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Angular momentum gain by electrons under the action of intense structured light
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The problem of the interaction of light waves with charged particles becomes increasingly complex starting
with the case of plane waves, where the analytical solution is well known, to more natural, though more
complicated situations which include focused or structured laser beams. Internal structure may introduce a
new degree of freedom and qualitatively change the dynamics of interacting particles. For certain conditions,
namely, for the dilute plasma, a description of single-particle dynamics in the focused structured laser beams
is the first step and may serve as a good approximation to understand the global plasma response. Moreover,
the general problem of integrability in complex systems starts from a consideration of the integrals of motion
for a single particle. The primary goal of this work is an understanding of the physics of the orbital angular
momentum (OAM) absorption by a single particle in a focused structured light. A theoretical model of the
process, including solutions of Maxwell equations with the required accuracy and a high-order perturbative
approach to electron motion in external electromagnetic fields, is developed and its predictions are examined
with numerical simulations for several exemplary electromagnetic field configurations. In particular, it was found
that for the particles which are initially distributed with the azimuthal symmetry around the beam propagation
direction, the transferred OAM has a smallness of the fourth order of the applied field amplitude and requires an
accurate consideration of the temporal laser pulse envelope.
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I. INTRODUCTION

Electromagnetic interaction between structured light and
charged particles in vacuum may result in particle accelera-
tion, i.e., momentum and energy transfer, which, under certain
conditions, appears to be irreversible. For that, the light wave
should at least be sufficiently different from a slow-varying
plane wave; see, e.g., [1]. In this general context, similar ques-
tions may be posed concerning the transfer of the light orbital
angular momentum (OAM): how effective is its occurrence
when a structured light wave interacts in vacuum with a single
charged particle, and how effective is it, on average, for a
particle ensemble with a given distribution?

These questions were recently addressed within different
frameworks. In [2–4], the OAM transfer is considered nu-
merically for different model configurations of laser beams
interacting with individual charged particles in free space.
Paraxial and slowly varying envelope approximations were
used to prescribe the electromagnetic fields, and specific cases
of linear, circular, and radial polarizations with and without
spatiotemporal coupling were considered. Transferred energy,
momentum, and angular momentum dependence on the dura-
tion, amplitude, and other parameters were studied in certain
cases. In Ref. [5], numerical simulation of the action of the
OAM laser beam on free electrons is presented for the case of
a superposition of linearly polarized Laguerre-Gaussian and
Gaussian modes; the OAM transfer is estimated based on the
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results of the perturbation theory. The importance of the accu-
rate use of the paraxial and slowly varying temporal envelope
approximations in numerical simulations is discussed in [6]
based on consideration of a conserved integral of motion for
the special case, when the circular polarization and orbital
momentum in the beam have opposite directions so that there
is no dependence on the angle in the phase. The necessity of
corrections to the lowest-order approximations both in numer-
ical simulations and analytics is demonstrated.

More complicated, though less detailed studies of the OAM
beam interaction with plasmas were mainly performed with
the use of large-scale three-dimensional (3D) Particle-in-Cell
(PIC) simulations. In Refs. [7,8], the generation of magnetic
fields in dilute plasma was observed and explained as a result
of an OAM transfer from the laser beam to electrons. There,
radial and linear polarizations were considered, showing ef-
fective OAM transfer for moderate relativistic intensities.
Analysis with the use of simplified electromagnetic fields
showed the importance of the longitudinal particle motion
for the OAM transfer. The magnetic field was also observed
in plasma in Ref. [9] via OAM transfer from two beating
Laguerre-Gaussian beams to charged particles. There, a fluid
model of the interaction was developed to describe the forma-
tion of azimuthal currents in the plasma.

In the case of dissipative processes, the magnetic field gen-
eration, originating from angular momentum absorption of a
circularly polarized laser beam, is demonstrated theoretically
in [10]. Circularly polarized beams were replaced by linearly
polarized beams with OAM in Ref. [11]. For intense rela-
tivistic beams with different polarizations, including linearly
and circularly polarized Laguerre-Gaussian modes, Ref. [12]
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studies magnetic field generation and dissipative effects in
plasma.

Although there is a common conclusion that the OAM
transfer from a structured light wave to electrons may be both
possible and effective, still, it is not clear if this is always
a single-particle effect or if certain nonlinearities originated
from collective or dissipative effects are required. It was ob-
served in several studies [3,7], that the individual electrons
are absorbing positive or negative light OAM depending on
their spatial position, even for a definite OAM sign in the
incident wave, but the net gain appears to be much less. The
detailed consideration for the analytically attainable special
case, predicting no net OAM gain after interaction [6], sup-
ported the conclusion that the total OAM transfer is a very
delicate process.

In this work, a general problem of OAM transfer from a
structured light wave to an ensemble of charged particles is
considered for moderate intensities of the incident light. It
may be a rarefied plasma, consisting of ions and electrons,
which are interacting with an incident light much stronger
than with each other, which requires ωp � ω0, where ωp =√

4πnee2

me
is the plasma frequency, ne is the electron density, e

and me are the electron charge and mass, respectively, and ω0

is the characteristic light frequency, e.g., the main carrier fre-
quency of the laser wave. The particles are considered initially
cold with the temperature T � (eE0)2/(meω

2
0 ), where E0 is

the electric field amplitude. This condition means that the
work performed by the laser wave during one period is small
compared to the thermal energy of the electrons and allows
one to treat electrons as being at rest before the interaction.
Electrons, being the lighter particles, are primarily affected
by the light, so the OAM transfer would be analyzed having
in mind, namely, the wave-electron interaction, but of course
all the results are valid for any charged particles.

First, a perturbation theory on the field strength for arbi-
trary fields is developed up to the fourth order, to obtain a
nonzero net absorbed OAM in the case of homogeneous distri-
bution of the particles. Then, assuming a focused laser beam,
an approximate description of the structured wave within the
paraxial and the slow temporal dependence approximations
is represented. Using this description, several certain con-
figurations are considered in detail, including a comparison
with numerical single-particle calculations. Finally, a general
discussion and conclusions are presented.

II. ANALYTICAL MODEL

Electron motion in arbitrary electromagnetic fields E and
H is described by the equation

dp
dt

= −e
(

E + v
c

× H
)
, (1)

with initial conditions

r(t → −∞) = r0,

v(t → −∞) = 0, (2)

where p = meγ v is the electron momentum, γ = 1/

√
1 − v2

c2

is the Lorentz factor, r0 is the electron initial position, c is the

FIG. 1. The interaction scheme and the coordinate system. The
z axis coincides with the laser propagation axis and particles are
distributed isotropically in the transverse plane xy for every value
of z.

light velocity, and E = E(r, t ) and H = H(r, t ) are the laser
electric and magnetic fields respectively, satisfying Maxwell
equations in vacuum,

∇ × E = −1

c

∂H
∂t

, ∇ × H = 1

c

∂E
∂t

, (3)

∇ · H = 0, ∇ · E = 0. (4)

The schematic setup of the interaction is presented in Fig. 1.
In the following, a perturbation theory of angular momentum
transfer from electromagnetic wave to charged particles is
developed.

A. Particle motion in electromagnetic wave

Formally consider a low-intensity regime a0 � 1, where
a0 = eE0/(meω0c) is the dimensionless amplitude of the field,
with E0 the amplitude of the electric field. The electro-
magnetic wave is assumed to be finite, E(r, t → ±∞) =
H(r, t → ±∞) = 0. In frames of the perturbation theory on
a0, the coordinates and velocities of the particle may be ex-
pressed in the form

r = r(0) + r(1) + r(2) + · · · ,

v = v(0) + v(1) + v(2) + · · · , (5)

where r(0) and v(0) are the unperturbed coordinate and veloc-
ity, r(n) ∼ an

0 and v(n) ∼ an
0. According to the initial conditions

(2), r(0) = r0 and v(0) = 0.
In the first order,

dp(1)

dt
= −mecω0

E0
a0E(r0, t ). (6)

The solution of the equation of the first order is

p(1) = mev(1) = −mecω0

E0
a0

∫ t

−∞
dt ′E(r0, t ′),

r(1) = −cω0

E0
a0

∫ t

−∞
dt ′
∫ t ′

−∞
dt ′′E(r0, t ′′). (7)
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The gained momentum of a particle in the first order is

p(1)(t∞) = −mecω0

E0
a0E(ω = 0, r0) = 0, (8)

where the notation t∞ ≡ t → ∞ is used and E(ω, r) is the
Fourier component of the electric field. It is assumed that
the electromagnetic pulse has no constant part and hence a
particle does not gain momentum in the first order. Assuming
the same for double integration over time, we obtain

r(1)(t∞) = 0. (9)

The validity of this assumption is discussed in more detail in
Sec. IV.

