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Reconstruction of the Wigner function of electron beams based on coherence measurements
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We developed a reconstruction method for the density matrix and Wigner function of electron beams through
analysis of the Airy pattern intensity profile. The density matrix in a transmission electron microscope object
plane was calculated using the coherence function and the electron wave amplitude and phase distributions. The
Wigner function was then reconstructed using the matrix elements. Based on the Wigner function at the origin of
the phase space, we derived a formula to calculate the axial brightness and then determined the axial brightness
of a Schottky field emission gun, which reflects the emitter performance more accurately and precisely than the
conventional mean brightness measurements.
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I. INTRODUCTION

Electron beams are important probes to measure mate-
rial structures and electronic states on the nanometer scale,
particularly in transmission electron microscopes (TEMs).
Recently, quantum measurements of electron beams them-
selves and control of electron states have been realized in
TEMs, e.g., controlling electron states via the interaction
between free electrons and the optical near field [1], mea-
surement of antibunching of electrons [2], and realization of
quantum logic gates for free electrons [3]. The possibility of
decoherence measurements of electrons entangled with bulk
plasmons and surface plasmons has also been proposed [4].

Electrons generated from an electron emitter are in a
mixed state [5] that can be expressed using a density opera-
tor. The density operator contains all knowable information
about the quantum system, including the wave nature, e.g.,
the phase and coherence of the electron waves, which
cannot be described via the particle model. For quantum
measurements such as decoherence measurements, state mea-
surements based on the density operators before and after the
interaction are important.

One alternative way to describe the information contained
in the density operator is to use the Wigner function, which
describes the state in phase space spanned by the position
and momentum bases. When considered in a two-dimensional
(2D) plane, the Wigner function is given by [6]

W (r, q) = 1

(2π )2

∫∫ ∞

−∞
d2μ e−iqμ

〈
r + μ

2

∣∣∣ρ̂
∣∣∣r − μ

2

〉
, (1)

where r and μ are 2D real space vectors and q is a 2D
reciprocal space vector. In addition, ρ̂ is the density operator.
It is known that Wigner functions can have negative values as
a manifestation of quantum nature, as measured for photons
and laser-cooled ions in Fock states [7,8], and matter-wave
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interference [9]. Because of this negative value characteristic,
the Wigner function is a quasiprobability distribution.

The phase-space representation of a beam in an optical
system can also be derived in a classical manner using ray di-
agrams, but the Wigner function gives a complete description
of the wave field, including the coherence, intensity distri-
bution, and phase distribution in phase space. The Wigner
function thus allows evaluation of the power going in each
direction at each position in the optical system. Therefore,
when compared with the density operator, the Wigner function
is advantageous when evaluating the axial brightness in a
TEM, which represents the electric current propagating along
the optical axis.

In quantum optics, the Wigner function has been re-
constructed in various ways, e.g., phase-space tomography
[10,11], optical homodyne tomography [12], and heterodyne
measurement [13]. It is however difficult to apply these meth-
ods to actual electron waves because of the lack of flexibility
of the TEM optical system. To reconstruct the Wigner func-
tions of electron waves, methods based on in-line or off-axis
holography in TEMs have been investigated theoretically [14].
However, the limitations on the variable range of the illu-
mination lens system and Fresnel scattering by the biprism
cause serious problems when attempting to obtain the correct
reconstructions in each method [14].

Here we propose a method to measure the density matrix
based on the Airy pattern from an aperture. Using the matrix
elements measured for the electron beams in a TEM, the
Wigner function of the electron waves is reconstructed. In
addition, using the reconstructed Wigner function, the axial
brightness, which is an important performance indicator for
emitters, is measured with greater accuracy and precision than
in conventional measurements.

II. THEORY AND METHOD

Generally, the diagonal density matrix elements are
obtained via intensity measurements, whereas phase
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FIG. 1. Simplified drawing of the optical system to form the
Airy pattern in a TEM: CL, condenser lens system; IL, imaging lens
system; FT, Fourier transform relation; γ (r1, r2), coherence function;
a(r), aperture function; and ρ̂, density operator.

measurements are performed to determine the off-diagonal
elements. In our previous research, a method to determine
the phase distribution in real space via Airy pattern intensity
analysis was developed [15]. A simplified drawing of the
optical diagram in a TEM to record the Airy pattern is shown
in Fig. 1, where the illumination system is composed of
multiple condenser lenses (CLs) and the imaging lens system
(IL) composed of multiple intermediate lenses, a projection
lens, and lenses in the energy filter. As described in [15], the
purpose of using the energy filter is not to eliminate electrons
with energy fluctuations but to increase the camera length
enough to measure the Airy patterns with a sufficiently fine
sampling interval.

