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Shock-wave generation and propagation in dissipative and nonlocal nonlinear Rydberg media
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We investigate the generation of optical shock waves in strongly interacting Rydberg atomic gases with a
spatially homogeneous dissipative potential. The Rydberg atom interaction induces an optical nonlocal nonlin-
earity. We focus on local nonlinear (Rb � R0) and nonlocal nonlinear (Rb ∼ R0) regimes, where Rb and R0 are
the characteristic length of the Rydberg nonlinearity and beam width, respectively. In the local regime, we show
spatial width and contrast of the shock wave change monotonically when increasing strength of the dissipative
potential and optical intensity. In the nonlocal regime, the characteristic quantity of the shock wave depends
on Rb/R0 and dissipative potential nontrivially and on the intensity monotonically. We find that formation of
shock waves dominantly takes place when Rb is smaller than R0, while the propagation dynamics is largely
linear when Rb is comparable to or larger than R0. Our results reveal nontrivial roles played by dissipation and
nonlocality in the generation of shock waves, and provide a route to manipulate their profiles and stability. Our
study furthermore opens new avenues to explore non-Hermitian physics and nonlinear wave generation and
propagation by controlling dissipation and nonlocality in the Rydberg media.
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I. INTRODUCTION

Nonlinear hydrodynamic flows are found in different
media [1,2], such as plasma [3–5], acoustics systems [6], poly-
merized ionic liquid [7], quantum-mechanical piston [8,9],
ultracold quantum gases [10–15], and optical media [16–27].
In these systems, the competition of nonlinearity, dispersion,
and dissipation gives rise to nonlinear wave phenomena, such
as solitons [28–30], and rogue wave [31,32]. In defocusing
nonlinear media, an initially smooth wave steepens when
propagation, eventually reaching a point of gradient catastro-
phe [33] that lead to the formation of shock waves [8,33–
46]. Profiles of shock waves depend on the dissipation of
the medium. In dissipation-free media, the formed disper-
sive shock waves (DSW) show a strong oscillatory structure
due to the interplay between the nonlinearity and dispersion
[16,18,38,47–52]. This steepening can also be mediated by
dissipation, where the nonlinear wave acquires a monotonic
shock front without any oscillations. In such cases, a dissipa-
tive shock wave, sometimes also called viscous shock wave
(VSW), emerges [7,8,47,53].

Recently, it has been shown that cold atomic gases inter-
acting with laser fields provide a fertile ground for studying
shock waves [10–15]. When additionally coupling the light to
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highly excited Rydberg states [54,55], strong and long-range
interactions between Rydberg atoms can be mapped to light
fields through electromagnetically induced transparency (EIT)
[56], generating strong nonlocal nonlinearities [57,58]. The
characteristic length of the nonlocal nonlinearity, determined
by the blockade radius of the Rydberg gas, is in the order
of micrometers, which is comparable to typical beam width.
Using the strong Rydberg nonlocal nonlinearity (NNL), it has
been shown that DSWs can be generated and manipulated in
Rydberg atom gases [38]. Dissipation plays an important roles
in the study of Rydberg systems [59–61]. In cold atom gases,
dissipation, on the other hand, can be induced and controlled
[28,30]. This opens new opportunities for exploring shock
waves in the interplay between the nonlocal nonlinearity and
controllable dissipation that is otherwise difficult to achieve in
other systems.

In this work, we study the generation and propagation
of shock waves within a cold Rydberg atomic gas setting,
incorporating an engineered, homogeneous dissipative poten-
tial that can be changed from loss to gain. This change is
controlled by employing an incoherent pumping [30] and
controlling the laser detuning [28]. A nonlocal optical non-
linear interaction is induced by coupling low-lying electronic
states to Rydberg S state via EIT [56,57]. Depending on the
blockade radius Rb of the NNL and beam width R0, the system
is in a local regime when Rb � R0, and nonlocal regime when
Rb ∼ R0. In the local regime, the nonlinear Schrödinger (NLS)
equation governing the light propagation is cast into coupled
Riemann equations. Formation of shock waves is signified by
wave breaking. Excluding dissipation, wave breaking points
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FIG. 1. System. (a) Inverted Y-type level diagram. A weak probe
laser field (half-Rabi frequency �p) couples transition |1〉 ↔ |3〉. A
strong control (dressed) laser field [half-Rabi frequency �c (�d )]
couples transition |2〉 ↔ |3〉 (|3〉 ↔ |4〉). In Rydberg state |4〉 atoms
interact strongly through the van der Waals interaction. Here �α are
detuning and �αβ (α < β) are spontaneous emission decay rates.
The emission from state |3〉 generates an effective loss potential.
To achieve the gain, we apply an incoherent pumping �21 between
states |1〉 and |2〉. (b) The blue, red, and cyan arrows indicate the
propagating direction of the probe, control, and dressed fields. The
strong Rydberg atom interaction gives rise to an blockade radius
(dashed circle) around Rydberg atoms. The blockade radius can
be tuned by the excitation laser. (c) Response function g(ξ ). The
numerically obtained g(ξ ) (blue solid line) agrees with the analytical
approximation Eq. (4) (dashed red line). Details of the response
function can be found in Sec. II B.

are obtained analytically through the Riemann equations. Os-
cillation contrast [39,62] and spatial width of the shock wave
depends on the strength of the dissipation and optical intensity
monotonically in the local regime. In the nonlocal regime, the
nonlocal degree of the optical nonlinearity modifies ampli-
tudes and width of shock waves. Importantly properties of the
shock wave exhibit complicated dependence on the nonlocal-
ity. We show that shock wave generation and propagation are
important when Rb < R0. When Rb and R0 are comparable,
the medium is effectively linear, where the NNL becomes a
homogeneous dispersive potential approximately.

The paper is arranged as follows. In Sec. II, we present
the physical model that can lead to the dissipative and nonlo-
cal nonlinear potential. The NLS equation that describes the
propagation of the probe laser field is derived. In Sec. III,
light propagation in the local regime is discussed. The impact
of the dissipative potential on the oscillation contrast, width,
and shock width is investigated. In Sec. IV, we explore the
influence of the nonlocality on the generation and propagation
of shock waves. Finally, conclusions are given in Sec. V.

II. MODEL AND LIGHT PROPAGATION EQUATIONS

A. Physical model

We consider a gas of cold atoms with an inverted Y-type
four-level configuration [see Fig. 1(a)], where a weak probe
laser field with half-Rabi frequency �p couples the transi-
tions |1〉 ↔ |3〉. A strong control and a dressed laser fields
with half-Rabi frequencies �c and �d couple the transition

|2〉 ↔ |3〉 and |3〉 ↔ |4〉, correspondingly. Detuning �α (α =
2, 3, 4) gives difference between laser frequency and atomic
transition. And �αβ are spontaneous emission decay rates
from |β〉 to |α〉 (α < β). Here the incoherent decay from
state |3〉 causes loss of the probe field. To generate gain, an
incoherent pumping (with pumping rate �21) is used to pump
atoms from |1〉 to |2〉. Driven by the control laser �c a small
number of atoms are populated in state |3〉, which provides a
gain effect [30,63].