According to (8), angular momentum in the first order on
a0 is not gained by a particle,

L(1) = r0 × p(1) −→
t∞

0. (10)

In the second-order perturbation theory,

dp(2)

dt
= me

dv(2)

dt

= −mecω0

E0
a0

[
(r(1) · ∇0)E(r0, t ) + v(1)

c
× H(r0, t )

]
,

(11)

where ∇0 = ex
∂

∂x0
+ ey

∂
∂y0

+ ez
∂

∂z0
is the del operator, taken

with respect to the initial position of the particle r0.
To obtain general expressions for arbitrary electromagnetic

fields, consistent with the Maxwell equations, the perturbation
theory uses the relations between the electric and magnetic
field components. For ∇0 × v(1), taking into account that ∇ ×
E = − 1

c
∂H
∂t , one obtains

∇0 × v(1) = −cω0

E0
a0

∫ t

−∞
∇0 × E(r0, t ′)dt ′

= ω0

E0
a0

∫ t

−∞

∂H(r0, t ′)
∂t ′ dt ′ = ω0

E0
a0H(r0, t ),

(12)

and substituting H = E0
ω0a0

∇0 × v(1) into (11),

d

dt

[
p(2) − me(r(1) · ∇0)v(1)

] = −me

2
∇0(v(1) )2. (13)

The gained momentum in the second order after interaction

then reads

p(2)(t∞) = −me

2
∇0

∫ ∞

−∞
(v(1) )2dt, (14)

where it is assumed that ∂
∂xi

v(1)(t∞) → 0. The particle dis-
placement in the second-order perturbation theory then reads

r(2) =
∫ t

−∞
dt (r(1) · ∇0)v(1)

− 1

2

∫ t

−∞
dt ′
∫ t ′

−∞
dt ′′∇0(v(1) )2. (15)

The second-order absorbed angular momentum is

L(2) = r0 × p(2) + r(1) × p(1). (16)

We introduce cylindrical coordinates (r⊥, ϕ, z), with r⊥ and
ϕ being the transverse distance and the azimuthal angle re-
spectively, i.e., x = r⊥ cos ϕ, y = r⊥ cos ϕ. Axis z is chosen in
such a way that it coincides with the axis of propagation of
the electromagnetic wave; see Fig. 1 and Sec. II B for further
details related to the fields. The longitudinal component of the
angular momentum after interaction reads

L(2)
z (t∞) = r0 p(2)

ϕ (t∞) = −me

2

∂

∂ϕ0

∫ ∞

−∞
(v(1) )2dt, (17)

where r0 ≡ (r⊥0, ϕ0, z0) ≡ (r0, ϕ0, z0). After averaging over
the azimuthal angle,

〈
L(2)

z (t∞)
〉
ϕ0

≡
∫ 2π

0 ρ(r0, z0)L(2)
z (t∞)dϕ0∫ 2π

0 ρ(r0, z0)dϕ0

= 1

2π

∫ 2π

0
L(2)

z (t∞)dϕ0 = 0, (18)

where the distribution function of the initial coordinates of
the particles ρ(r0, z0) is considered to be symmetric about the
laser propagation axis, i.e., it does not depend on the initial
angle of the particle ϕ0. For instance, the distribution function
for an isotropic plasma cylinder is ρ(r0, z0) = 1/(πR2h) for
r0, z0 that are inside the cylinder, and 0 otherwise, where R is
the radius and h is the height of the cylinder, respectively.

As it follows from (18), for the plasma, which is trans-
versely isotropic to the wave propagation direction, there is
no net angular momentum gain up to the second order of the
perturbation theory on a0; to describe the angular momentum
transfer, higher orders of perturbation theory are required.

The third-order perturbation theory gives, for the momentum,

dp(3)

dt
= −mecω0

E0
a0

[
(r(2) · ∇0)E(r0, t ) + 1

2
r (1)
α r (1)

β

∂2E(r0, t )

∂r0αr0β

+ v(2)

c
× H(r0, t ) + v(1)

c
× (r(1) · ∇0)H(r0, t )

]
(19)

or, after some algebra,

d

dt

{
p(3) − me(r(2) · ∇0)v(1) − me

2
r (1)
α r (1)

β

∂2v(1)

∂r0α∂r0β

+ mev
(2)
α ∇0r (1)

α − me
[
(r(1) · ∇0)v(1)

α

]∇0r (1)
α

}
= −me

2
∇0{∇0 · [r(1)(v(1) )2]}.

(20)

Then a particle after interaction gains the momentum

p(3)(t∞) = −me

2
∇0

[
∇0 ·

∫ ∞

−∞
r(1)(v(1) )2dt

]
, (21)
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where it is additionally assumed that ∂
∂x0i

r(1)(t∞) → 0. The absorbed angular momentum in the third order of the perturbation
theory may be represented as

L(3) = r0 × p(3) + r(1) × p(2) + r(2) × p(1). (22)

This value may appear to be nonzero for certain particles, but for isotropic plasma it again vanishes after averaging,

L(3)
z (t → ∞) = −me

2

∂

∂ϕ0

[
∇0 ·

∫ ∞

−∞
r(1)(v(1) )2dt

]
−−−→
〈... 〉ϕ0

0. (23)

In the fourth order of the perturbation theory, the particle momentum reads

dp(4)

dt
= mecω0

E0
a0

{
(r(3) · ∇0)E(r0, t ) + r (1)

α r (2)
β

∂2E(r0, t )

∂r0α∂r0β

+ 1

6
r (1)
α r (1)

β r (1)
γ

∂3E(r0, t )

∂r0α∂r0β∂r0γ

+ v(3)

c
× H(r0, t )

+v(2)

c
× (r(1) · ∇0)H(r0, t ) + v(1)

c
×
[

(r(2) · ∇0)H(r0, t ) + 1

2
r (1)
α r (1)

β

∂2H(r0, t )

∂r0α∂r0β

]}
. (24)

This expression may be represented as

d

dt

{
p(4) − me(r(3) · ∇0)v(1) − mer (1)

α r (2)
β

∂2v(1)

∂r0α∂r0β

− me

6
r (1)
α r (1)

β r (1)
γ

∂3v(1)

∂r0α∂r0β∂r0γ

+ mev
(3)
α ∇0r (1)

α − me
[
(r(2) · ∇0)v(1)

α

]∇0r (1)
α − me

2
r (1)
α r (1)

β

∂2v(1)
γ

∂r0α∂r0β

∇0r (1)
γ

+ me

2c2
(v(1) )2v(1)

α ∇0r (1)
α + me(r(2)∇0)

[
(r(1) · ∇0)v(1)

]}

= me

8c2
∇0(v(1) )4 − me

2
∇0

(
r (1)
α r (1)

β v(1)
γ

∂2v(1)
γ

∂r0α∂r0β

)
− me

2
∇0(v(2) )2 + me

d

dt

[
(r(2) · ∇0)v(2)

]
, (25)

where it is taken into account that ∇ · r(1) = 0 since ∇ · E(r0, t ) = 0. The angular momentum, gained by a single particle in the
fourth order reads

L(4) = r0 × p(4) + r(1) × p(3) + r(2) × p(2) + r(3) × p(1). (26)

After averaging its longitudinal component over the azimuthal angle, at t → ∞ it becomes〈
L(4)

z (t∞)
〉
ϕ0

= me〈[r0 × (r(2) · ∇0)v(2)]z + (r(2) × p(2) )z〉ϕ0

∣∣
t∞

= 〈[r(2)(t∞) · ∇0]L(2)
z (t∞)

〉
ϕ0

, (27)

which is not zero in general. For the subsequent analysis, here we also present the expression for the particle energy up to the
fourth order of the perturbation theory,

mec2γ = mec2√
1 − v2/c2

≈ mec2 + me

2

[
(v(1) )2 + 2(v(1) · v(2) ) + 2(v(1) · v(3) ) + (v(2) )2

]+ 3me

8c2
(v(1) )4. (28)

