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Quantum optimal control of squeezing in cavity optomechanics
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Squeezing is a nonclassical feature of quantum states that is a useful resource, for example, in quantum
sensing of mechanical forces. Here, we show how to use optimal control theory to maximize squeezing in an
optomechanical setup with two external drives and determine how fast the mechanical mode can be squeezed. For
the autonomous drives considered here, we find the inverse cavity decay to lower-bound the protocol duration.
At and above this limit, we identify a family of protocols leveraging a two-stage control strategy, where the
mechanical mode is cooled before it is squeezed. Identification of the control strategy allows for two important
insights: to determine the factors that limit squeezing and to simplify the time dependence of the external drives,
making our protocol readily applicable in experiments.
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I. INTRODUCTION

Squeezing refers to reducing the uncertainty in one ob-
servable at the expense of increasing the uncertainty in a
different, noncommuting observable [1]. Squeezed states are
an important resource for quantum-enhanced sensing [2,3]
and metrology [4]. Recent applications include dark matter
searches [5,6], detecting motional displacement and electric
fields of trapped ions [7], improving quantum nondemolition
readout [8], and amplification of interactions [9–12].

Generation of squeezing requires nonlinearity [1]. It can
be engineered by nonlinear drives or via coupling to another,
typically driven, quantum system. A popular platform that
realizes the latter paradigm is cavity optomechanics, where
a mechanical oscillator is coupled to an optical or microwave
cavity [13,14]. A drive on the optical or microwave cavity can
be used to engineer essentially arbitrary quantum states of the
mechanical oscillator [13], including strongly squeezed states.
Remarkably, already at finite temperature, nonclassical states
of the mechanical oscillator display useful quantum proper-
ties. Squeezing can be realized via a multitude of protocols,
leveraging both unitary [15] and dissipative dynamics, for
example, using two-photon drives [16,17]. In the latter case,
the squeezed state is approached as the steady state. Dissipa-
tive protocols come with the advantage that the mechanical
oscillator gets cooled and squeezed at the same time. On the
downside, the approach to the steady state is typically slow.

A very fast way to achieve squeezing in a harmonic os-
cillator is a sudden change of the oscillator frequency, which
projects the ground state into a squeezed state [18]. While
successful with trapped atoms, this protocol is hampered
in cavity optomechanics by the fact that one can neither
easily prepare the mechanical oscillator in its ground state
nor quickly change its frequency. On the other hand, the
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dissipative preparation of squeezed states via two-photon driv-
ing [16,17] can be made faster by modulating the drive am-
plitudes [19]. The time-dependent shapes of the modulation
were derived with optimal control theory [20,21], targeting a
given (mixed) squeezed state. However, it is typically not the
exact squeezed state that matters most in applications such as
force sensing, but rather the amount of squeezing that can be
realized.

Here, we ask, using optimal control theory [20,21], what is
the maximum squeezing that can be achieved in the mechan-
ical oscillator when optimizing the shapes of the dissipative
two-photon protocol. To this end, we change perspective com-
pared to Ref. [19], targeting the minimal variance of one of
the mechanical oscillator’s quadratures rather than a specific
(squeezed) state. An additional particular benefit of optimal
control theory is that it allows one to determine the minimal
duration for the successful realization of a certain task, ex-
pressed by the optimization functional [22,23]. This bound is
also referred to as the quantum speed limit [24–26]. Knowing
its value is of great interest in quantum information tasks
where maximizing resource efficiency is crucial [27]. In cases
where it is not possible to derive the quantum speed limit ana-
lytically, it can be determined numerically [22,23,28]. Here,
we adopt the approach of Refs. [22,23] and conduct opti-
mizations for various protocol durations, assuming a specific
threshold for the target functional below which the task is
considered to be fulfilled. The smallest final time in which
this threshold can still be met then represents an estimate for
the quantum speed limit [22,23].

The remainder of the paper is organized as follows. Sec-
tion II briefly reviews the model for the optomechanical
system and two-drive protocol [16] and summarizes the essen-
tials of optimal control theory, in particular, when applied to
maximize squeezing. Our optimization results are presented in
Sec. III, analyzing them in terms of the control strategies and
protocol duration, respectively, of the quantum speed limit.
Section IV concludes.
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II. THEORETICAL FRAMEWORK

A. Model

We examine an optomechanical system [29] in which an
optical cavity of frequency ωcav is coupled to a mechanical
resonator with frequency �. The Hamiltonian including a
time-dependent drive Ĥdr(t ) reads

Ĥ (t ) = h̄ωcavd̂†d̂ + h̄�b̂†b̂ − h̄g0d̂†d̂ (b̂† + b̂) + Ĥdr(t ).