In this setting, state |4〉 is a high-lying Rydberg state. The
interaction between two Rydberg atoms, respectively, at posi-
tions r and r′ is described by van der Waals potential VvdW ≡
h̄V (r′ − r) = −h̄C6/|r′ − r|6 [64]. When the light propagates
in the medium [see Fig. 1(b)], Rydberg excitation in the
vicinity of a Rydberg atom is strongly suppressed, due to
the long-range Rydberg-Rydberg interaction. Such spatial de-
pendent Rydberg blockade leads to nonlocal nonlinear optical
interactions [65]. Note that in the inverted Y-shaped excitation
scheme shown in Fig. 1(a), the transition |1〉 → |2〉 → |3〉
forms a �-type EIT, while |1〉 → |3〉 → |4〉 forms a ladder-
type Rydberg EIT. The interplay of the two paths can be
controlled by the external lasers, giving rise to dissipative,
nonlocal nonlinear interactions.

Under electric-dipole and rotating-wave approximations,
the Hamiltonian of the system is Ĥ = Na

∫
d3r Ĥ with

Hamiltonian density Ĥ (h̄ ≡ 1),

Ĥ = −
4∑

α=1

�α Ŝαα (r) − [�pŜ13(r) + �cŜ23(r)

+ �d Ŝ34(r) + H.c.] + Na

∫
d3r′Ŝ44(r′)V (r′ − r)Ŝ44(r),

where Na is atomic density, and Ŝαβ (r) = |β〉〈α| exp{i[(kβ −
kα ) · r − (ωβ − ωα + �β − �α )t]} is the atomic transition
operator between states |α〉 and |β〉. For weak excitation,
Ŝαβ (r) are approximated by bosonic operators [66]. Tak-
ing into account of decay, dynamics of the density matrix
(matrix elements ραβ ≡ 〈Ŝαβ〉) is described by the Bloch
equation ∂ρ̂/∂t = −i[Ĥ, ρ̂]/h̄ − � [ρ̂], where � is the re-
laxation matrix describing the spontaneous emission and
dephasing (see Appendix A). Propagation of the semiclassical
probe field is governed by the Maxwell equation,

i

(
∂

∂z
+ 1

c

∂

∂t

)
�p + c

2ωp

(
∂2

∂x2
+ ∂2

∂y2

)
�p + κ13ρ31 = 0,

where κ13 = Naωp|p13|2/(2ε0ch̄), with ωp the weak probe
laser field of center frequency, p13 the electric dipole matrix
element associated with the transition |1〉 ↔ |3〉, ε0 the vac-
uum dielectric constant, and c the speed of light in vacuum.
In deriving the propagation equation, the paraxial and slowly
varying envelope approximations have been applied.

B. Nonlinear envelope equation

For weak probe field, the Maxwell and Bloch equations can
be solved perturbatively. The Rydberg-Rydberg interaction,
on the other hand, is treated beyond the simple mean-field
approximation [28,67]. We then solve the Bloch equation up
to the third order of �p. This allows us to derive a
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(2 + 1)-dimensional [(2 + 1)D] nonlocal nonlinear
Schrödinger (NNLS) equation of the probe field [30,63,68],

i
∂

∂z
�p + c

2ωp
∇2

⊥�p − V1�p + W |�p|2

+
∫

d2r′
⊥G(r⊥, r′

⊥)|�p(r′
⊥, z)|2�p(r) = 0, (1)

with r⊥ = (x, y). Here V1 is the dissipative potential that gives
homogeneous gain or loss in the medium controlled by the
laser parameters [30]. This is achieved by employing jointly
the incoherent pumping and spontaneous decay of the excited
states. Details on the control of the dissipative potential can
be found in Appendix B. Nonlinear coefficient W charac-
terizes the local Kerr nonlinearity (contributed by the weak,
short-range interactions between photons and atoms [29]).
G(r) is a nonlocal nonlinear response function characterizing
respectively NNL [28,67,69].

Using 87Rb as an example with electronic states |1〉 =
|5S1/2, F = 1, mF = −1〉, |2〉 = |5S1/2, F = 1, mF = 1〉,
|3〉 = |5P3/2, F = 1, mF = 0〉, and |4〉 = |nS1/2〉. We
consider the principal quantum number n = 30. The
corresponding dispersion coefficient is C6 ≈ −2π ×
68 MHz µm6 [70]. As C6 < 0, the Rydberg-Rydberg
interaction is repulsive. Other typical parameters
�2 = 2π × 3.18 MHz, �3 = −2π × 31.8 MHz, �4 =
2π × 1.59 MHz, �3 = 2π × 6.1 MHz, �4 = 2π × 2.02 kHz,
�c = 2π × 6.37 MHz, �d = 2π × 1.59 MHz, and Na = 2.3
× 1010 cm−3.

With approximation and focusing on the diffraction along
the x axis, we convert the propagation equation in a dimen-
sionless form,

i
∂u

∂ζ
+ 1

2

∂2u

∂ξ 2
− Vu + g0

∫
dξ ′g(ξ ′, ξ )|u(ξ ′, ζ )|2u = 0, (2)

where we have defined dimensionless quantities
u = �p/U0, ξ = x/R0, ζ = z/Ldiff , V = 2LdiffV1, g =
2LdiffU 2

0 R2
0

∫
G(r⊥, r′

⊥)dy′, and g0 = 1/| ∫ g(ξ ′, ξ )dξ ′|.
The optical field and spatial coordinate have been scaled
with respect to the maximal Rabi frequency U0 and beam
radius R0. We have scaled z with respect to the characteristic
diffraction length Ldiff = ωpR2

0/c, with c being the speed of
light in vacuum and ωp ≈ 2π × 3.85 × 1014 Hz the probe
light frequency. Note that, compared to the Rydberg induced
nonlinearity, the conventional Kerr nonlinearity is marginal
and has been neglected in Eq. (2). To show this, we find that
the dimensionless Kerr nonlinearity is W = 2LdiffU 2

0 W .
Considering the probe beam radius R0 = 5 µm and
U0 = 2π × 1.59 MHz, we obtain Ldiff ≈ 0.2 mm, and the
dimensionless Kerr nonlinearity W ≈ 0.01, i.e., much smaller
than the strength (in the order of 1) of the NNL. In our setting,
we have assumed the strong control field is a plane wave field,
resulting in a homogeneous complex potential V . The real
part of the complex potential is associated with the refractive
index. The imaginary part VI = Imag[V] characterizes the
dissipation, i.e., the potential is gain (loss) when VI > 0
(VI < 0).