After the interaction ends, the first nonvanishing contribution to the total kinetic energy gain is also of the fourth order,

mec2(γ − 1)|t∞ ≡ ε|t∞ ≈ ε(4)(t∞) = me

2
[v(2)(t∞)]2. (29)

We gather the obtained expressions for the momentum, the angular momentum, the average angular momentum, and the energy
gained by particles in the main nonvanishing order of the perturbation theory on a0:

p(2)(t∞) = −me

2
∇0

∫ ∞

−∞
[v(1)(r0, t )]2dt, L(2)

z (t∞) = −me

2

∂

∂ϕ0

∫ ∞

−∞
[v(1)(r0, t )]2dt,

〈
L(4)

z (t∞)
〉
ϕ0

= 〈[r(2)(r0, t∞) · ∇0]L(2)
z (r0, t∞)

〉
ϕ0

, ε(4)(t∞) = me

2
[v(2)(r0, t∞)]2. (30)

These expressions, in particular, the ones for the angular
momentum Lz, represent the central result of the work and will
be used to analyze certain cases of interaction of the structured
light waves with charged particles. Note that up to this point,
when the perturbation theory on the wave amplitude a0 was

presented, the order of this perturbation theory was designated
by the upper-right number in round braces. The perturbation
theory on a0 does use Maxwell equations and there are no
approximations made for the fields. However, to proceed with
certain cases, analytical expressions for the structured light,
represented in the next section, are required.
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B. Approximate description of a structured
electromagnetic wave

As explained in Ref. [13], electromagnetic fields in vacuum
can be prescribed via boundary conditions for the transverse
electric or magnetic field components. The calculations in this
section are presented for the boundary conditions defined for
the magnetic field. Similar results may be obtained using the
electric field boundary conditions by substitution, E → −H,
H → E, which follows from the symmetry of Maxwell equa-
tions.

Consider the wave equation for the magnetic field,(
� − 1

c2

∂2

∂t2

)
H̃(r, t ) = 0, (31)

where Ẽ = Ẽ(r, t ) and H̃ = H̃(r, t ) are the complex repre-
sentations of E and H, so that E = Re[Ẽ] and H = Re[H̃].
With ξ ≡ t − z/c as the new time variable, the wave equation
reads (

� − 2

c2

∂2

∂ξ∂z

)
H̃(r, ξ ) = 0. (32)

Performing the frequency and transversal Fourier transforma-
tions,

H̃(r⊥, z, ξ ) =
∫

dωdk⊥
(2π )3

H(ω, k⊥, z)ei(ωξ−k⊥r⊥ ), (33)

where r⊥ ≡ xex + yey, k⊥ ≡ kxex + kyey, we obtain that
H(ω, k⊥, z) satisfies(

∂2

∂z2
− 2i

ω

c

∂

∂z
− k2

⊥

)
H(ω, k⊥, z) = 0. (34)

The two independent solutions are forward and backward
propagating waves. The forward propagating wave is defined
as

H(ω, k⊥, z) = H(ω, k⊥, 0)e
iω
(

1−
√

1− k2⊥c2

ω2

)
z/c

, (35)

where the condition ω2/c2 − k2
⊥ > 0, limiting values of the

wave vector for the propagating components, arises. The mul-
tiplier H(ω, k⊥, 0) is determined with the boundary condition
placed at z = 0,

H(ω, k⊥, 0) =
∫

dξdr⊥H̃
∣∣
z=0e−i(ωξ−k⊥·r⊥ ),

ω2/c2 − k2
⊥ > 0. (36)

The general forward propagating solution reads

H̃ =
∫

ω2/c2−k2
⊥>0

dωdk⊥
(2π )3

H(ω, k⊥, 0)ei[ωξ−k⊥·r⊥+(ω/c−kz )z],

(37)

where kz = ω
c

√
1 − k2

⊥c2

ω2 . As it follows from (37), the evanes-
cent components of the boundary condition should be
dropped, as long as they produce evanescent parts of the
solution. Hence the general forward propagating electric and

magnetic fields may be written in the form [13]

Ẽ =
∫

dωdk⊥
(2π )3

E(ω, k⊥, 0)ei[ωξ−k⊥·r⊥+(ω/c−kz )z],

H̃ =
∫

dωdk⊥
(2π )3

H(ω, k⊥, 0)ei[ωξ−k⊥·r⊥+(ω/c−kz )z], (38)

where explicit specification of the area of integration ω2/c2 −
k2

⊥ > 0 is omitted.
Transverse and longitudinal components of the electric

and magnetic fields at focal points are not independent. As
independent parameters of the general forward propagating
solution, one may choose, e.g., the transverse components of
the magnetic field, determined with the boundary condition
for the transverse components. The longitudinal component
of the magnetic field and the electric field components may
be obtained from Maxwell equations, which, in the new vari-
ables, read

divH̃ = 1

c

∂H̃z

∂ξ
,

rotH̃ = 1

c
ez × ∂H̃

∂ξ
+ 1

c

∂Ẽ
∂ξ

, (39)

so that

Hz(ω, k⊥, 0) = −k⊥ · H⊥(ω, k⊥, 0)

kz
,

E(ω, k⊥, 0) = −ck × H(ω, k⊥, 0)

ω
. (40)

The integration in (38) may be carried out approximately with
the expansion of the exponent with the assumption of a slow
temporal dependence and slow dependence in the transverse
direction,

e
iωz/c−iω

√
1− k2⊥c2

ω2 z/c = ei
ck2⊥
2ω0

z
∑
n,m

(ω − ω0)nk2m
⊥

n!m!

× ∂n

∂ωn

∂m

∂ (k2
⊥)m

e
iω
(

1−
√

1− k2⊥c2

ω2 − c2k2⊥
2ω0ω

)
z/c

∣∣∣∣∣∣ω=ω0
k⊥=0

,

(41)

where ω0 is the main carrier frequency of the electromagnetic
wave. Note that according to the paraxial approximation, one
has to consider characteristic values to be k⊥ ∼ w−1

0 , z ∼
w2

0/λ0, where w0 is the beam waist radius and λ0 is the beam
wave length, which means that ck2

⊥z/ω0 ∼ 1 and has to be
retained in the exponent in (41).

For transversely wide beams with the characteristic beam
waist radius w0, where the characteristic transverse wave
vector k⊥ ∼ w−1

0 , the paraxial approximation is defined by ex-

pansion on k2
⊥c2

ω2 , i.e., the order of the paraxial approximation is
defined by m; see, e.g., [14]. In this framework, the condition
ω2/c2 − k2

⊥ is neglected in the integration because it leads to
exponentially small corrections.

For long enough oscillating waves, considered here and in
the case of a slow temporal change of the field amplitude
with a characteristic time τ , the condition τ � 1/ω0 leads
to a sharp peak at ω = ω0 in the field spectrum. Then, the
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approximate expressions for the electromagnetic field may be
obtained [15] as an expansion of the factor ei(ω/c−kz )z near
the peak of the spectrum in (38); the order of the temporal
expansion is denoted here by n.

Expansion of the electromagnetic field leads to a series in
powers of small parameters related to the inverse beam waist
radius λ0/w0 � 1 and inverse beam duration (ω0τ )−1 � 1,
which may be represented in the form

H(r, t ) =
∑
n,m

H{n,m}(r, t ), (42)

where the first (bold) superscript represents the order of the
temporal expansion, i.e., the expansion on the inverse beam
duration (ω0τ )−1, and the second superscript represents the
order of the paraxial expansion, i.e., expansion on the inverse
beam waist radius λ0/w0. In general, temporal and paraxial
expansions may be carried out independently, i.e., leaving
only n or only m summation in (42). For the paraxial expan-
sion only, up to the fourth order of k2

⊥, one obtains

ei(ω/c−kz )z ≈ ei
ck2⊥
2ω

z

(
1 + i

c3k4
⊥

8ω3
z + i

c5k6
⊥

16ω5
z + · · ·

)
, (43)

which corresponds in the used notations to the paraxial expan-
sion,

H(r, t ) = H{0} + H{1} + H{2} + · · · , (44)

where only the second index in (42) is left.
In the same way, the expansion near ω0, i.e.,

ei(ω/c−kz )z ≈ e
iω0z/c−iω0

√
1− k2⊥

ω2
0

z/c

×

⎧⎪⎨⎪⎩1 + i

⎛⎜⎝1 − ω0√
ω2

0 − c2k2
⊥

⎞⎟⎠ z(ω − ω0)

c

+

⎡⎢⎢⎣ ic3k2
⊥

z
(
ω2

0 − c2k2
⊥
)3/2 −

⎛⎜⎝1− ω0√
ω2

0 − c2k2
⊥

⎞⎟⎠
2
⎤⎥⎥⎦

× z2(ω − ω0)2

2c2
+ · · ·

⎫⎪⎬⎪⎭, (45)

provides the temporal expansion

H(r, t ) = H{0} + H{1} + H{2} + · · · . (46)

Similar expressions may be presented for the electric field
components.