In a TEM, electrons generated by an emitter pass through
the CL and then illuminate the object plane. The beam inten-
sity at the object plane is Iobj(r) = ξ (r)2, where ξ (r) is the
amplitude of the wave field �(r). As Fig. 1 shows, when a
circular aperture in the object plane is illuminated using a
nearly parallel beam, an Airy pattern appears in the diffraction
plane formed by the IL. Because all electron sources have a
finite size, based on the particle model, electrons emitted from
different points on the source surface reach the object plane
from slightly different directions.

Using the wave model, this situation can be expressed
as an incoherent superposition of the electrons in different
states. The statistical mixture of these different states, i.e.,
the mixed state, is expressed using the density operator ρ̂ =∑

n pn|ψn〉〈ψn|, where pn is the probability of the state |ψn〉.
To be precise, energy fluctuations between the electrons are
also represented by different states. Because the energy spread
of electrons emitted from a Schottky field emission gun (FEG)
is approximately 1 eV, the relative fluctuation in the 200-keV
beam is on the order of 5 × 10−6. The relative fluctuation
is so small that the chromatic aberration and the temporal
coherence do not affect the Airy pattern, which is the small-
angle scattering from the aperture [15,16]. This means that
the energy spread can be neglected for the electron wave
inside the aperture. Under the monochromatic approximation,

the electron wavelength is λ = 2.51 pm at the acceleration
voltage of 200 kV.

In quantum mechanics, a two-point correlation is expressed
using 〈r1|ρ̂|r2〉 with the normalization Tr(ρ̂) = 1 for r in-
side the aperture. In optics, the two-point correlation of a
wave field is expressed using the mutual coherence function
	(r1, r2) = 〈�(r1)�∗(r2)〉, where angular brackets denote the
ensemble average [10]. Here 	(r, r) is normalized via the
integration within the aperture area Sa as

∫∫
Sa

d2r 	(r, r) =∫∫
Sa

d2r ξ (r)2 = Ne, where Ne is the number of electrons
forming the Airy pattern.

When the CL is adjusted ideally to realize the Fourier trans-
form relationship between the emitter plane and the object
plane, the parallel illumination �(r) with a uniform ampli-
tude ξ0 and a uniform phase in the object plane is realized.
By considering the difference of the normalization condi-
tions in the mutual coherence function and in the density
matrix, the off-diagonal elements of the density matrix are
written as

〈r1|ρ̂|r2〉 = 	(r1, r2)/Ne = γ (r1, r2)ξ 2
0 /Ne, (2)

where γ (r1, r2) := 	(r1, r2)/
√

	(r1, r1)	(r2, r2) is called the
coherence function, the absolute value of which represents the
degree of coherence [17].

In most practical cases, the illumination beam is not paral-
lel but is more or less converging or diverging on the object
plane, which is expressed as a defocusing effect of the CL.
The defocusing aberration changes the beam diameter on the
object plane, thus causing an increase or reduction of the av-
erage amplitude value from ξ0. More generally, the amplitude
in an actual illumination beam is described as ξ (r), because
other aberrations (and other practical reasons, e.g., slight
beam misalignment from the optical axis) may induce an
amplitude distribution. The actual illumination beam has also
the phase distribution induced by the CL aberration, as can be
inferred from the fact that a curved wave front is formed in a
converging or diverging beam. These phase modulations are
generally expressed by applying the unitary operator ÛCL to
the electron states. Therefore, the state after the phase shift is
expressed using |ψ ′〉 = ÛCL|ψ〉. The ÛCL has the eigenvalue
e−ikXCL (r) for the position basis; ÛCL|r〉 = e−ikXCL (r)|r〉, where
XCL(r) and k = 2π/λ are the axial geometric aberration of the
CL and the wave number, respectively. The density operator
after the influence of the lens aberration is expressed by ρ̂ ′ =∑

n pnÛCL|ψn〉〈ψn|Û †
CL. Considering Û †

CL|r〉 = eikXCL (r)|r〉 and
replacing ξ0 in Eq. (2) with ξ (r), the off-diagonal elements of
the density matrix are calculated using