Due to the Rydberg blockade, the response function has
a soft-core shape [see Fig. 1(c)]. However the expression of
g(ξ ′, ξ ) is typically lengthy and complicated (see Appendix B

for discussions). It can be approximated by an analytical
form [30,38]

g(ξ ′, ξ ) ≈ − 1

b1 + (b2/σ 6)|ξ ′ − ξ |6 , (3)

where σ = Rb/R0 characterizes the nonlocal degree of the
nonlinearity. Here Rb = |C6/δEIT|1/6 is the radius of the
blockade sphere, with δEIT ≈ |�c|2/|�3| the linewidth of
EIT transition spectrum (i.e., the width of EIT transparency
window) [57,65]. Numerically the blockade radius is Rb ≈
1.94 µm when n = 30. From Eq. (3), one can observe that the
response function has a soft-core profile, with depth 1/b1 and
soft-core radius σ (b1/b2)1/6. When fixing b1 and b2, one can
change the landscape of the response function by changing σ ,
where the depth will not be affected. Coefficients b1 and b2

depend on the laser parameters. Their values are determined
through solving the Bloch equation perturbatively (see Ap-
pendix B), and can be modified by varying, e.g., the detuning
and control laser Rabi frequency without affecting the probing
field. The response function can be cast into a different form,

g(ξ ′, ξ ) ≈ − B1

B2σ 6 + |ξ ′ − ξ |6 , (4)

The relation between B1,2 and b1,2 are B1 = σ 6/b2 and B2 =
b1/b2, i.e., the latter is not affected by σ directly. When
fixing B1 and B2, the profile of g(ξ ′, ξ ) becomes wider and its
strength weaker when increasing σ . This form thus provides a
different way to examine and understand the nonlocal effect.

With the laser and atomic parameters given previously,
the dimensionless coefficients in the response function can
be obtained, B1 = 0.001, B2 = 0.38, b1 = 1.0, and b2 = 2.6.
We plot the approximate response function in Fig. 1(c), which
agrees with the numerical one derived from the Bloch equa-
tion. Both the analytical and numerical response function
capture the soft-core shape. Note that this system has a de-
focusing nonlinearity as g(ξ ′, ξ ) < 0, which is crucial for the
generation of shock waves.

When Rb is comparable to R0, the nonlinear interaction
is nonlocal (i.e., σ is finite). In the opposite regime when
Rb � R0, we have a local regime as σ ∼ 0. The nonlocality
parameter σ can be varied by varying Rb or R0. The blockade
radius can be tuned by changing detuning, laser intensities, or
choosing different Rydberg states as C6 ∝ n11 with n to be
the principal quantum number. When σ ∼ 0, we can make
a local field approximation, i.e.,

∫
dξ ′g(ξ ′, ξ )|u(ξ ′, ζ )|2 ≈

|u(ξ, ζ )|2 ∫
dξ ′g(ξ ′, ξ ). Carrying out the spatial integration,

we arrive at a propagation equation with local nonlinear
interactions,

i
∂u

∂ζ
+ 1

2

∂2u

∂ξ 2
− Vu + ḡ0|u|2u = 0, (5)

where ḡ0 = −g0πσ (b1/b2)1/6/(3b1) is the effective inter-
action strength. The local interaction is similar to the
conventional Kerr nonlinearity, though the nonlinearity is
much stronger. In the following, we will discuss the local and
nonlocal regime separately.
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III. LOCAL RYDBERG NONLINEARITY REGIME

A. Euler-like fluid equation

In the local regime, we start to investigate the generation of
shock waves with the hydrodynamic approach. By treating the
light field as a classical fluid, the hydrodynamic equation can
be obtained by using the Madelung transformation u(ξ, ζ ) =√

ρ(ξ, ζ )eiφ(ξ,ζ ), Eq. (5) can be transformed into two Euler-
like fluid equations,

∂ρ

∂ζ
+ ∂

∂ξ
(ρv) = 2ρVI , (6a)

∂v

∂ζ
+ ∂

∂ξ

[
1

2
v2 + ḡ0ρ + Q

]
= 0, (6b)

where Q = − 1
2
√

ρ

∂2√ρ

∂ξ 2 is quantum pressure, and v = ∂φ/∂ξ

is the flow velocity of the light fluid. Neglecting Q for the
moment, Eq. (6b) becomes

∂v

∂ζ
+ ∂

∂ξ

(
1

2
v2 + ḡ0ρ

)
= 0. (7)

Equations (6a) and (7) can be cast into the diagonal Riemann
form

∂r1

∂ζ
+ c1

∂r1

∂ξ
= d1, (8a)

∂r2

∂ζ
+ c2

∂r2

∂ξ
= d2, (8b)

where the Riemann invariant and hyperbolic speeds are de-
fined by ri = v/2 ± √

ḡ0ρ and ci = v ± √
ḡ0ρ, with c1 =

(3r1 + r2)/2, and c2 = (r1 + 3r2)/2. d1,2 = ±(r1 − r2)VI/2.
The light fluid intensity and the flow velocity are given by
ρ = (r1 − r2)2/(4ḡ0) and v = r1 + r2.

We numerically solve the Riemann equation without dissi-
pative potential with the initial condition

ρ(ξ, 0) = ρb + ρhe−ξ 2/ξ 2
0 , and v(ξ, 0) = 0. (9)

Here ρb and ρh are the background and hump intensity, and
ξ0 is the width of the hump. Figures 2(a) and 2(b) are the
propagation of the right- and left-moving Riemann waves,
respectively. The wave is stable before the shock onsets. After
a critical distance (marked by stars on the figure) the shock
forms. A distinctive feature is that the wave becomes steep-
ening at the critical distance. These points are the shock wave
breaking points (see more discussions in Sec. III B). These
points are symmetric for the left- and right-moving solutions,
as depicted in Fig. 2(c). In other words the left- and right-
moving components will form shock waves after propagating
equal distances.

B. Breaking point

In the local regime and without dissipation, the breaking
point can be found analytically. We first linearize Eq. (8) by
means of the hodograph transform (see, Refs. [33,39,71]),
which treats ξ and ζ as functions of r1 and r2. The transfor-
mation yields,

∂ξ

∂r1
− c2

∂ζ

∂r1
= 0,

∂ξ

∂r2
− c1

∂ζ

∂r2
= 0. (10)

FIG. 2. (a) Right-moving and (b) left-moving Riemann waves.
The stars represent the breaking position of the wave, after which
the shock wave forms. (c) Riemann waves r1 and r2 as function as ξ

for ζ = 0, 0.47, 0.94. The stars represent the breaking position. Top
panel: The right-moving part r1. Bottom panel: The left-moving part
r2. (d) Breaking point in the ζ direction (ζb) as function of the hump
peak intensity ρh. The star marks the breaking point corresponding
to (a) and (b). (e) The same as (d), but for breaking point in the ξ

direction (ξb). Other parameters are ρb = 1, ρh = 2, ξ0 = 1, ḡ0 =
−1.44, and VI = 0. In (d), we additionally show data with dissipative
potentials.

We then introduce two functions w1(r1, r2) and w2(r1, r2)
such that

ξ − c1ζ = w1, ξ − c2ζ = w2. (11)

Using the initial condition, w1 and w2 can be obtained,

w1,2 =
⎧⎨
⎩

ξ0

√
lnρh − ln

[
r2

1,2/ḡ0 − ρb
]
, ξ > 0,

−ξ0

√
lnρh − ln

[
r2

1,2/ḡ0 − ρb
]
, ξ < 0.