To take into account both the temporal and paraxial correc-
tions in a few low orders, the exponent ei(ω/c−kz )z in (38) may
be expanded in powers of λ0/w0 � 1 and (ω0τ )−1 � 1 as

ei(ω/c−kz )z ≈ ei
ck2⊥
2ω0

z
[

1 + i
c3k4

⊥
8ω3

0

z − i(ω − ω0)
ck2

⊥
2ω2

0

z + · · ·
]
.

(47)

The first term corresponds to the lowest-order paraxial ap-
proximation and the constant envelope, the second relates to
the first nonvanishing correction to the lowest-order paraxial

approximation with the constant envelope, and the third one
corresponds to the temporal corrections taking into account
the time variations of the envelope in the lowest-order paraxial
approximation. From (40) and (47), one can see that the trans-
verse components of the electromagnetic field are expanded
in even powers of λ0/w0 and longitudinal in odd powers of
λ0/w0.

Having in mind the possibility of a general analysis, con-
sider the electromagnetic fields as a linear combination of
modes,

H =
∑

i

H(i), E =
∑

i

E(i), (48)

which will be later specified for several certain examples. The
boundary condition for transverse components in the (x, y)
plane is defined for the magnetic field as

H(i)
⊥
∣∣
z=0 = H(i)

0⊥(r⊥, t ), (49)

where z = 0 is the focal plane. Consider here sufficiently
mildly focused beams so that for the chosen H(i)

0⊥(r⊥, t ), no
evanescent components appear.

For the main goal of this work, it is enough to consider
the light-particle OAM absorption in the first nonvanishing
order of the interaction parameters, defined according to the
expansion (42). So, the paraxial approximation λ0/w0 � 1
and the approximation of a slowly varying temporal envelope
(τω0)−1 � 1 are assumed. The boundary conditions in the
focal plane are chosen for convenience in the complex form,
so that H (i)

x,y = Re[H̃ (i)
x,y]:

H̃ (i)
x

∣∣
z=0 = E0g(t )eiω0tH(i)

0⊥(r⊥),

H̃ (i)
y

∣∣
z=0 = −iσ (i)H̃ (i)

x

∣∣
z=0, (50)

where g(t ) is a common slow temporal envelope, E0 is
the common field amplitude, and H(i)

0⊥(r⊥) = H(i)
0x (r⊥)ex +

H(i)
0y (r⊥)ey is an arbitrary function. The used setup (50) rep-

resents a superposition of copropagating along the z-axis
circularly (σ (i) = ±1) or linearly (σ (i) = 0) polarized beams.

The function H(i)
0⊥(r⊥) may be expressed in terms of the

eigenfunctions of the paraxial wave equation upl, which are
defined as [16]

upl(r, ϕ, z) =Cpl
1

w(z)

(
r
√

2

w(z)

)|l|
exp

(
− r2

w2(z)

)
L|l|

p

(
2r2

w2(z)

)

× exp

[
− ilϕ − i

r2z

w2(z)

+ i(2p + |l| + 1) tan−1(z)

]
, (51)

where r = r⊥/w0 and z = z/zR, with zR = πw2
0

λ0
being the

Rayleigh length, are the dimensionless transverse radius and

longitudinal coordinate, respectively, Cpl =
√

2
π

p!
(p+|l|)! is the

normalization constant, w(z) = √
1 + z2, and L|l|

p is the gen-
eralized Laguerre polynomial.

The basis for the boundary conditions is formed by the
functions upl(r, ϕ, z = 0) ≡ Upl(r, ϕ). Then the expansion of
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H(i)
0⊥(r⊥) reads

H(i)
0α (r⊥, ϕ) =

∞∑
p=0

∞∑
l=−∞

a(i)
plαUpl(r, ϕ), (52)

where

a(i)
plα =

∫
rdrdϕH(i)

0α (r⊥, ϕ)U ∗
pl(r, ϕ), (53)

and α = x or y.
Substituting the boundary condition (50), expanded in

terms of Upl, to (36), integrating over ξ , introducing the angle
between k⊥ and the x axis, such that k⊥ · r⊥ = k⊥r⊥ cos(θ −
ϕ), and integrating over the azimuthal angle ϕ, one obtains
(A2), using the representation of the Bessel function (A1).
There, gω = ∫ dξg(ξ )e−iωξ is the Fourier transform of the
envelope. Then, integrating over r and using the identity (A3),
one obtains

H (i)
α (ω, k⊥, z = 0) = E0gω−ω0πw2

0

×
∑
p,l

a(i)
plαi2p+|l|Upl

(
k⊥w0

2
, θ

)
. (54)

The lowest-order approximation of the solution then takes the
form

H̃ {0,0}
α = E0g(ξ )

∑
i

∑
p,l

a(i)
plαupl(r, ϕ, z)eiω0ξ , (55)

where the first (bold) index in H̃ {0,0}
α corresponds to the order

of expansion on (ω0τ )−1 and the second corresponds to the
order of expansion on λ0/w0. Introducing

H{0,0}
α (r) =

∑
i

∑
p,l

a(i)
plαupl(r, ϕ, z), (56)

such that H{0,0}
α (r)|z=0 = H0α (r⊥) ≡∑i H

(i)
0α (r⊥), the

lowest-order approximation may be represented in the
form

H̃{0,0}
⊥ = E0g(ξ )H{0,0}

⊥ (r)eiω0ξ . (57)

The first correction corresponding to the finite pulse duration
is

H̃{1,0}
⊥ = E0

ω0
g′(ξ )iz

∂H{0,0}
⊥

∂z
eiω0ξ . (58)

As one can see, this correction term is zero at the focal point,
which is in agreement with the boundary condition (50).

The first nonvanishing contribution to the longitudinal
component of the magnetic field is

H̃{0,1}
⊥ = E0g(ξ )H{0,1}

z (r)eiω0ξ , (59)

where H{0,1}
z = −i c

ω0
∇⊥ · H{0,0}

⊥ . The first nonvanishing cor-
rection to the transverse components corresponding to the
paraxial approximation is

H̃{0,2}
⊥ = cE0

ω0
g(ξ )

z

2i

∂2H{0,0}
⊥

∂z2
eiω0ξ , (60)

which is zero at the focal point. The next corrections and
expressions for the electric field components are presented in
the Appendix 2.

In what follows, the general approximate expressions are
presented for the momentum, energy, and orbital angular mo-
mentum (OAM), absorbed by uniformly distributed electrons
from the mildly focused laser pulse of a subrelativistic inten-
sity. These general expressions are derived in the frames of
the perturbation theory developed on the field amplitude a0,
the paraxial parameter λ0/w0, and the adiabatic parameter
of the laser pulse (ω0τ )−1, aiming the accurate considera-
tion of the main nonvanishing contributions. The calculations
show that for the OAM absorption, it is enough to consider
the fourth order on a0, the first order on (ω0τ )−1 (the first cor-
rection to the main order), and the main order of the paraxial
approximation.

C. Analytical estimates for the energy, momentum, and angular
momentum gained by a particle in a structured wave

As shown below, the first-order temporal correction pro-
vides a contribution to the average angular momentum gain by
electrons of the same order as the constant amplitude approx-
imation, and hence should be considered in the calculations to
obtain a correct expression for the average angular momentum
gain. The magnetic field accounting for the first-order tempo-
ral correction may be represented, according to (45) and (58),
as

H = E0Re

{[
g(t − z/c)H{0}(r)

+ 1

ω0
g′(t − z/c)H{1}(r)

]
eiω0(t−z/c)

}
, (61)

where both H{0} and H{1} are calculated with a desired ac-
curacy on the paraxial parameter λ0/w0. The derivative of
the envelope g′(t − z/c) may be estimated as g′ ∼ g

ω0τ
� g,

which makes this term a small correction to the leading
one. In addition, this condition means that g(t − z/c) is a
smooth function, compared to eiω0(t−z/c), and we also consider
g′(t − z/c) to be a smooth function as well.