〈r1|ρ̂ ′|r2〉 =
∑

n

pn〈r1|ÛCL|ψn〉〈ψn|Û †
CL|r2〉

= e−ik[XCL (r1 )−XCL (r2 )]γ (r1, r2)ξ (r1)ξ (r2)/Ne. (3)

Similar to the way in which the electron waves are mod-
ified by the CL aberration before reaching the object plane,
a practical Airy pattern is influenced again by the axial ge-
ometric aberration of the IL, XIL(r) [15,16]. Therefore, the
electrons that form the Airy pattern are modulated by the sum
of these aberrations: X (r) = XCL(r) + XIL(r). When the object
plane is illuminated via wave packets coming from different
source positions, the Airy pattern is blurred with an angular
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distribution. The van Cittert–Zernike theorem indicates that
the angular distribution has a Fourier transform relationship
with γ (r1, r2) [17]. Therefore, the practical Airy pattern in-
tensity when neglecting electric and mechanical instabilities
in the instrument is described as [15]

Idiff (q) = |F[a(r)ξ (r)e−ikX (r)]|2 ⊗ F[γ (r1, r2)], (4)

where F and ⊗ represent the Fourier transform and convolu-
tion operations, respectively, and a(r) is an aperture function
that takes a value of 1 inside and 0 outside. Since ξ (r), X (r),
and γ (r1, r2) can be approximately expressed as parametrized
functions [15], these parameters are determined by the fit-
ting calculation to the measured Airy patterns using Eq. (4),

combined with a(r) determined from a TEM image of the
aperture. The fitting procedure is described in detail in [15]
and briefly in this paper using examples in Fig. 2 and Table I
later.

Using the determined ξ (r) and γ (r1, r2) and replacing
XCL(r) in Eq. (3) with the determined X (r), the off-diagonal
elements are then calculated. Note that because of the dif-
ference between XCL(r) and X (r), the result is not for the
actual wave in the object plane but is for a virtual wave that
includes the additional phase shift of kXIL(r). The diagonal
elements also can be calculated using Eq. (3) as 〈r|ρ̂ ′|r〉 =
ξ (r)2/Ne, with ξ (r) as determined by fitting Airy patterns. By
substituting Eq. (3) as described using X (r) into Eq. (1), the
Wigner function reconstructed within the aperture Wa(r, q) is
described using

Wa(r, q) = 1

(2π )2Ne

∫∫ ∞

−∞
d2μ e−iqμ exp

{
−ik

[
X

(
r + μ

2

)
− X

(
r − μ

2

)]}

× γ
(
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2
, r − μ

2

)
a
(

r + μ

2

)
ξ
(

r + μ

2

)
a
(

r − μ

2

)
ξ
(

r − μ

2

)
. (5)

The analysis in this paper was conducted using exper-
imental data that were previously reported in [15]. Brief
descriptions of the measurement procedure and results are
given as follows. A 200-kV TEM equipped with a Schottky
FEG (JEM-ARM200F, JEOL) was used. A selector aperture
(SA) installed in the TEM with an effective diameter of
127 nm at the object plane [Fig. 2(a)] was used to form the
Airy patterns. The a(r) is created by binarizing Fig. 2(a).
Airy patterns are obtained with various beam diameters at the
object plane to vary the spatial coherence inside the aperture
from partially coherent to almost fully coherent. Figures 2(b)
and 2(c) show examples of the measured Airy patterns.

Under an assumption that the electron source intensity
has a 2D Gaussian distribution, the 2D intensity profiles in
Figs. 2(b) and 2(c) are well reproduced by the fitting cal-
culations. Table I shows the main parameters determined by
the fitting calculations. An example of the phase distribution
reconstructed using the aberration coefficients C1, A1, A2 and
B2 for the beam diameter D = 1.2 µm is shown in Fig. 2(d).
As representative of these results, comparisons along the lines
in Figs. 2(b) and 2(c) are shown in Figs. 2(e) and 2(f), re-
spectively. As shown in Fig. 2(g), the coherence length lc as
the standard deviation of γ (r1, r2) shows a linear relationship
with D at the object plane, which was predicted theoretically
[18]. The proportional constant depends on the electron emit-
ters, illumination lens setting, and CL aperture size [15,16].