(12)

Wave breaking corresponds to the occurrence of a gradient
catastrophe for which |∂r1,2/∂ξ | → ∞. As the right- and
left-moving wave are symmetric with respect to the ξ , we
determine the breaking point of the right-moving branch ex-
plicitly. From Eq. (11), wave breaking occurs at a distance ζ

such that [39]

ζ = 2

3

∣∣∣∣∂w1

∂r1

∣∣∣∣
r1=r∗

1

. (13)

One can evaluate ζb approximately when the point of largest
gradient in r1(ξ ) lies in a region where r2 ≈ √

ḡ0ρb. In this
case, Eq. (13) becomes

ζb ≈ 2ξ0
√

ρ∗

3
√

ḡ0(ρ∗ − ρb)
√

ln[ρh/(ρ∗ − ρb)]
. (14)

The shortest of distance ζ is reached close to the point
ξ ∗ for which |∂ρ/∂ξ | is maximal. We denote ξ ∗ the co-
ordinate of this point in the ξ direction and ρ∗ = ρ(ξ ∗).
According to ∂ξ/∂ρ = ∂2ξ/∂ρ2 = 0 at ρ = ρ∗, it is readily
to find ln[ρh/(ρ∗ − ρb)] = ρ∗/(ρ∗ + ρb). This leads to the
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FIG. 3. (a)–(d) show the propagation of shock waves with VI = 0, VI = −0.2 (loss), VI = 0.1, and VI = 0.2 (gain). Top panel: The probe
field intensity ρ = |u|2 at ζ = 0 and 3 (dotted-dashed gray and solid red lines). Middle panel: Wave propagation from ζ = 0 to ζ = 3. Bottom
panel: The total power of the probe field (Ptot , blue solid line), the background (PB, dotted purple line) and exchange (PBSE , dotted-dashed red
line) power. In all panels, the initial conditions are ρb = 1, ρh = 2, and ξ0 = 1.

approximate relation,

ζb ≈ 2ξ0

3(ρ∗ − ρb)

√
ρ∗ + ρb

ḡ0
. (15)

The breaking point as a function of ρh is shown in the
Fig. 2(d), which matches the numerical calculation well. The
breaking point ζb is reduced when increasing the hump in-
tensity. Such relation is useful in controlling the generation
of shock waves. For example, increasing the intensity of the
hump peak allows for a shorter distance and faster visibility
of the shock wave. Moreover, the breaking point ξb along the
ξ axis when the wave breaks along the ζ direction can be
obtained [40],

ξb ≈ cs(ρ
∗)ζb + ξ0

√
lnρh − ln[ρ∗ − ρb]. (16)

Here cs = √
ḡ0ρ is the local sound speed. The results are

shown in Fig. 2(e), which agrees with the numerical calcu-
lation well.

Including dissipation in the Riemann function, analytical
solutions are in general not possible. Instead, we find the
breaking point numerically. Breaking points for VI = 0.1 and
−0.1 are shown in Fig. 2(d). It is found that the breaking point
ζb decreases as the dissipative potential changes from loss
to gain. These results highlight the importance of dissipative
potential on the generation of shock waves. For example, the
gain potential (i.e., VI > 0) accelerates the generation of shock
waves, as the wave breaks earlier. The loss potential (VI < 0)
slows down their generation.

On the other hand, the nonlocality can also affect the
breaking point. To be specific, the breaking point ζb increases
with σ . Therefore, a strong nonlocality will postpone the
occurrence of shock waves [20].

C. Wave propagation

We now turn to investigate the propagation of shock waves
by numerically solving Eq. (5), where the quantum pressure
is taken into account explicitly. In Fig. 3 propagation of shock
waves without external potential [Fig. 3(a)], in loss potential
[Fig. 3(b)], and in gain potential [Figs. 3(c) and 3(d)] are
shown. Without dissipation, the initial hump splits into two
density peaks first. When the shock wave forms, the wave
front oscillates rapidly in the ξ direction, as depicted in the
top and middle panel of Fig. 3(a). The end of oscillations
edge corresponds to small-amplitude edge of the shock wave
[38,72]. Before the shock wave reaches the boundary, the
background field is not perturbed.

In a loss potential (VI = −0.2), the intensity of the back-
ground wave decays exponentially, as shown in Fig. 3(b).
Shock waves form in the central region, characterized by the
rapid oscillation at the shock edge. Amplitudes of the oscilla-
tion edge become smaller than that of the VI = 0 case. Results
of shock waves in a gain potential with VI = 0.1 are shown
in Fig. 3(c). From the top panel of Fig. 3(c), the intensity of
the shock wave and background field, and the small-amplitude
edge are all larger than the cases VI = 0 and VI = −0.2. This
is a direct manifestation of the gain effect. On the other hand,
further increasing the strength of the gain potential, the shock
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wave and background field quickly become unstable, causing
catastrophic collapse [38].

In the presence of the dissipative potential, power
of the field will decay or grow exponentially with the
propagation distance ζ . The total, background, and exchange
power between shock wave and background fields are
obtained, Ptot = ∫ |u(ξ, ζ )|2dξ ≈ e2VI ζ

∫ |u(ξ, ζ = 0)|2dξ ,
PB = ∫ |ub(ξ, ζ )|2dξ ≈ e2VI ζ

∫
ρbdξ , and PBSE = Ptot − PB ≈

e2VI ζ
∫

ρh exp(−ξ 2/ξ 2
0 )dξ . Here ub(ξ, ζ ) = √

ρb exp(VIζ ) is
the boundary intensity at (ξL, ζ ). When VI = 0, the total,
background as well as the exchange power is conserved as
a function of ζ [bottom panel of Fig. 3(a)]. Their values are
determined by the initial values. On the other hand, the power
will grow (decay) exponentially when VI > 0 (VI < 0) when
propagating in the medium, as shown in the bottom panel of
Figs. 3(b) and 3(c).

D. Contrast and shock width

As shown in Fig. 3, profiles of the shock wave exhibit a
nontrivial dependence on the dissipative potential and initial
state. Once the shock wave forms, rapid oscillations are found
along the ξ axis. Including the quantum pressure, the gradient
divergence of u is not available, which makes it impossible to
calculate the breaking point. As shock waves oscillate rapidly,
the maximal and minimal values of the oscillations provide a
way to characterize the amplitude of the shock wave. There-
fore we calculate the visibility of the oscillations near the
soliton edge (i.e., the start of oscillation edge) of the shock
wave by measuring the contrast [39,62]

C = ρmax − ρmin

ρmax + ρmin
, (17)

where ρmax and ρmin are the maximum and minimum values
of ρ, as depicted in the left lower insert of Fig. 4(a). At a
fixed propagation distance ζ , C as a function VI is shown in
Fig. 4(a). As VI increases (from loss to gain), the contrast
of the formed shock wave decreases. In Fig. 4(b), we show
contrast C when varying ρh. For a given VI , the contrast of
the shock wave increases with increasing ρh. Changing VI ,
such trend remains the same. These results show that we could
enhance the contrast by using larger ρh.