The spatial amplitude H{0} is defined from the boundary
condition (50). The lowest-order paraxial approximation for
the transverse components is (56) and the lowest-order parax-
ial approximation for the transverse components of H{1}(r) is
defined as (58).

The electric field may be written in a similar form as (61),

E = E0Re

{[
g(t − z/c)E {0}(r)

+ 1

ω0
g′(t − z/c)E {1}(r)

]
eiω0(t−z/c)

}
, (62)

where E {0} and E {1} are the spatial amplitudes, defined from
the amplitudes of the magnetic field, which in a few lowest
orders of paraxial approximation are given by

E {0,0}
x (r) = H{0,0}

y (r),

E {0,0}
y (r) = −H{0,0}

x (r),

E {1,0}
⊥ (r) = iz

∂E {0,0}
⊥ (r)

∂z
; (63)

see more details in the Appendix.
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Substituting (62) into (30), in the main order of the slowly
varying envelope approximation, one obtains

p(2)(t∞) = −mec2 a2
0

4
∇0|E {0}|2τint,

L(2)
z (t∞) = −mec2 a2

0

4

∂

∂ϕ0
|E {0}|2τint,

ε(4)(t∞) = mec4 a4
0

32

(∇0|E {0}|2)2τ 2
int, (64)

where τint ≡ ∫∞
−∞ g2(t )dt ∼ τ is the characteristic time of the

interaction.
In order to calculate the average gained angular momentum

in the fourth order, one has to calculate r(2) and L(2)
z after

the interaction with the laser. The lowest order of r(2) arises
from the second term in (15). At infinite time, it diverges into
infinity and should be regularized. The regularization may be
obtained by setting the last moment of time to be T , assuming
T → ∞ at the end of the calculations. Substituting the first
term of (62) and evaluating r(2) at high values of time T , one
obtains

r(2)(T ) ≈ −c2 a2
0

4
∇0

∣∣E {0}∣∣2 ∫ T

−∞
dt
∫ t

−∞
g2(t ′)dt ′. (65)

The corresponding contribution to the average angular mo-
mentum is

〈L(4)
z (T )〉ϕ0 ≈ mec4 a4

0

32

〈
∂

∂ϕ0

(∇0|E {0}|2)2〉
ϕ0

× τint

∫ T

−∞
dt
∫ t

−∞
g2(t ′)dt ′ = 0, (66)

which is a partial derivative with respect to ϕ0 and vanishes,
being averaged with the isotropic distribution function. This

expression does not depend on T and the limit T → ∞ may
be applied.

The next contribution to the average angular momentum
gain results from both terms in r(2) in (15). The first one
may be evaluated in the lowest order. In the second term, one
has to consider the correction to the slowly varying envelope
approximation.

The first term in the lowest-order expansion in powers of
(ω0τ )−1 reads∫ ∞

−∞
dt ′[r(1)(t ′) · ∇0]v(1)(t ′)

≈ c2

ω0

a2
0

2
Re
[
i(E {0}∗ · ∇0)E {0} + E {0}

z E {0}∗]τint

≈ − c2

ω0

a2
0

2

∂

∂x0 j
Re
(
iE {0}

j E {0}∗)τint, (67)

where (∇ · E {0}) ≈ iE {0}
z in the lowest order was used.

The second term consists of two parts: the first one arises
from the action of ∇0 on g(t − z0/c), and the second one from
the correction to the slowly varying envelope approximation.
This results in the following two contributions to r(2), corre-
spondingly:

c
a2

0

4
|E {0}|2τintez (68)

and

− c2

ω0

a2
0

8
∇0Re(E {0}E {1}∗)τint. (69)

Collecting the three terms (67)–(69) together, substituting to
the expression (27) for 〈L(4)

z 〉ϕ0 , and integrating the first two of
them by parts inside the averaging, one obtains

〈
L(4)

z (t∞)
〉
ϕ0

= mec4

ω0

a4
0

8

〈({
1

4

[∇0Re(E {0}E {1}∗) · ∇0
]+ ω0

2c

∂|E {0}|2
∂z0

}
∂|E {0}|2

∂ϕ0
+ ∂

∂x0k

[
∂

∂x0 j
Re
(
iE {0}

j E {0}∗
k

)∂|E {0}|2
∂ϕ0

])〉
ϕ0

τ 2
int.

(70)

For a Laguerre-Gaussian beam with a characteristic trans-
verse size w0 and the longitudinal size zR ∼ w2

0/λ0, the
expressions (64) and (70) may be estimated in the main orders
as

∣∣p(2)
⊥ (t∞)

∣∣ ∼ mec2 a2
0τint

w0
,

p(2)
z (t∞) ∼ mec3

ω0

a2
0τint

w2
0

,

L(2)
z (t∞) ∼ mec2a2

0τint,

ε(4)(t∞) ∼ mec4 a4
0τ

2
int

w2
0

,

〈
L(4)

z (t∞)
〉
ϕ0

∼ mec4

ω0

a4
0τ

2
int

w2
0

. (71)

Note that the transverse and the longitudinal characteristic
sizes are different, which makes the estimations for transverse
and longitudinal momenta also be different.

The higher orders of the perturbation theory have the ∼τ 2
int

dependence, meaning formally that for later interaction times
the energy and OAM transfer become more efficient. These
estimates, however, actually require that the fourth-order
terms are less than the second-order ones or, using the expres-
sions for 〈L(4)

z (t∞)〉ϕ0 and L(2)
z (t∞), that a2

0τint/w
2
0 � ω0/c2.

This means that for long pulses, for which τint � ω0w
2
0/c2a2

0,
after the moment of time t ∼ ω0w

2
0/c2a2

0, the perturbation
theory fails. The obtained limitation for the interaction time
may be rewritten as ω0τint � (w0/losc)2, where losc = a0λ0 is
the characteristic oscillation amplitude of the electron in the
wave.

Comparing the second- and the fourth-order expressions
for the transferred momentum in (71), one can see that
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l2
oscω0τint/w

2
0 is the actual perturbation theory parameter for

the expansion of gained electron values, which counts for both
the paraxial approximation and the slow-varying envelope
approximation, and means that the field amplitude a0 may
actually be not too small for the applicability of the obtained
results. This is confirmed by the examples presented in the
next section.

According to the arguments provided directly above, al-
though the perturbation theory was developed under the
formal assumption of a low-amplitude a0, a moderate intensity
regime of the interaction a0 ∼ 1 is considered in the follow-
ing. At field amplitudes a0 ∼ 1, the following estimates may
be obtained:

p(2)
z (t∞) ∼ mec3

ω0

τint

w2
0

,

ε(4)(t∞) ∼ mec4 τ 2
int

w2
0

,

(pz − ε/c)
∣∣
t∞

∼ mec3

ω0

τint

w2
0

, (72)

where the first two are the consequence of (71) and the last
one does not depend on perturbation theory and may be ob-
tained from the analysis of integrals of motion. As shown in
Ref. [6], the growth rate of (pz − ε/c) is proportional to the
field amplitude and inversely proportional to the square of the
beam waist, which in the notations of this work corresponds
to the third estimate in (72). This is a consequence of the weak
dependence of the waves in the paraxial approximation on z,
which in the limiting case of plane waves leads to the conser-
vation of a quantity (pz − ε/c), which becomes an integral of
motion. According to (72) in this regime,

(pz − ε/c)
∣∣
t∞

∼ p(2)
z

∣∣
t∞

. (73)

To make the analysis consistent, the energy scaling in (73)
should not be greater than that for the momentum, which is
an omen that higher orders of perturbation theory should be
considered for pz in this regime. Indeed, in the frameworks of
the paraxial and slowly varying temporal approximation for
the discussed parameters, the leading term in the expression
for the fourth-order longitudinal momentum (25) may be esti-
mated as ∼mec3τ 2

int/w
2
0 and has the form

p(4)
z (t∞) = −me

2

∫ ∞

−∞

∂

∂z0
[v(2)(t )]2dt, (74)

which, after substitution of (62), becomes

p(4)
z (t∞) = ε(4)(t∞)/c, (75)

due to the presence of z in the envelope function g(t − z/c).
Expression (75) corresponds to the integral of motion pz −
ε/c for a charged particle in a plane wave.