III. RESULTS AND DISCUSSION

Using the parameters determined from the Airy patterns,
the four-dimensional Wigner functions Wa(r, q) for the beams
with various lc can be reconstructed from Eq. (5). An exam-
ple of the visualized 2D phase space Wa(rx, qx ) is shown in
Fig. 3(a), which was reconstructed for the beam with lc =
422 nm using the density matrix 〈rx1|ρ̂ ′|rx2〉. The 〈rx1|ρ̂ ′|rx2〉
is calculated by replacing the 2D vector r with the 1D basis

rx in Eq. (3), which is along the line in Fig. 2(a). Projection
of the values of Wa(rx, qx ) onto the rx axis corresponds to the
intensity profile along the line in Fig. 2(a). The oscillation in
Wa(rx, qx ) reflects the fringe in the Airy pattern. Therefore,
the negative values in Wa(rx, qx ) are caused by the diffraction
phenomenon of the electron waves passing through the aper-
ture. For comparison, Wa(rx, qx ) of the virtual ideal beam was
calculated using uniform amplitude ξ (r) = 1, phase X (r) = 0,
and γ (r1, r2) = 1. As shown in Fig. 3(b), the overall patterns
are similar to the experiment in Fig. 3(a). The difference is
a slightly tilted crest of high values (red region) around the

TABLE I. Examples of the main parameters determined by the
fitting calculation to the Airy patterns obtained by beams with D =
4.4 µm [shown in Fig. 2(b)] and D = 1.2 µm [shown in Fig. 2(c)].
Here C1, A1, A2, and B2 are the defocusing, twofold astigmatism,
threefold astigmatism, and axial coma aberration coefficients, re-
spectively. Because these are the aberration coefficients to form the
Airy patterns in reciprocal space, they have dimensions of reciprocal
length. The lc is the coherence length, which is the standard deviation
of γ (r1, r2), and 
Ix and 
Iy represent the beam intensity gradients
in the rx and ry directions, respectively, expressed by ratios to the
average intensity inside the aperture.

Parameter D = 4.4 µm D = 1.2 µm

C1 (m−1) −87.3 −138
|A1| (m−1) 8.44 8.60
argument of A1 (deg) −102 169
|A2| (m−1) 0.0925 0.0641
argument of A2 (deg) −134 −160
|B2| (m−1) 0.0161 0.0600
argument of B2 (deg) 43.8 77.3
lc (nm) 422 117

Ix (nm−1) −1.20 × 10−4 −1.34 × 10−3


Iy (nm−1) −1.08 × 10−4 2.47 × 10−4
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FIG. 2. Examples of the fitting analysis for the Airy patterns.
(a) TEM image of the selector aperture. Airy patterns obtained using
beams with diameters (b) D = 4.4 µm and (c) D = 1.2 µm. (d) Phase
distribution inside the aperture determined by the fitting calculation
to the Airy pattern in (c). The comparison between the measured
and calculated patterns along the solid lines in (b) and (c) are shown
in (e) and (f), respectively. (g) Coherence length lc as a function
of beam diameter D. The diffraction data in (b) and (c) were se-
lected as examples to illustrate the fitting analysis procedure from
the data presented in [15]. The graph in (g) was reproduced from
Fig. 7(a) in [15].

origin in the experiment. By analogy with the phase-space
representation based on ray diagrams and the phase-space
tomography [10,11], such a tilted crest is induced by the
curved wave front in a diverging beam. In the present case,
the tilted crest in Fig. 3(a) reflects the sum of the defocusing
values of the CL and the IL because Wa(rx, qx ) includes also
the influence of the IL aberration. More generally, the over-
all deformation, e.g., slight asymmetric feature in Fig. 3(a),
is induced by the remaining total aberrations of the CL
and the IL.