We also calculate the shock wave width L1 (measured from
the center to the end of the intensity oscillation) [18,73], and
the oscillation width L2 (measured from the start to the end
of the oscillation), as indicated in the insert of Fig. 4(a). We
find L1 increases with VI , as shown in Fig. 4(c). The reason
is that the small-amplitude edge has a slight increase when
the potential changes from loss to gain. However, the width of
oscillation L2 (orange solid line) decreases due to the soliton
edge increases.

In Fig. 4(d) width L1 and L2 as function of the hump peak
intensity ρh are shown. The larger the hump density ρh, the
wider the width L1 and L2. We can understand these distances
by examining the local sound speed cs ∝ √

ρ. cs is a function
of local density ρ that consists of both the background and
hump density. Increasing the hump density will increase the
local sound speed. This means L1 will be larger with higher
ρh, after propagating certain ζ . The inner region defined by

FIG. 4. (a) Oscillation contrast versus VI . The insert illustrate the
maximum and minimum values of ρ, i.e., ρmax and ρmin, shock width
L1, and oscillation width L2. The parameters ρb = 1, ρh = 2, ξ0 = 1,
ḡ0 = −1.44, and ζ = 3. (b) Contrast versus ρh with VI = 0, 0.1, and
−0.1, respectively. (c) Shock width L1, measured from the center
to the end of oscillations, with respect to the intensity of imaginary
potential VI (blue solid line). The oscillation width L2, measured from
the start to the end of oscillations (orange dotted-dashed line). (d) L1

and L2 by varying the hump peak intensity ρh with VI = 0. The other
parameters same as (a).

L2, on the other hand, describes propagation of solitons [38].
Its front travels at the sound speed approximately. Hence L2

increases when cs (ρh) is larger.

IV. NONLOCAL RYDBERG NONLINEARITY REGIME

We will consider the full soft-core potential using Eq. (4).
To understand the role played by the nonlocality, we will solve
Eq. (2) numerically by taking into the full soft-core potential
Eq. (4). There are two different ways to change the soft-core
potential Eq. (4). One can vary σ by fixing B1 and B2, which
requires us to change parameters b1 and b2 correspondingly.
The depth of the potential [see Fig. 1(c)] is B1/(B2σ

6) =
1/b1. As b1 = B2σ

6/B1, the depth of the potential increases
rapidly as σ decreases, which eventually makes the numerical
calculation unstable. Hence σ can not be too small in practice.
To avoid this divergence, one can alternatively change σ while
keeping the potential depth (hence b1) constant.

A. Fix B1 and B2

To avoid numerical instabilities, we have chosen the small-
est σ = 0.2 in the numerical simulation. When σ is small,
the formation of shock waves are featured by conspicuous
oscillations, as illustrated in Fig. 5(a). The behavior is sim-
ilar to that of the local nonlinearity regime. Increasing σ ,
the oscillation frequency decreases. As a result, the contrast
increases rapidly with increasing σ , and reaches its maxi-
mum value C ≈ 0.47 around σ ≈ 0.33, as shown in Fig. 5(b).
It subsequently decreases and saturates to a constant value.
The width L1 and L2 depend on σ sensitively when σ is
small. They decrease rapidly with increasing σ , as shown in
Figs. 5(c) and 5(d). This dependence can be understood by
analyzing the sound speed. When B1 and B2 are fixed, we
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FIG. 5. (a) Shock waves for different nonlocality degree σ =
0.2, 0.25, 033, 0.5, and 1 (from bottom to top) with B1 = 0.001,
B2 = 0.38, VI = 0, and ζ = 3. (b) The oscillation contrast as function
of the nonlocality degree σ with VI = 0, 0.15, and − 0.2 at ζ = 3.
The red dot represents the maximal contrast. (c) The width L1 and
(d) oscillation width L2 as function of the nonlocality degree σ

with VI = 0, 0.15, and − 0.2 at ζ = 3. The initial condition ρh = 2,
ρb = 1, and ξ0 = 1.

obtain cs =
√

πg0ρB1/(3B5/6
2 σ 5). The sound speed decreases

rapidly (cs ∝ 1/
√

σ 5) when σ increases. Therefore both L1

and L2 reduce when σ is large.
When increasing σ , we in fact drive the response from

highly nonlinear to a linear regime. In other words, when
σ is small, the wave dynamics is strongly nonlinear, which
promotes the generation of shock waves. By increasing σ ,
however, the response of the Rydberg medium becomes ef-
fectively linear. When σ (Rb) is large, the soft-core potential
is nearly a constant compared to the typical wavelength of the
excitation. Assuming the nonlocal potential is a constant, one
can carry out the integration in Eq. (2) and obtain a linear po-
tential [73], i.e.,

∫
dξ ′g(ξ ′, ξ )|u(ξ ′)|2u(ξ ) ≈ g(0, 0)Ptotu(ξ ).

As a result, the resulting wave will propagate linearly, i.e., be-
haves like phonons (see Appendix B). We will focus on shock
wave generation and propagation in the nonlocal regime. In
practice, this requires roughly σ < 0.5, i.e., the blockade ra-
dius is half of R0. When σ > 0.5, the generated wave is linear
and show similar propagation dynamics.

When increasing ρh, the contrast increases monotonically,
as shown in Fig. 6(a). Both L1 and L2 become larger for
higher ρh, as L1, L2 ∝ cs ∝ √

ρh. Similar dependence is also
found in the local nonlinear case [see Figs. 4(b) and 4(d)].
The difference is that both L1 and L2 are slightly larger in
the nonlocal Rydberg medium than that of the local medium
(for given ρh), mainly due to that the strength of the nonlocal
interaction is different in the two figures.

FIG. 6. (a) Oscillation contrast and (b) width L1 and L2 versus
ρh with σ = 0.33 and VI = 0. (c) Oscillation contrast and (d) width
L1 and L2 versus VI with σ = 0.39, ρh = 2 at ζ = 3. The other
parameters are the same as Fig. 5.

We then examine the characteristic quantities as a function
of VI numerically. The results are shown in Figs. 6(c) and
6(d). When varying VI , the contrast, L1 and L2 exhibit similar
dependence on VI as found in the local nonlinearity case.
Changing VI from −0.3 to 0.15, the contrast decreases slowly,
as shown in Fig. 6(c), akin to the finding in the local regime, as
shown in Fig. 4(a). Compared to the local case, shock width L1

is barely changed when increasing VI , as shown in Fig. 6(d).
The weak dependence comes from the fact that the small-
amplitude edge only has a slight change. Oscillation width L2

decreases apparently, due to the soliton edge increases, similar
to the local case shown in Fig. 4(c). The numerical data show
that the contrast, L1 and L2 are all smaller than that of the local
nonlinear case.

When varying σ , one has to change b1 and b2 simultane-
ously in order to keep B1 and B2 constant, as B1 = σ 6/b2 and
B2 = b1/b2. In practice, it would be complicated to realize
such a scheme. Moreover the response function Eq. (4) de-
creases rapidly when increasing σ , where the nonlocal and
nonlinear effect is diminished, too.