As a result, the estimated from the analytical theory values
of the gained momentum, energy, and angular momentum for
a0 ∼ 1 take the form

p⊥,theor = p(2)
⊥ , pz,theor = p(2)

z + ε(4)/c, Lz,theor = L(2)
z ,

〈Lz,theor〉ϕ0 = 〈L(4)
z 〉ϕ0 , εtheor = ε(4), (76)

where all the values are taken after the interaction at t∞ and
⊥ stands for the transverse components of the vectors. It is
possible that these expressions turn to zero at some laser field
configurations. In these cases, higher orders of the perturba-
tion theory or electromagnetic field expansions are required.
However, configurations with nonzero values of these expres-
sions definitely exist and will be presented further.

III. SOME EXAMPLES FOR CERTAIN POLARIZATION
CASES

A. Circular polarization, one LG mode

Consider a circularly polarized Laguerre-Gaussian (LG)
beam, σ = ±1. Boundary conditions (50) take the form

H̃x

∣∣
z=0 = E0g(t )eiω0t upl√

2

∣∣∣
z=0

,

H̃y

∣∣
z=0 = −iσ H̃x

∣∣
z=0. (77)

As long as upl depends on ϕ as ∼e−ilϕ , the boundary con-

dition depends on ϕ as H̃y|z=0 = −iσ H̃x|z=0 ∼ e−ilϕ . These
relations between the components of the electromagnetic field
apply to the solution of Maxwell equations in the whole space,
i.e., for the solution in the whole space, H̃y = −iσ H̃x ∼ e−ilϕ .
This leads to the following dependence of the exact solution
on ϕ in cylindrical coordinates:

H̃r ∼ e−i(l+σ )ϕ,

H̃ϕ = −iσ H̃r ∼ e−i(l+σ )ϕ,

H̃z ∼ e−i(l+σ )ϕ. (78)

Hence, the components of E {0} of the electric field (62)
are E {0}

r ∼ E {0}
ϕ ∼ E {0}

z ∼ e−i(l+σ )ϕ and ∂|E{0}|2
∂ϕ0

= 0. Substitut-

ing this into (70), one obtains 〈L(4)
z (t∞)〉ϕ0 = 0, which means

that the angular momentum, on average, is not transferred to
electrons in the considered orders of the perturbation theory
and the paraxial and slowly varying temporal envelope ap-
proximations.

B. Linear polarization, one LG mode

Consider a linearly polarized Laguerre-Gaussian beam,
σ = 0. The boundary condition (50) takes the form

H̃x

∣∣
z=0 = E0g(t )eiω0t upl

∣∣
z=0,

H̃y

∣∣
z=0 = 0. (79)

In the lowest order of the paraxial approximation,
∂|E{0,0}|2

∂ϕ0
= 0, and the angular momentum, on average, is not

transferred to electrons in the considered orders of approxi-
mations.

C. Linear polarization, superposition of LG modes

Probably one of the most efficient angular momentum
transfers occurs in the electromagnetic fields represented by
a superposition of Laguerre-Gaussian modes with different
azimuthal indexes. It provides a nonzero average gain of the
angular momentum already in the lowest orders of the approx-
imations considered in this work.
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(a) (b) (c)

FIG. 2. Distribution of the energy density of a linearly polarized wave for (a) one LG mode with p = 0, l = 1, (b) one LG mode with
p = 0, l = 3, and (c) superposition of two LG modes with p = 0, l = 1 and q = 0, m = 3 in the focal plane.

For a superposition of Laguerre-Gaussian modes with dif-
ferent azimuthal indexes, the energy density, averaged over
the laser period, is asymmetric with respect to the laser axis
in the case of superposition of LG modes with different az-
imuthal indexes; see Fig. 2, which shows the averaged energy
density for monochromatic waves [g(t ) = 1]. This asymmetry
is responsible for a more efficient OAM transfer.

Note that in experiment, particularly in a high-intensity
regime, it may appear challenging to obtain a pure single
Laguerre-Gaussian mode [17–19]. A set of secondary modes
may additionally be exited, so that the resulting wave actually
represents a superposition of Laguerre-Gaussian modes with
different numbers (p, l ).

Consider the case of linear polarization σ = 0, and a super-
position of Laguerre-Gaussian beams with azimuthal indexes
l and m. The boundary conditions (50) then may be written
as

H̃x

∣∣
z=0 = E0g(t )eiω0t upl + uqm√

2

∣∣∣
z=0

, H̃y

∣∣
z=0 = 0, (80)

and in the lowest orders of the used approximations,

E {0,0} = upl + uqm√
2

ex. (81)

A single particle gains an angular momentum

L(2)
z (t∞) = −mec2 a2

0

4
(l − m)Re(iu∗

pluqm )τint. (82)

From this expression, the extreme values of the gained angular
momentum are

L(2)
z,extr (t∞) = ±mec2 a2

0

4
(l − m)

∣∣upluqm

∣∣∣∣∣
ϕ0=0

τint. (83)

The expression for the average gained angular momentum
reads, after integration over ϕ0,

〈
L(4)

z (t∞)
〉
ϕ0

= −mec4

ω0
(l − m)

a4
0

64
Re

[
i

(
∂A

∂r0

∂B∗

∂r0
+ (l − m)2

r2
0

AB∗ + 2A
∂A∗

∂z0

)]
τ 2

int, (84)

where A = u∗
qmupl|ϕ0=0 and B = iz0

2 (u∗
qm

∂upl

∂z0
− upl

∂u∗
qm

∂z0
)|ϕ0=0. The average gained energy and longitudinal momentum read

〈ε(4)(t∞)〉ϕ0 = mec4 a4
0

128

[(
∂|upl|2
∂r0

+ ∂|uqm|2
∂r0

)2

+ 2

∣∣∣∣∂ (uplu∗
qm )

∂r0

∣∣∣∣2
]∣∣∣∣∣

ϕ0=0

τ 2
int, l �= m, (85)

〈
p(2)

z (t∞)
〉
ϕ0

= −mec3

ω0

a2
0

8

∂ (|upl|2 + |uqm|2)

∂z0

∣∣∣∣∣
ϕ0=0

τint. (86)

Consider the following special cases:
(a) One can see that when l = m, the angular momentum

is not transferred in the used orders of approximations.
(b) If p = q, m = −l , then both A and B become real and

the average angular momentum turns to zero. It is a natural
result since such an electromagnetic field configuration does
not carry an angular momentum.

(c) If one changes the azimuthal indexes (l, m) to
(−l,−m), one can see that both A and B do not change, and
the average gained angular momentum changes its sign which
is also expected, because the OAM of the field also changes
its sign.

To compare the obtained analytical estimates with numer-
ical results, which may, with a limited numerical accuracy,
provide both the electromagnetic fields and the angular mo-
mentum gained by particles beyond the perturbation theory
limitations, the interaction of electrons with electromagnetic
fields was studied with the PIC code SMILEI [20] in cylin-
drical geometry. To focus on the single-particle effects, the
interaction between the electrons was not calculated. The
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FIG. 3. Extreme values of gained angular momentum after the
interaction with l = 0, m = 1 (blue solid), l = 1, m = 2 (orange
dashed), l = 1, m = 3 (green dotted) beams as a function of initial
distance of the particle from the beam axis. Dots, triangles, and
squares represent PIC numerical results; lines represent predictions
of the model for the corresponding beam configurations.

use of the PIC code allows one to optimize the simulation
time and, more importantly, obtain the numerically calcu-
lated fields, which contain all the paraxial and temporal
corrections.