Figure 3(c) shows a comparison of Wa(0, qx ), that is,
the profiles along the dashed line in Fig. 3(a), between the
ideal beam and the experimental beams with lc = 422 nm
in Fig. 2(b) and 117 nm in Fig. 2(c). When the profiles
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FIG. 3. Reconstruction of the Wigner function. (a) Wa (rx, qx )
for the beam with lc = 422 nm calculated from the density matrix
along the red line shown in Fig. 2(a). The density matrix is calcu-
lated from the fitting calculation results of Fig. 2(b). The values of
Wa (rx, qx ) when the main peak value is normalized to 1 are shown by
color. (b) Wa (rx, qx ) calculated for an ideal beam with infinite coher-
ence length and without lens aberrations and amplitude distribution.
(c) Comparison along the dashed line in (a) between Wa (0, qx )
for the beams with lc = 422 and 117 nm and for the ideal beam
with lc = ∞.

are normalized by the peak values, there is no significant
differences between lc = 422 nm and lc = ∞. This is because
the electrons inside the aperture with a diameter of 127 nm
are almost fully coherent when illuminated by the beam with
lc = 422 nm. On the other hand, the oscillation amplitude is
slightly reduced in the profile for the beam with lc = 117 nm.
Considering the oscillation reflects the wave diffraction
phenomenon as mentioned before, the amplitude reduction
is attributed to reduction of the wave nature, that is, partial
coherence of the beam inside the aperture. This is consistent
with the fact that lc = 117 nm is slightly smaller than the
aperture diameter of 127 nm.

As mentioned in the Introduction, understanding the rela-
tionship between the Wigner function and the brightness is
important, and brightness is a useful indicator of the emitter
performance. Specifically, the axial brightness B0 is of pri-
mary importance in optical systems using lenses because the
value of B0 is conserved along the optical axis [19]. The B0 is
defined by the electric current passing through an infinitely
small area within an infinitely small solid angle along the
optical axis, i.e., it is defined by the current density at the
origin of the phase space [5].

Because small apertures of finite sizes are used in practical
measurements [19], the current is measured in an area called
emittance that is not infinitely small. Division of the current
value by the emittance gives B0 correctly if the current density
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within the emittance is uniform, but the value is smaller than
B0 in reality because it has a nonuniform distribution with a
peak at the origin of the phase space. This is called the mean
brightness B̄ [19]. Moreover, because the size of the emittance
depends on the lens setting and the aperture size used to
perform the measurement [19], measured B̄ values tend to
fluctuate depending on the TEM used and the researchers who
conducted the measurements.

Because the Wigner function gives the quasiprobability, B0

as defined using the current density at the origin of the phase
space is given by W (0, 0)k2J [5], where k2 is multiplied for
the unit conversion from nm−2 to sr−1. Here J is the total
electric current in the phase space and, in this work, is equal
to the electric current to form the Airy pattern. However, be-
cause of the aperture function in Eq. (5), Wa(0, 0) is different
from W (0, 0). Therefore, an appropriate conversion from the
measured Wa(0, 0) to W (0, 0) is required to estimate B0.

From Eq. (5),

Wa(0, 0) = 1

(2π )2Ne

∫∫
d2μ exp

{
−ik

[
X

(μ

2

)
−X

(
−μ

2

)]}

× γ
(μ

2
,−μ

2

)
a
(μ

2

)
ξ
(μ

2

)
a
(
−μ

2

)
ξ
(
−μ

2

)
.

(6)

If we consider an ideal situation that the amplitude and phase
in the aperture are uniform [Eq. (2)], Eq. (6) becomes

Wa(0, 0) = ξ 2
0

(2π )2Ne

∫∫
d2μ a

(μ

2

)
γ
(μ

2
,−μ

2

)
(7)

for a circular aperture. According to the van Cittert–Zernike
theorem [17], γ ( μ

2 ,−μ

2 ) is given by the Fourier transform
of the electron source intensity distribution, which is often
approximated to be a 2D Gaussian function [15]. Under this
approximation, γ ( μ

2 ,−μ

2 ) is replaced by a 2D Gaussian func-

tion e−|μ|2/2l2
c , which is used for the fitting analysis of the

Airy patterns. Considering the Airy patterns are excellently
reproduced in Fig. 2 and in [15], the Gaussian approximation
for γ ( μ