B. Fix the potential depth

To avoid the complication mentioned above, we will vary
σ while keeping a fixed depth of the response function. This
can be achieved by using response function Eq. (3), where b1

and b2 are fixed. The nonlocality degree σ can be adjusted
by changing R0 or Rb (through principal quantum number
n). In the following calculation, we will assume R0 is varied
while other parameters are given previously. In this case, the
sound speed cs ∝ √

σρ, which means the larger σ , the more
separation between the left- and right-moving shock wave, as
shown in Fig. 7(a). When σ = 0.5 and 1, we find high density
peaks in the inner region, which result from that the system
is effectively linear. They also affect the contrast, shown in
Fig. 7(b). It decreases gradually, arrives at a minimum, and
then increases again with increasing σ . For large σ , the rising
contrast is purely caused by the inner peaks and the back-
ground density, where the amplitude of the shock wave is
marginal. Moreover, both L1 and L2 increase monotonically
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FIG. 7. (a) Shock waves for different nonlocality degree σ =
0.02, 0.1, 0.33, 0.5, and 1, with b1 = 0.022, b2 = 0.5, VI = 0, and
ζ = 3. (b) The oscillation contrast of the shock wave as function
of the nonlocality degree σ with VI = 0, 0.1, and − 0.2 at ζ = 3.
(c) The shock width L1 and (d) oscillation width L2 as a function of σ

with VI = 0, 0.1, and − 0.2 at ζ = 3. The initial condition ρh = 2,
ρb = 1, and ξ0 = 1.

as we increase σ , due to cs ∝ √
σρ. Thus after propagating

distance ζ , the left- and right-moving shock waves separately
significantly.

Dissipation, on the other hand, leads to a nearly global
shifts to the contrast. As shown in Fig. 7(b), the contrast
becomes larger when VI is negative (loss potential). When VI

is positive, the contrast is only shifted lower slightly when
σ < 0.3. The dissipation barely modifies L1 as we increase
σ [Fig. 7(c)], which shows the robustness of the shock wave
propagation. For different VI , non-negligible changes to L2 are
found when varying σ [Fig. 7(d)]. This results from the fact
that the speed of the soliton is modified apparently. We want
to point out that values of the contrast, L1 and L2 approach
to those of the local regime shown in Fig. 4 (when other
parameters are identical), when σ → 0. This indicates that
the local approximation is consistent with results form the
general, nonlocal response function.

When increasing ρh, the contrast, L1 and L2 all increase
[see Figs. 8(a) and 8(b)]. This is because not only the sound
speed, but also amplitudes of the oscillation increases with
larger ρh. Similar trends are also found in the previous case
shown in Figs. 6(a) and 6(b). However, the contrast depends
on VI nontrivially in the current case. By increasing VI , we
find contrast has a minimal value Cmin [see Fig. 8(c)], which
is different from the situation shown in Fig. 6(c). In the latter
case, the contrast declines monotonically with increasing VI

in the given parameter range. Cmin depends on not only VI ,
but also σ . We numerically obtain Cmin and the respective
parameter VI and σ . In the inset of Fig. 8(c), the corresponding

FIG. 8. (a) Oscillation contrast and (b) Shock width L1 and os-
cillation width L2 versus ρh with σ = 0.33 and VI = 0 at ζ = 3.
(c) Oscillation contrast and (d) Shock width L1 and oscillation width
L2 versus VI with σ = 0.33, ρh = 2 at ζ = 3. The other parameters
same as Fig. 7. In (c), the inset illustrate the minimal contrast value
Cmin versus σ and VI .

VI and σ are plotted. It shows that when σ increases, one has
to decreases VI in order to find Cmin. Finally, L1 and L2 as a
function of VI are shown in Fig. 8(d). The trend is similar to
that of the previous case [Fig. 6(d)]. Their values are, however,
larger in general. This results from the fact that the sound
speed has different dependence on parameters in the two
cases.

V. CONCLUSION

In this paper, we have elaborated a scheme that enables
the generation and propagation of shock waves within an
atomic gas involving a homogeneous dissipative potential and
long-range Rydberg interaction under the condition of EIT.
We have demonstrated that the homogeneous gain or loss
potential significantly alters the power in the local nonlinear-
ity regime. Both the oscillation contrast of shock waves and
the oscillation width change monotonically when increasing
strength of the dissipative potential and optical intensity. Dif-
ferent from the local regime, we have shown that in the NNL
regime, the contrast of the shock wave changes nonmonotoni-
cally when increasing strength of the dissipative potential and
nonlocal degree of the nonlinearity. Furthermore, the nonlocal
degree of the nonlinearity modifies the oscillation amplitude
and width of shock waves. Hence, the nonlocal nonlinearity
can be used in controlling properties of the shock wave. Ad-
ditionally, we have illustrated the hump intensity of the initial
state can enhance the visibility of shock waves in both local
and NNL regimes. Our results reveal the nontrivial roles of
dissipation and nonlocality in the generation of shock waves,
providing new routes to manipulate their profiles and stability.
Our study opens new avenues for exploring non-Hermitian
dynamics [74–77], and nonlinear wave dynamics [78–80]
modulated by the interplay between the NNL, and local and
nonlocal [59,81] dissipation in highly controllable Rydberg
gases.
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APPENDIX A: EXPLICIT EXPRESSION OF THE
OPTICAL BLOCH EQUATION

The dynamics of the atomic motion is governed by the
optical Bloch equation

∂ρ̂

∂t
= − i

h̄
[Ĥ, ρ̂] − � [ρ̂]. (A1)

Here ρ̂ is the density matrix (DM) describing the atomic
population and coherence, with the DM elements defined by
ραβ ≡ 〈Ŝαβ〉; � is the relaxation matrix that characterizes the
spontaneous emission and dephasing, whose Lindblad form is

�[ρ̂] = −1

2

∑
m

(C†
mCmρ + ρC†

mCm) +
∑

m

CmρC†
m

=

⎛
⎜⎜⎜⎜⎝

(�13 − �21)ρ11 − 1
2�21ρ12 − 1

2�3ρ13 − 1
2 (�34 + �21)ρ14

− 1
2�21ρ21 (�23 + �21)ρ22 − 1

2�3ρ23 − 1
2�34ρ24

− 1
2�3ρ31 − 1

2�3ρ32 (�34 − �3)ρ33 − 1
2�3ρ34

− 1
2 (�34 + �21)ρ41 − 1

2�34ρ42 − 1
2�3ρ43 −�34ρ44

⎞
⎟⎟⎟⎟⎠, (A2)

here C21 = √
�21|2〉〈1|, C13 = √

�13|1〉〈3|, C23 = √
�23|

2〉〈3|, and C34 = √
�34|3〉〈4|.