In simulations, the numerical box consisted of 6000 cells in
the longitudinal direction and 1600 in the radial direction with
spatial resolution of 2.5 nm. The laser field was injected from
z = 0 boundary, with conditions (80) placed at the bound-
ary. The carrier laser frequency was ω0 = 2.3 × 1015 s−1, the
beam waist radius was as small as w0 = 1.3 µm to increase
the observed value of the transferred OAM and limit the size
of the simulation box, and the duration of the laser pulse,
τ = 2πn/ω0, where n = 6 is the number of periods. The
dimensionless intensity used in the simulations was a0 = 1,
the radial indexes were p = q = 0, and three cases for the
azimuthal numbers were considered: l = 0, m = 1; l = 1,
m = 2; and l = 1, m = 3. The common temporal envelope
is chosen to be g(t ) = cos2( t−τ/2

τ
π ) when |t − τ/2| < τ/2,

and 0 otherwise. In this case, τint = 3
8τ . Absorbing bound-

ary conditions were set for the electromagnetic fields on all
boundaries, excluding the injection boundary z = 0. For better
statistics, with a numerically feasible number of particles,
electrons were initialized at 2.5 µm from the laser injection
plane at given radial distances, but with different randomly
distributed angles; the number of particles for each radial
distance Nr0 was about 2 × 105. These distances were defined
as a set of 10 fixed values from r0 = 0 to r0 = 1.9 µm inside
a thin disk with the axis being that of the laser beam.

Figure 3 represents the extreme values of the gained angu-
lar momentum after the interaction with three different beam
configurations; the points are numerical results and the lines
are drawn according to (83). The vertical axis corresponds to
the maximum and minimum extreme values of the angular
momentum, gained by particles, while the horizontal axis
corresponds to the initial radial distance of the particles from
the beam axis.

As long as the maximum local intensity of a Laguerre-
Gaussian beam increases with the growth of the azimuthal
index and its position shifts to larger radial distances, the max-
imum of the extreme value of the gained angular momentum
also shifts toward the higher values of the initial distance from
the beam axis with the growth of the azimuthal index.

The average angular momentum transfer is an effect of the
fourth-order perturbation theory, while the extreme values of
the gained angular momentum, indicating single-particle gain,
appear to be nonzero already in the second order. This leads to
substantial statistical errors in the calculations of the average
angular momentum gain, even when using a large amount of
particles in the simulations. The average angular momentum,
gained by the particles in the numerical simulations, was
calculated according to the following procedure:

Lz(r0) ≡
∑Nr0

i=1 Lz,i

Nr0

, (87)

where Lz,i is the gained angular momentum of the ith particle,
which initial distance from the beam axis lies in the interval
[r0, r0 + �r0] and Nr0 is the number of particles with initial
coordinates in this interval. The error was estimated according
to the central limit theorem,

|Lz − 〈Lz〉ϕ0 | ∼
√〈(Lz − 〈Lz〉ϕ0 )2〉ϕ0√

N
, (88)

where Lz stands for averaging over the ensemble of the parti-
cles in the numerical simulations and 〈·〉ϕ0 for the averaging
over analytical expressions.

As long as 〈(Lz − 〈Lz〉ϕ0 )2〉ϕ0 = 〈L2
z 〉ϕ0 − 〈Lz〉2

ϕ0
< 〈L2

z 〉ϕ0

and 〈Lz〉ϕ0 is of the fourth order and therefore may be consid-
ered negligible here compared to 〈L2

z 〉1/2
ϕ0

, the right-hand side
may be estimated as√〈(

Lz − 〈Lz〉ϕ0

)2〉
ϕ0

/N ∼
√〈

(L(2)
z
)2〉

ϕ0
/N

∼ ∣∣L(2)
z,extr (t∞)

∣∣/√N ∼ mec2a2
0τint/

√
N . (89)

The relative statistical error may then be estimated as√〈(
Lz − 〈Lz〉ϕ0

)2〉
ϕ0

/N∣∣〈L(4)
z
〉
ϕ0

∣∣ ∼ ω0

c2

w2
0

a2
0τint

√
N

, (90)

which rises when amplitude a0 decreases. In the simulation
results shown below, these errors are not always shown to
make the plots readable, though their values are sometimes
considerable. The exemplary plot in Fig. 4 demonstrates the
scale of the error bars for the case l = 1, m = 3. The amounts
of the quantities averaged over the initial azimuthal angle
gained by electrons, such as the energy, the longitudinal, and
the angular momentum versus their initial radial distance from
the axis of the laser beam, are shown in Figs. 5–8.

The presented plots demonstrate that the perturbation the-
ory allows a semiquantitative description for the angular
momentum gain by particles even at relatively high intensities,
i.e., when a0 ∼ 1. As explained in the previous section, the
reason for this is probably that the beam waist is large enough,
i.e., 2πw0/λ0 � 1.
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FIG. 4. Average angular momentum, gained by electrons after
the interaction with the l = 1, m = 3 beam, as a function of initial
distance of the particle from the beam axis. Squares represent PIC
numerical results, the line represents predictions of the model, and
the vertical lines represent the value of the statistical error.

IV. DISCUSSION

As the presented analysis of the angular momentum trans-
fer shows, three parameters of the interaction are essential:
dimensionless field amplitude a0, relation of the period of
laser oscillations to the laser pulse duration (ω0τ )−1, and the
relation of the laser wavelength to the laser beam waist ra-
dius, λ0/w0. In this work, all three parameters are considered
as being small, i.e., a0 � 1, (ω0τ )−1 � 1 and λ0/w0 � 1,
which allows one to develop the perturbation theory based
on expansion of the calculated values in powers of these
small parameters. The relations between the parameters are
not discussed, as the solutions are obtained in the lowest
orders, which may provide a nonzero result. However, in

FIG. 5. Average kinetic energy, gained by electrons after the
interaction with l = 0, m = 1 (blue solid), l = 1, m = 2 (orange
dashed), l = 1, m = 3 (green dotted) beams as a function of the
initial distance of the particle from the beam axis. Dots, triangles, and
squares represent PIC numerical results; lines represent predictions
of the model for the corresponding beam configurations.

FIG. 6. Average longitudinal momentum, gained by electrons
after the interaction with l = 0, m = 1 (blue solid), l = 1, m = 2
(orange dashed), l = 1, m = 3 (green dotted) beams as a function of
initial distance of the particle from the beam axis. Dots, triangles, and
squares represent PIC numerical results; lines represent predictions
of the model for the corresponding beam configurations, accounting
for the second- and fourth-order perturbation theory.

general, especially when the considered approximation gives
a zero gained orbital momentum, e.g., the considered case
of a single linearly polarized Laguerre-Gaussian beam may
require further expansion in (ω0τ )−1 or λ0/w0, depending on
the relation between these parameters.

It is interesting to note, once again, that according to the
estimates (71), the obtained expansion actually develops on
the combination of these parameters, which at the same time
takes into account the amplitude of the field, the beam waist,
and the temporal behavior. The combination is the relation of
the particle oscillation amplitude squared to the beam waist

FIG. 7. Average angular momentum, gained by electrons after
the interaction with l = 0, m = 1 (blue solid), l = 1, m = 2 (orange
dashed), l = 1, m = 3 (green dotted) beams as a function of initial
distance of the particle from the beam axis. Dots, triangles, and
squares represent PIC numerical results; lines represent predictions
of the model for the corresponding beam configurations.
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FIG. 8. Average longitudinal momentum, gained by electrons af-
ter the interaction with the l = 1, m = 3 beam as a function of initial
distance of the particle from the beam axis. Squares represent PIC
numerical results; the solid line represents predictions of the model,
accounting for the second- and the fourth-order perturbation theory.
The dash-dotted line represents predictions of the model, accounting
only for the second-order perturbation theory.

radius squared and multiplied be the duration of the beam.
This allows one to consider, as a result, the mild-relativistic
values of a0 ∼ 1 and obtain a good semiquantitative agree-
ment between the analytical and the numerical results. It is
also important that the approximations that are used are not
suitable for short laser pulses, where, e.g., the phase effects
may become important, as these effects break the symmetry
over the azimuthal angle and facilitate the average OAM
transfer.