2 ,−μ

2 ) should be reasonable for Schottky FEGs. Thus,

Eq. (7) is given by integration of e−|μ|2/2l2
c within the range

determined by the aperture diameter da. Using the relationship
Ne = ξ 2

0 Sa,

Wa(0, 0)k2J 	 k2Jξ 2
0

π2Ne
2π

∫ da/2

0
d
(μ

2

)μ

2
e−2(μ/2)2/l2

c

= B0(1 − e−d2
a /2l2

c ), (8)

B0 = k2Jξ 2
0 l2

c

2πNe
= 2π

J

Sa

l2
c

λ2
= 2π j0

l2
c

λ2
, (9)

where μ and j0 are the norm of μ and the axial current
density, respectively. The prefactor in Eq. (8) must be B0,
because Wa(0, 0)k2J becomes W (0, 0)k2J if no aperture or an
infinitely large aperture is used. In other words, Wa(0, 0)k2J
converges to B0 when the ratio lc/da approaches zero, as
depicted in Fig. 4. The B0 as given by Eq. (9) is a function
of j0 and lc, which both vary with the CL setting, mainly
D in the object plane changed by the defocusing component
of XCL(r). As shown in Fig. 2(g), lc is a linear function of
D. Considering that j0 is inversely proportional to the square

1 10
1011

1012

1013
 Experimental values calculated 
 by Eq. (6) and J

W
a(0

,0
)k

2
J 

(A
 m

-2
 sr

-1
)

lc / da

W(0,0)k2J
 Calculation by Eqs. (8) and (9)

FIG. 4. Electric current at the origin of the phase space
Wa (0, 0)k2J as a function of lc/da, where lc and da are the coherence
length and the aperture diameter, respectively. The plotted dots are
calculated using experimentally measured Wa (0, 0) and J listed in
Table II. The curved line is drawn for Eq. (8) using the B0 value
determined experimentally based on Eq. (9). The value at lc/da 
 1
corresponds to the axial brightness.

of D, the value of j0l2
c and therefore B0 given by Eq. (9) is

constant, regardless of the lens conditions, as expected for the
axial brightness characteristics.

Equation (8) was derived for idealized uniform amplitude
and phase. The influence of the actual nonuniform ξ (r) and
X (r) is discussed in the following. It is generally known that
the beam intensity at the object plane is rather uniform under
a nearly parallel illumination in a Schottky FEG TEM, as
seen in Fig. 2(a). In fact, based on the fitting results [15], the
intensity distribution ξ (r)2 inside the aperture is estimated to
have deviations of only a few percent at most for all the beams
used in the present study, as shown in Table I. On the other
hand, as shown in Fig. 2(d), the phase shows non-negligible
amounts of deviation from a uniform distribution even if the
Airy pattern is carefully focused for the recording. To examine
the influence of the phase distribution, Wa(0, 0) calculated
using actual ξ (r), X (r), and γ (r1, r2) determined by the fitting
analysis and Wa(0, 0) calculated using X (r) = 0 are compared
in Table II. Considering the differences less than 1% for
all the beams, the influence of the actual phase distributions
included in the Airy patterns used can be neglected. Thus,
Eqs. (7)–(9) should be valid not only for the ideal parallel

TABLE II. Wa (0, 0) calculated by Eq. (6) using the actual ξ (r),
X (r), and γ (r1, r2) and uniform X (r) = 0. Column 4 displays J for
each Airy pattern measured by a Faraday cup.

Wa (0, 0)k2J (A m−2 sr−1)

lc (nm) actual X (r) X (r) = 0 J (pA)

117 1.18 × 1012 1.18 × 1012 2.59
142 7.69 × 1011 7.70 × 1011 1.52
190 4.72 × 1011 4.73 × 1011 0.85
218 3.41 × 1011 3.42 × 1011 0.60
264 2.64 × 1011 2.65 × 1011 0.45
310 1.79 × 1011 1.79 × 1011 0.30
422 1.35 × 1011 1.35 × 1011 0.22
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illumination but even for the data set used in the present
study.