Based on the Hamiltonian Ĥ given in the main text, we ob-
tain the explicit expression of the optical Bloch equation with
the following form:

i
∂

∂t
ρ11 − i�13ρ33 + i�21ρ11 + �∗

pρ31 − �pρ13 = 0 (A3a)

i
∂

∂t
ρ22 − i�23ρ33 − i�21ρ11 + �∗

cρ32 − �cρ23 = 0, (A3b)

i
∂

∂t
ρ33 − i�34ρ44 + i�3ρ33 − �∗

pρ31 + �pρ13 − �∗
cρ32

+�cρ23 + �∗
dρ43 − �dρ34 = 0, (A3c)

i
∂

∂t
ρ44 + i�34ρ44 − �∗

dρ43 + �dρ34 = 0, (A3d)

for the diagonal elements, and(
i
∂

∂t
+ d21

)
ρ21 + �∗

cρ31 − �pρ23 = 0, (A4a)

(
i
∂

∂t
+ d31

)
ρ31 + �∗

dρ41 + �p(ρ11 − ρ33) + �cρ21 = 0,

(A4b)(
i
∂

∂t
+ d32

)
ρ32 + �∗

dρ42 + �pρ12 + �c(ρ22 − ρ33) = 0,

(A4c)(
i
∂

∂t
+ d41

)
ρ41 + �dρ31 − �pρ43

−Na

∫
d3r′V (r′ − r)ρ44,41(r′, r, t ) = 0, (A4d)

(
i
∂

∂t
+ d42

)
ρ42 + �dρ32 − �cρ43

−Na

∫
d3r′V

(
r′ − r

)
ρ44,42

(
r′, r, t

) = 0, (A4e)

(
i
∂

∂t
+ d43

)
ρ43 − �∗

pρ41 − �∗
cρ42 + �d (ρ33 − ρ44)

−Na

∫
d3r′V

(
r′ − r

)
ρ44,43

(
r′, r, t

) = 0, (A4f)

for the nondiagonal elements. Here dαβ = �α − �β + iγαβ ,
γαβ = (�α + �β )/2, �β = ∑

α<β �αβ , with �αβ the sponta-
neous emission decay rate from |β〉 to |α〉; �21 is the rate
of population exchange between |1〉 and |2〉; ρ44,4α (r′, r, t ) =
〈Ŝ44(r′, t )Ŝ4α (r, t )〉 are two-body DM elements; the interac-
tion between two Rydberg atoms, respectively, at positions r
and r′ is described by the potential V (r′ − r) = −h̄C6/|r′ −
r|6, with C6 the dispersion parameter.

APPENDIX B: SOLUTION OF THE MB EQUATIONS

1. Solutions of one-body density-matrix elements

Since the probe field is much weaker than the control and
dressed fields, we can take �p as an expansion parameter
and the perturbation expansion ραα = ρ (0)

αα + ερ (1)
αα + ε2ρ (2)

αα +
· · · (α = 1, 2, 3, 4), and ραβ = ερ

(1)
αβ + ε2ρ

(2)
αβ + · · · (α =

2, 3, 4; β = 1, 2, 3; α > β). Substituting the above expan-
sions into the Eqs. (A3) and (A4), we obtain a set of linear
but inhomogeneous equations, which can be solved order by
order [82].
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At the zeroth order, the solutions read

ρ
(0)
11 = 2�13(2Z2 + 2XY + X�34)/M, (B1a)

ρ
(0)
22 = �21[4(Z2 + XY ) + 2(X + Z )�34

− (�13 + �23)(2Y + �34)]/M, (B1b)

ρ
(0)
33 = 2�21[2(Z2 + XY ) + X�34]/M, (B1c)

ρ
(0)
44 = 2�21[2(Z2 + XY ) − Z (�13 + �23)]/M, (B1d)

ρ
(0)
32 = [

(|�c|2 − d42d43)ρ (0)
22 − |�d |2ρ (0)

44

+ (|�d |2 − |�c|2 + d42d43)ρ (0)
33

]
�c/D1, (B1e)

ρ
(0)
42 = [

d43ρ
(0)
22 − (d32 + d43)ρ (0)

33 + d32ρ
(0)
44

]
�c�d/D1,

(B1f)

ρ
(0)
43 = [|�c|2ρ (0)

22 + (|�d |2 − |�c|2 + d42d32)ρ (0)
33

− (|�d |2 − d42d32)ρ (0)
44

]
/D1, (B1g)

where M = �21[12(XY + Z2) + 2�34(2X + Z )] + �13[2�34

X + 4XY − �21(�34 + 2Y + 2Z ) + 4Z2] − �21�23[�34 +
2(Y + Z )], X = 2Im[(d42d43 − |�c|2)/D1]|�c|2, Y = 2Im
[(|�d|2 − d42d32)/D1]|�d|2, Z = 2Im[1/D1]|�d|2|�c|2, and
D1 = d32d42d43 − d32|�c|2 − d43|�d |2.

From the zeroth-order solution, we find that the incoher-
ent population pumping rate �21 is a key parameter in the

zeroth-order solution. If �21 = 0, all populations are in the
ground state, i.e., ρ

(0)
11 = 1, and other state population and

coherence are both zero, ρ
(0)
αβ = 0. However, when �21 �= 0,

we have ρ
(0)
33 �= 0, and hence a gain to the probe field will be

realized when the probe field is coupled to the states |1〉 and
|3〉.

First-order solutions. At the first order, the solutions of
ρ

(1)
21 , ρ

(1)
31 , and ρ

(1)
41 are given by

ρ
(1)
21 = [

(d31d41 − |�d |2)ρ∗(0)
32 − d41�c

(
ρ

(0)
33 − ρ

(0)
11

)
+�d�cρ

(0)
43

]
/D2�p ≡ a(1)

21 �p, (B2a)

ρ
(1)
31 = [ − �cd41ρ

∗(0)
32 + d21d41

(
ρ

(0)
33 − ρ

(0)
11

)
− d21�dρ

(0)
43

]
/D2�p ≡ a(1)

31 �p, (B2b)

ρ
(1)
41 = [

�c�dρ
∗(0)
32 − d21�d

(
ρ

(0)
33 − ρ

(0)
11

)
+ (d21d31 − |�c|2)ρ (0)

43

]
/D2�p ≡ a(1)

41 �p, (B2c)

where D2 = d31|�c|2 + d21|�d |2 − d21d31d41. Other ρ
(1)
αβ are

zero.
Second-order solutions. At the second order, the matrix

elements can be solved by the equation

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

i�21 0 −i�13 0 0 0 0 0 0 0

−i�21 0 −i�23 0 0 0 0 0 �∗
c −�c

0 0 0 i�34 −�∗
d �d 0 0 0 0

0 �c −�c 0 0 0 �∗
d 0 d32 0

0 0 0 0 −�c 0 d42 0 �d 0

0 0 �d −�d d43 0 −�∗
c 0 0 0

0 �∗
c −�∗

c 0 0 0 0 �d 0 d∗
32

0 0 0 0 0 −�∗
c 0 d∗

42 0 �∗
d

0 0 �∗
d −�∗

d 0 d∗
43 0 −�c 0 0

1 1 1 1 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ρ
(2)
11

ρ
(2)
22

ρ
(2)
33

ρ
(2)
44

ρ
(2)
43

ρ
(2)
34

ρ
(2)
42

ρ
(2)
24

ρ
(2)
32

ρ
(2)
23

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2iIm
[
�pρ

(1)
13

]
0

0

−�pρ
(1)
12

0

�∗
pρ

(1)
41

−�∗
pρ

(1)
21

0

�pρ
(1)
14

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (B3)

Solving the matrix equations above yields ρ
(2)
αβ = a(2)

αβ |�p|2 with the coefficients aαβ being the function detuning �α , spontaneous
emission decay rate �αβ , and half-Rabi frequencies �d , �c.