Discussions concerning the absorbed angular momentum
in the literature usually start with defining a laser wave with a
well-defined OAM, which are Laguerre-Gaussian beams. It is
important, however, to take into account the corrections to the
lowest orders of the paraxial and the slowly varying envelope
approximations. Consider the simulations parameters, dis-
cussed in the previous section, and use the approximations for
the electromagnetic field, rather than the numerical solution
of the Maxwell with the algorithms provided by the PIC code.
Namely, take the first orders of the paraxial and the slowly
varying envelope approximations. The equations of motion
were then solved numerically in a developed PYTHON code
for individual particles, distributed as in previous simulations.
In the first simulations, consider the electromagnetic field as

Hx = −Ey = E0g(t − z/c)Re

(
eiω0(t−z/c) upl + uqm√

2

)
,

Hy = Ex = 0,

Hz = −E0g(t − z/c)Re

(
ieiω0(t−z/c) ∂

∂x

upl + uqm√
2

)
,

Ez = E0g(t − z/c)Re

(
ieiω0(t−z/c) ∂

∂y

upl + uqm√
2

)
, (91)

which is the first two paraxial approximation orders and the
main envelope approximation order for the boundary condi-
tions (80).

The other considered simulation takes into account the
corrections according to

H = E0Re

{[
g(t − z/c)

(
H{0,0} + H{0,1}

+ H{0,2} + H{0,3})
+ 1

ω0
g′(t − z/c)

(
H{1,0} + H{1,1})]eiω0(t−z/c)

}
,

E = E0Re

{[
g(t − z/c)

(
E {0,0} + E {0,1}

+ E {0,2} + E {0,3})
+ 1

ω0
g′(t − z/c)

(
E {1,0} + E {1,1})]eiω0(t−z/c)

}
, (92)

where the first three terms of the expansion in powers of
λ0/w0 and the first two terms of expansion in powers of
(ω0τ )−1 are taken into consideration.

The obtained gained average values after numerical in-
tegration, i.e., the kinetic energy, the longitudinal, and the
angular momentum of electrons, are shown in Figs. 9. One
can see that the longitudinal momentum and the angular mo-
mentum are rather different from the results, obtained with
use of the PIC-calculated fields, if only the few lower orders
of the approximations for the wave are used. Instead, the
consideration of the wave with the corrections (92) results in
a much better agreement between the values obtained with the
use of the PIC code. Moreover, it is quite interesting to note
that the gained momentum and angular momentum consid-
erably decrease when the corrections are taken into account.
So, the use of a rough approximation for the electromagnetic
fields may result in a substantial overestimation of the average
gained quantities.

It is worth noting that within the approach used for the
angular momentum gain (70), it appears that the first-order
correction of the slowly varying envelope approximation may
have the contribution of the order of mec4a4

0τ
2
int/w

2
0ω0, which

is the same as the contribution of the previous orders. This
is due to the fact that the lowest order of this approximation
turns to zero after averaging over azimuthal angle ϕ0. The
second term in (70) is related to the longitudinal motion of
the particle, as may be seen from (64). The influence of the
longitudinal motion on the angular momentum transfer is
discussed in [8].

It is interesting to note that the condition (9), used to obtain
(27), is satisfied for the lowest orders of paraxial and slowly
varying approximations of the electromagnetic fields arising
from the boundary condition (50) with g(t ) = cos2( t−τ/2

τ
π )

when |t − τ/2| < τ/2, and 0 otherwise. When the envelope
function is g(t ) = 1√

2π
e−(t−t0 )2/2τ 2

, this condition for the low-
est orders of paraxial and slowly varying approximations is
satisfied with exponential accuracy. However, the condition
(9) is not always satisfied, e.g., for unipolar plane waves, such
as E = E0e−(t−z/c)2/2τ 2

ex, H = E0e−(t−z/c)2/2τ 2
ey. Such plane

waves are not discussed in this paper.
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(a)

(b)

(c)

FIG. 9. Average (a) kinetic energy, (b) longitudinal, and (c) an-
gular momenta gained by electrons after the interaction with the
l = 1, m = 3 beam as a function of initial distance of the particle
from the beam axis. Blue squares represent PIC code numerical
results; orange triangles represent PYTHON code numerical results
with a few low-order approximations. Green dots represent PYTHON

code numerical results with more corrections to the lowest-order
approximations. For a better appearance, squares, triangles, and dots
are connected with straight lines.

The intensity of a Laguerre-Gaussian beam has a form of
several rings with a center on the axis of the beam and radius
∼w0. This allows one to assume that electrons gain angular
momentum mostly in the regions of these rings and hence
form a solenoid with a characteristic radius ∼w0. According
to the model of generation of the magnetic field by a solenoid
with charged current [7], the magnetic field value may be

estimated (in CGS units) as H ∼ en0w0vϕ/c ∼ en0c3a4
0τ

2
int

ω0w
2
0

. For
the parameters, normal for modern laser experiments, ω0 =
2.3 × 1015 s−1, w0 = 1.3 µm, τ = 12π/ω0, a0 = 1, and n0 =
0.01 nc, where nc is the critical plasma density, and the mag-
netic field may be estimated as H ∼ 60 T .

It may be noted that electrons mostly gain angular mo-
mentum of the opposite sign to that of the laser beam. The
direction of the rotation of the electrons corresponds to the
generated magnetic field directed along the laser beam propa-
gation direction. This is an interesting result, which was also
observed in full-scale 3D PIC simulations [7,8].

In this work, no collective effects were considered. Of
course, the collective effects, as well as effects which dephase
the particle motion in the wave, such as collisions, ionization,
radiation friction, and others, may qualitatively change the
interaction process, though it is easy to find the conditions
when the single-particle processes dominate. What is actually
done in the work is the initial step towards the understanding
of the OAM transfer from light waves to single particles, in
a situation where the particle distribution is isotropic so that
there is no initial axial asymmetry in the system except the
laser wave phase. The important result obtained here is that
indeed, in this situation, the OAM may be transferred to the
particles, and the process efficiency grows with the increasing
of the field amplitude and the decreasing of the beam waist.
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APPENDIX

1. Table integrals

In the calculation of the electromagnetic fields using the
boundary condition at z = 0, the integration over angle ϕ

results in the Bessel function,

2π isJs(z) = 2π i|s|J|s|(z) =
∫ 2π

0
dϕ exp[isϕ + iz cos ϕ],

(A1)
with integer s,

Hα (ω, k⊥, z = 0) = 2πw2
0gω−ω0 E0

∑
p,l

aplαi|l|e−ilθ

×
∫

rdrUpl(r, 0)J|l|(k⊥r⊥). (A2)
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Using the following identity from [21] for an integral of Laguerre polynomials Ls
n(z) with Bessel functions Js(z) (here, n, s,

a, b are parameters):

∫ ∞

0
xs+1e−bx2

Ls
n(ax2)Js(xy)dx = (b − a)n

2s+1bs+n+1
yse

−
y2

4b Ls
n

(
ay2

4b(a − b)

)
, (A3)

after integrating (A2) over r, one obtains (54).

2. Expressions for the fields in terms of the used approximations

Ẽ{0,0}
⊥ = E0g(ξ )E {0,0}

⊥ eiω0ξ , Ẽ{1,0}
⊥ = E0

ω0
g′(ξ )iz

∂E {0,0}
⊥

∂z
eiω0ξ ,

Ẽ{0,2}
⊥ = E0c

ω0
g(ξ )

[
z

2i

∂2E {0,0}
⊥

∂z2
− iex

(
∂H{0,1}

z

∂y
− ∂H{0,0}

y

∂z

)
− iey

(
∂H{0,0}

x

∂z
− ∂H{0,1}

z

∂x

)]
eiω0ξ , (A4)

H̃ {0,1}
z = E0g(ξ )H{0,1}

z eiω0ξ , Ẽ {0,1}
z = E0g(ξ )E {0,1}

z eiω0ξ ,

H̃ {1,1}
z = E0

ω0
g′(ξ )i

∂

∂z

(
zH{0,1}

z

)
eiω0ξ , Ẽ {1,1}

z = E0

ω0
g′(ξ )i

∂

∂z

(
zE {0,1}

z

)
eiω0ξ ,

H̃ {0,3}
z = E0c

ω0
g(ξ )

(
z

2i

∂2H{0,1}
z

∂z2
− i

∂H{0,1}
z

∂z

)
eiω0ξ , Ẽ {0,3}

z = E0c

ω0
g(ξ )

z

2i

∂2E {0,1}
z

∂z2
eiω0ξ , (A5)

where E {0,0}
⊥ = −ez × H{0,0}

⊥ , H{0,1}
z = −i c

ω0
∇⊥ · H{0,0}

⊥ , E {0,1}
z = −i c

ω0
(∇⊥ × H{0,0}

⊥ )z.
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