The change back to the previous phase space variables ψ → φ
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is determined by

h(z) = 2ρ21

1 − ν
= 1 + ν

2ρ12
,

(73)

h̃(w) = 1 + ν

2ρ21
= 2ρ12

1 − ν
,

provided that h and h̃ cooperate.
Second, consider the change of variables

ψ → ψ̄ = (ε1, η1, . . . , εN , ηN , ρ21, ρ12, ν) (74)

with the new bosonic phase space variables

εn = βn + αn,
(75)

ηn = i(βn − αn).

Clearly this is motivated by (4) and the fact that due to the
equalities 〈〈βn〉〉 = 〈â†

n〉 and 〈〈αn〉〉 = 〈ân〉 (see Sec. IV) it is
consistent to replace 〈â†

n〉 and 〈ân〉 with βn and αn, respec-
tively. Again, the stochastic processes belonging to the new
bosonic phase space variables are denoted by uppercase Greek
letters En and Hn (i.e., ε � E and η � H). The expressions

αn = εn + iηn

2
,

βn = εn − iηn

2
(76)

occur in the change back to the previous phase space variables
ψ̄ → ψ .

An application of Itô’s formula (58) shows that after these
two changes of variables, the drift vector becomes

ĀJC+(ψ̄ ) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ω1η1

−ω1ε1 − 2g(ω1) sin(k1x0)(ρ21 + ρ12)

...

ωNηN

−ωNεN − 2g(ωN ) sin(kN x0 )(ρ21 + ρ12)

−i�ρ21 +∑N
n=1 ig(ωn)εn sin(knx0 )ν − γ2ρ21

i�ρ12 −∑N
n=1 ig(ωn)εn sin(knx0 )ν − γ2ρ12

2
∑N

n=1 ig(ωn)εn sin(knx0 )(ρ21 − ρ12) − γ1(ν − ν0)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(77)

It is interesting that the unexpected (from the viewpoint of the
ordinary chain rule) noise-matrix-dependent contribution to
the drift vector in Itô’s formula is responsible for the familiar
form of the relaxation terms in the last three rows of this vector
[see (13)]. The considerably more complicated case of the re-
maining noise matrix is treated in Appendix B. It turns out that
all entries of B̄JC+(ψ̄ ) are problematic regarding numerical
stability. The circumvention of such issues that stand in the
way of successful simulations based on this approach requires
further work. We limit ourselves to preparatory theoretical
considerations as a necessary first step towards this goal.

Let us return to the investigation of the relation between
the SDE

d�̄t

dt
= ĀJC+(�̄t ) + B̄JC+(�̄t )ξt (78)

and the MB equations. We want to derive a stochastic semi-
classical scheme that stays as close as possible to this SDE.
For this purpose, we need to replace the bosonic phase space
variables with stochastic electric and magnetic fields. Their
time evolution equations

dEn,t

dt
= ωnHn,t + [B̄JC+(�̄t )ξt ]2n−1 ,

dHn,t

dt
= −ωnEn,t − 2g(ωn)(P21,t + P12,t ) sin(knx0)

+ [B̄JC+(�̄t )ξt ]2n (79)

[see (77)] correspond to the cavity mode form of the 1D
Maxwell equations (17). Here the notation [v]n picks the nth
entry of a vector v. Consequently, a comparison with (5)
shows that it is consistent to regard

E(x, t ) =
N∑

n=1

ep(ωn)En,t sin(knx) ,

H(x, t ) = − 1

Z

N∑
n=1

ep(ωn)Hn,t cos(knx) (80)

as the required stochastic electric and magnetic fields. With
the help of (79) and (80), we obtain

μ0
∂H

∂t
(x, t ) = ∂E

∂x
(x, t ) + 2

c

N∑
n=1

ep(ωn)g(ωn)(P21,t + P12,t )

× sin(knx0) cos(knx) − 1

c

N∑
n=1

ep(ωn)

× [B̄JC+(�̄t )ξt ]2n cos(knx) ,

ε0
∂E

∂t
(x, t ) = ∂H

∂x
(x, t ) + ε0

N∑
n=1

ep(ωn)[B̄JC+(�̄t )ξt ]2n−1

× sin(knx) , (81)

a new version of the 1D Maxwell equations with quantum
noise corrections and an unexpected light-matter interaction
term, which occurs in the first and not the second equation [see
(15)]. This can be explained by rewriting the 1D Maxwell
equations in terms of the electric displacement field Dz =
ε0Ez + Pz, i.e.,