Third-order solutions. At the third order, the solutions of ρ
(3)
21 , ρ

(3)
31 , and ρ

(3)
41 can be obtained from the equations⎛

⎜⎜⎝
d21 �∗

c 0

�c d31 �∗
d

0 �d d41

⎞
⎟⎟⎠

⎛
⎜⎜⎜⎝

ρ
(3)
21

ρ
(3)
31

ρ
(3)
41

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

a(2)
23

a(3)
33 − a(2)

11

a(2)
43

⎞
⎟⎟⎟⎠|�p|2�p + (0 0 A)T , (B4)

where A = Na
∫

dr′V (r′ − r)a44,41|�p(r′)|2�p. Expressions of ρ
(3)
31 at the third order is obtained from Eq. (B4)

ρ
(3)
31 = a(3)

31 |�p|2�p + Na

∫
d3r′V (r′ − r)b(3)

31 |�p(r′)|2�p, (B5)
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FIG. 9. (a) The imaginary potential as function as incoherent
pumping �21. When �21 < 2.45 MHz, the potential is a loss. Oth-
erwise, the potential is a gain. The red star represents VI = 0 when
�21 = 2.45 MHz.

where a(3)
31 = [d21d41(a(2)

33 − a(2)
11 ) − d41�ca∗(2)

32 − d21�
∗
d a(2)

43 ]
/D2 and b(3)

31 = d21�
∗
d a(3)

44,41(r′ − r)/D2. Combining first three
order solutions of ρ31 with Maxwell equation, we obtain the
nonlocal nonlinear Schrödinger equation

i
∂�p

∂z
+ c

2ωp
∇2

⊥�p − V1�p + W |�p|2�p

+
∫

dr3G
(
r′, r

)|�p(r′)|2�p = 0, (B6)

where V1 = −κ13a(1)
31 is linear potential, W = κ13

[d21 d41 (a(2)
33 − a(2)

11 ) − d41 �c a∗(2)
32 − d21�

∗
d a(2)

43 ]/D2 is the
local nonlinear coefficient, and the nonlocal response function
G(r′, r) = (κ13d21�

∗
dNa/D2)V (r′ − r) a(3)

44,41(r′ − r). Note

that the two-body equations a(3)
44,41 should be solved first

in order to solve the nonlocal nonlinear Schrödinger
equation above.

In dimensionless NNLS equation Eq. (2), the linear poten-
tial reads

V = −2κ13Ldiff
[ − �cd41ρ

∗(0)
32 + d21d41

(
ρ

(0)
33 − ρ

(0)
11

)
− d21�dρ

(0)
43

]
/D2 ≡ VR + iVI . (B7)

Here, VR and VI are the real and imaginary parts of linear
potential, respectively. VR is a constant and independent on
the intensity of the shock wave, and is indeed negligible.
VI < 0 show a loss to the probe field due to the dissipation
of system when ρ

(0)
33 = 0 in the zeroth order for �21 = 0. With

increasing of incoherent pumping �21, ρ
(0)
33 �= 0 and a gain to

the probe field will be realized. As results show in Fig. 9, a
loss or gain potential VI can be realized by adjusting the �21.
When �21 < 2.45 MHz, the potential is a loss. Otherwise, the
potential is a gain.

2. Solutions of two-body density-matrix elements

We solve the second-order solution of the correlators of
ρ

(2)
41,41, which can be obtained from

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2d41 − V 2�d 0 0 0 0

�∗
d d41 + d31 �d �c 0 0

0 �∗
d d31 0 �c 0

0 �∗
c 0 d41 + d21 �d 0

0 0 �∗
c �∗

d d31 + d21 �c

0 0 0 0 �∗
c d21

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ρ
(2)
41,41

ρ
(2)
41,31

ρ
(2)
31,31

ρ
(2)
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ρ
(2)
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ρ
(2)
21,21

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
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2a(0)
43 a(1)

41(
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11

)
a(1)
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43 a(1)
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33 − a(0)
11

)
a(1)
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a∗(0)
32 a(1)

41 + a(0)
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33 − a(0)
11

)
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21
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⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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(B8)

The solution for ρ
(2)
41,41 = a(2)

41,41(r′ − r)�2
p(r′) with

a(2)
41,41(r′ − r) = P0

P1 + P2V (r′ − r)
, (B9)

where P0, P1, and P2 are the functions of �d , �c, �α , and �αβ .
The two-body equations for ρ

(3)
44,41 are 27 order linear equa-

tions, which are very lengthy and hence are omitted here, and
solution has the form

ρ
(3)
44,41(r′ − r) =

∑2
n=0 PnV n(r′ − r)∑3
n=0 QnV n(r′ − r)

|�p(r′)|2�p(r)

≈ ρ
(2)
41,41ρ

(1)
14 ≡ a(3)

44,41|�p|2�p, (B10)

where Pn, Qn are the functions of �d , �c, �α , and �αβ .
Note that the response function in dimensionless

NNLS equation Eq. (2) can be obtained from the
two-body correlators ρ

(3)
44,41. The expression reads

FIG. 10. (a) Wave propagation when σ = 0.5. The dashed line
marks the trajectory of the sound wave. It is clear that the wave prop-
agates at the speed of sound cs, indicating the system is in the linear
regime. Other parameters are same as in Fig. 5(a), corresponding to
the linear propagation discussed in Sec. IV A. (b) The same as (a).
Other parameters are same as in Fig. 7(a), corresponding to the linear
propagation discussed in Sec. IV B.
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g = 2LdiffU 2
0 R2

0κ13d21�
∗
dNa/D2

∫
V (r′ − r) a(3)

44,41dy′. It
can be approximated by analytical form [30,38]

g(ξ ′, ξ ) ≈ −
∫

1

b1 + b2
σ 6 [(ξ ′ − ξ )2 + (y′/R0)2]3 dy′

≈ − B1

B2σ 6 + |ξ ′ − ξ |6 , (B11)

where σ = Rb/R0 characterizes the nonlocality degree of the
nonlinearity. b1 and b2 are the coefficients determined by laser
parameters (i.e., �d , �c, �α , and �αβ). The relation between
B1,2 and b1,2 are B1 = σ 6/b2 and B2 = b1/b2.

As discussed in the main text, the response becomes linear
when Rb is comparable to the beam radius R0, where the soft-
core potential is nearly a constant compared to the wavelength
of the excitation. Hence the wave behaves like phonons and
propagates linearly, as depicted in Fig. 10.
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