The j0 value for each D needed for Eq. (9) is given by the
division of J in Table II by Sa. From the pairs of lc and j0, B0 is
estimated using Eq. (9) to be (2.5 ± 0.3) × 1012 A m−2 sr−1,
with uncertainty resulting from the measurement errors of
the j0 and lc values. For reference, B̄ values reported pre-
viously for the Schottky FEG [20,21] are in the (2–10) ×
1012 A m−2 sr−1 range, within the same order of magnitude
as the B0 we determined. Figure 4 shows the curve for Eq. (8)
calculated using the determined B0 value and the plot of the
Wa(0, 0)k2J for each beam listed in Table II. The good agree-
ment in Fig. 4 verifies the correctness of Eqs. (8) and (9) under
a condition in which the influence of the amplitude and phase
distributions in the aperture is small enough to be ignored.

The reason why significant phase shifts in the aperture as
shown in Fig. 2(d) do not affect the calculation in Eq. (6) could
be that exp{−ik[X ( μ

2 ) − X (−μ

2 )]} 	 1 tends to hold in many
cases. It is well known in the field of electron microscopy
that the main factors of the geometric aberration in the
TEM electromagnetic lenses are the defocusing aberration,
third-order spherical aberration, and twofold astigmatism. The
phase shifts induced by the defocusing and spherical aberra-
tions are axially symmetric and that induced by the twofold
astigmatism is twofold rotationally symmetric with respect
to the optical axis [22]. Therefore, if the TEM lenses are
aligned carefully so that the optical axis is located near the
aperture center, Eqs. (6)–(8) are valid approximations when
B0 is determined from Airy pattern analysis.

The significance of Eq. (9) is that B0 is expressed using
lc and j0, which are intrinsic beam characteristics rather than
the emittance, which is affected by the measurement condi-
tions. Therefore, if j0 and lc are correctly measured by any
method, for example, by using an electronic biprism, then
B0 can be determined using Eq. (9). Interestingly, a similar
expression for the mean brightness was proposed previously
as B̄p = 4π j0l2

c /λ2 [18]. This formula is only valid when an
illumination aperture with a radius of 1/lc is used for the j0
measurements, unlike Eq. (9), which is free from that aperture
size because of a much smaller SA than beam diameters.
Therefore, if we replace the same values of lc and j0 with
Eq. (9), B̄p with twice the value of B0 is given [16], which is
contrary to the general trend noted previously, where B̄ < B0.
Even if B̄ is measured correctly by other methods without
using the formula, in addition to the systematic errors caused
by the trend, the value fluctuates depending on the TEM and
the aperture used, as mentioned earlier. The derived Eq. (9) is
an important result that enables electron emitter performance
evaluation with high precision and accuracy without being
affected by differences in the optical systems.

IV. CONCLUSION

We have developed a reconstruction method for the density
matrix and the Wigner function of electron beams based on
Airy pattern intensity analysis. The reconstruction method of
the density matrix can be applied to decoherence measure-
ment of inelastically scattered electrons. It was reported that
the mutual coherence of inelastically scattered electrons due
to plasmon excitation decays rapidly before reaching 10 nm
and the decay curve is not represented by a Gaussian dis-
tribution [23]. Such changes of electron states via inelastic
scattering are reflected in the Wigner function. If electrons are
in nonclassical states, the Wigner function can include nega-
tive values. Using this characteristic of the Wigner function
enables investigation of whether the scattered electrons are in
nonclassical states or not.

In a previous study, the coherence of electrons inelastically
scattered by bulk plasmons was measured using an electron
biprism and an energy filter [24]. As discussed in [16], co-
herence measurements performed using a biprism present
difficulties for poorly coherent electrons such as inelastically
scattered electrons. This is because the beam is partly shielded
by the biprism itself, settled on the optical axis. However, the
coherence measurement of inelastically scattered electrons is
possible using a specially fabricated small aperture [16] and
the energy filter to select the energy-loss electrons.

As a result of reconstructing the electron states for beams
passing through the aperture, we derived a formula to cal-
culate the axial brightness and then determined the axial
brightness of the Schottky FEG precisely and accurately
without being affected by differences in the optical system.
The ability to estimate axial brightness will be beneficial for
precise comparison of the performances of various types of
electron emitters including photocathodes [2,25]. Monitoring
the degradation process of the emitter performance under
various conditions involving vacuum pressure, dark current,
and so on should be greatly helpful in obtaining guidelines
for effective developments of high-performance emitters. The
efficiency in developing advanced emitters should be maxi-
mized if the present method is successfully applied not only
in TEMs but also in simple vacuum chambers without lenses.
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