μ0
∂Hy

∂t
= 1

ε0

(
∂Dz

∂x
− ∂Pz

∂x

)
,

∂Dz

∂t
= ∂Hy

∂x
. (82)

Here the polarization also occurs in the first equation, and the
derivative is spatial instead of temporal, which is compatible
with the factor

cos(knx) = 1

kn

d sin(knx)

dx
(83)

in the light-matter interaction term of (81). This means that
the electric field operator Êz in (3) in fact corresponds to
the operator D̂z/ε0 because it implicitly contains the light-
matter interaction [the time evolution of â†

n(t ) and ân(t )
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depends on Ŝz(t ), Ŝ+(t ), and Ŝ−(t )]. Some related observa-
tions concerning the connection between second quantization
and Maxwell’s equations in nonlinear optics albeit not in the
present SDE context can be found in [98].

In order to be able to eliminate the bosonic phase space
variables from the rest of the SDE, we need to postulate that
the bosonic-fermionic coupling constants are related to the
dipole moment from (8) via the formula

m21 = − h̄g(ωn)

ep(ωn)
. (84)

This relation can also be found in [99], where it is derived by
other means. Then (80) together with (84) yields

N∑
n=1

ig(ωn)En,t sin(knx0) = − i

h̄
m21E(x0, t ) . (85)

Using (77) and (85), the time evolution equations for the
fermionic phase space variables become

dP21,t

dt
= −i�P21,t − i

h̄
m21E(x0, t )Nt − γ2P21,t

+ [B̄JC+(�̄t )ξt ]2N+1 ,

dP12,t

dt
= i�P12,t + i

h̄
m21E(x0, t )Nt − γ2P12,t

+ [B̄JC+(�̄t )ξt ]2N+2 ,

dNt

dt
= 2

i

h̄
m21E(x0, t )(P12,t − P21,t ) − γ1(Nt − ν0)

+ [B̄JC+(�̄t )ξt ]2N+3 , (86)

which are just the Bloch equations (13) with added quan-
tum noise. Combining the results (81) and (86) yields an
SPDE of a form described in [68], corresponding to the MB
equations. Note that the quantum noise corrections and the
light-matter interaction term in the new version of the 1D
Maxwell equations bear the last remaining trace of the original
cavity mode-dependent ansatz, which was the starting point of
our derivation.

Clearly, before this SPDE can be used in practice, a consis-
tent numerical treatment compatible with the FDTD method
and leveraging its numerical efficiency needs to be specified.
To accomplish this goal, it might be necessary to identify
and keep only the most important quantum noise terms in
order to obtain a stable stochastic semiclassical scheme for
the future simulation of nonclassical light in optoelectronic
devices.

VII. CONCLUSION

In this paper we present a different way to improve the
usefulness of the positive P representation for fermionic or
mixed bosonic and fermionic systems by highlighting the
importance of choosing the nonorthogonal fermionic basis
states adequately. Additionally, we fully describe the initial-
ization of the corresponding fermionic phase space variables
and provide a simple example simulation of the full-wave

Jaynes-Cummings SDE as a starting point for future appli-
cations in quantum optics. With the help of these states, we
identify the complex structure of the inherent quantum noise
for a dissipative TLA in a perfect optical cavity, which enables
the derivation of a stochastic correction to the MB equations in
the form of an SPDE. In this way, we shed new light on
how quantum optical phase space methods can be used to
reveal and exploit the connection between semiclassical and
field-quantized models for light-matter interaction. Despite
the assumption of a perfect optical cavity, these results should
not be limited to this case since, in the MB framework, mirror
losses are easily treated by attenuating the optical field via an
equivalent distributed conductivity. This is attractive because
the actual modes of a lossy cavity are difficult to determine
from second quantization [100]. Moreover, by disregarding
the quantum noise terms in the SPDE, we obtain as a bonus
a new treatment of the polarization in the MB equations that
may be advantageous in the strong coupling and few photon
regimes.
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APPENDIX A: INITIALIZATION OF THE FERMIONIC
PHASE SPACE VARIABLES

Consider a valid initial atomic density operator

ρ̂A = ρ11|↓〉〈↓| + ρ12|↓〉〈↑| + ρ21|↑〉〈↓| + ρ22|↑〉〈↑| (A1)

[see (10)]. The construction of the associated probability dis-
tribution P described below relies on all the properties of
ρ̂A. Let us write ρ11 = p and ρ12 = reiφ with r � 0. By the
hermiticity ρ̂

†
A = ρ̂A and the trace condition trρ̂A = 1 we have

ρ22 = 1 − p and ρ21 = re−iφ . From the positive semidefinite-
ness ρ̂A � 0 it follows that 0 � p � 1 and r2 � p(1 − p). The
stronger assumption 0 < p < 1 is necessary for our purposes.
Then

q = r(1 + K2)

K
with K =

√
1

p
− 1 (A2)

satisfies 0 � q � 1. Hence q1 = q and q2 = q3 = (1 − q)/2
are probabilities that add up to 1. Provided that there are
z1, z2, z3 ∈ C and w1,w2,w3 ∈ C with

h(z1) = Ke−iφ, h(z2) = K, h(z3) = −K,

h̃(w1) = Keiφ, h̃(w2) = K, h̃(w3) = −K, (A3)
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our construction together with (34) yields

ρ̂A =
3∑

i=1

qi�̂A(zi,wi ) , (A4)

which means that the initial probability distribution

P(z,w) =
3∑

i=1

qiδ(z − zi )δ(w − wi ) (A5)

fits the requirements. In view of the mapping behavior of ana-
lytic functions (e.g., Picard’s Theorem [101]), the theoretical
chances for being able to satisfy (A3) are excellent.

APPENDIX B: NOISE MATRIX FOR THE PHASE
SPACE VARIABLES ψ̄

Each block of the noise matrix

B̄JC+(ψ̄ ) = [
√

iB̄1(ψ̄ ) · · ·
√

iB̄N (ψ̄ ) B̄(ψ̄ )] (B1)

[see (70)] has the same structure as its counterpart before the
change of variables [see (43) and (69)]. The only difference
is that P̄n(ψ̄ ), Q̄n(ψ̄ ), R̄n(ψ̄ ), S̄n(ψ̄ ), and T̄ (ψ ) to be given
below replace its blocks Pn(φ), Qn(φ), Rn(φ), Sn(φ), and
T (φ), respectively. For the sake of simplicity, we restrict
ourselves to the special case h(z) = z (implying h̃(w) = w)
which corresponds to the coherent spin states (30). Then it
turns out that

P̄n(ψ̄ ) =
√

g(ωn) sin(knx0)

2

[
ip −p
p ip

]
,

Q̄n(ψ̄ ) =
√

g(ωn) sin(knx0)

2

[−iq −q
q −iq

]
(B2)

holds, with the entries given by

p =
√

4ρ2
21

(1 − ν)2 − 1 ,

q =
√

4ρ2
12

(1 − ν)2 − 1 . (B3)

The remaining blocks R̄n(ψ̄ ), S̄n(ψ̄ ), and T̄ (ψ̄ ) have three
rows instead of two, as is the case for Rn(φ), Sn(φ), and T (φ),
because of the additional fermionic phase space dimension.

Indeed, we have

R̄n(ψ̄ ) =
√

g(ωn) sin(knx0)

2

⎡
⎣−ir1 −r1

−ir2 −r2

−ir3 −r3

⎤
⎦ ,

(B4)

S̄n(ψ̄ ) =
√

g(ωn) sin(knx0)

2

⎡
⎣−is1 s1

−is2 s2

−is3 s3

⎤
⎦ ,

with the entries

r1 = (1 − ν)2

4

√
4ρ2

21

(1 − ν)2 − 1 ,

r2 = −ρ2
12

√
(1 + ν)2

4ρ2
12

− 1 ,

r3 = ρ12(1 − ν)

√
(1 + ν)2

4ρ2
12

− 1 ,

s1 = −ρ2
21

√
(1 + ν)2

4ρ2
21

− 1 ,

s2 = (1 − ν)2

4

√
4ρ2

12

(1 − ν)2 − 1 ,

s3 = ρ21(1 − ν)

√
(1 + ν)2

4ρ2
21

− 1 .

Finally, the block arising from the incorporation of dissipation
is

T̄ (ψ̄ ) =
√

2rp
1+ν
1−ν

+ r21
(

1+ν
1−ν

)2 + r12

2

⎡
⎣t11 t12

t21 t22

t31 t32

⎤
⎦ , (B5)

with the entries

t11 = −i

[
ρ2

21 + (1 − ν)2

4

]
,

t12 = −ρ2
21 + (1 − ν)2

4
,

t21 = i

[
ρ2

12 + (1 − ν)2

4

]
,

t22 = −ρ2
12 + (1 − ν)2

4
,

t31 = i(−ρ12 + ρ21)(1 − ν) ,

t32 = (ρ12 + ρ21)(1 − ν) .
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