(1)

Here, d̂ and b̂ are the respective annihilation operators for
the cavity and resonator and g0 represents the optomechanical
coupling strength. As shown in Ref. [16], achieving highly
squeezed states is possible by driving both mechanical side-
bands at frequencies ω± = ωcav ± �. We therefore consider
the following time-dependent drive:

Ĥdr(t ) = h̄(α+(t )e−iω+t + α−(t )e−iω−t )d̂† + H.c., (2)

where α±(t ) = ±�ā±(t ) and ā±(t ) denotes the field ampli-
tude of the coherent light field. In contrast to the protocol
presented in Ref. [16] and similar to Ref. [19], we take the
amplitudes ā±(t ) to be time dependent.

To simplify the problem, we invoke the same transfor-
mations as presented in Ref. [16], neglecting extra driving
terms, which only affect classical expectation values, but not
the squeezing, see Appendix for details. The approximated
Hamiltonian reads

Ĥ (t ) = −h̄d̂†[G+(t )b̂† + G−(t )b̂] + H.c.

− h̄d̂†[G+(t )b̂e−2i�t + G−(t )b̂†e2i�t ] + H.c., (3)

where we have introduced rescaled pulse amplitudes G±(t ) =
g0ā±(t ).

We explicitly account for dissipation in both the resonator
and cavity. The temperature of the bath to which the cavity
couples is effectively zero while the resonator is immersed in
a thermal bath with thermal occupancy nth. The time evolution
of the system in the Markov approximation is described by a
master equation [30],

d

dt
ρ̂(t ) = − i

h̄
[Ĥ (t ), ρ̂(t )]

+
3∑

l=1

(
L̂l ρ̂(t )L̂†

l − 1

2
{L̂†

l L̂l , ρ̂(t )}
)

= Lρ̂(t ), (4)

with Lindblad operators L̂1 = √
κ d̂ , L̂2 = √

�nthb̂†, and L̂3 =√
�(nth + 1)b̂. Here, κ and � are the decay rates for the

cavity and resonator, respectively, and L is the Liouvillian
superoperator.

B. Generation of squeezed states

In order to understand the control strategies presented be-
low, we review how squeezing is generated, in particular, the
roles of the two amplitudes G+ and G−, following Ref. [16].
We first consider the Hamiltonian in Eq. (3) in the rotating
wave approximation (RWA), i.e., without the terms rotating at

frequency 2�,

Ĥ (t ) = −h̄d̂†[G+(t )b̂† + G−(t )b̂] + H.c.. (5)

Setting G+(t ) = 0 reveals that the red-detuned drive G−(t )
effectively cools the resonator by transferring excitations from
the resonator to the cavity, where they dissipate with rate
κ . This is also known as optomechanical sideband cooling
[31,32]. Similarly, it can be seen that the blue-detuned drive
G+(t ) effectively heats the resonator. Squeezing is generated
through the interplay of both drives. To see this, one can
introduce a Bogoliubov mode β̂(r) with

β̂(r) = b̂ cosh r + b̂† sinh r, (6)

where the squeezing parameter r(t ) is defined by tanh r(t ) =
G+(t )/G−(t ). The Hamiltonian can then be rewritten as

Ĥ (t ) = −h̄G(t )d̂†β̂(r(t )) + H.c. (7)

with the effective coupling G(t ) =
√

G2
−(t ) − G2

+(t ), where
we have assumed G−(t ), G+(t ) ∈ R, and without loss of
generality G−(t ) > G+(t ). For a fixed r, this Hamiltonian
“cools” the resonator into the ground state of the Bogoliubov
mode β̂. This ground state is a squeezed state where the
variance of X̂1 = (b̂† + b̂)/

√
2 decreases exponentially with

the squeezing parameter, 	X 2
1 ∝ e−2r . The resonator’s state is

considered to be squeezed if 	X 2
1 < 1/2. Due to the Heisen-

berg uncertainty principle, the variance of X̂2 = i(b̂† − b̂)/
√

2
increases as 	X 2

2 ∝ e2r . Based on these observations, Kro-
nwald et al. [16] were able to show that one can drive the
mechanical resonator into a squeezed steady state by using
a protocol with constant amplitudes G±. In the following,
we use time-dependent amplitudes. Explicitly, this means
that both the coupling G(t ) and the squeezing parameter r(t )
are time dependent due to the time dependence of G+(t )
and G−(t ).

C. Optimal control theory

For the design of the laser pulses, we use Krotov’s method
[33–38], a gradient-based optimization algorithm. In optimal
control theory, the quantity to be optimized has to be incor-
porated into an appropriate optimization functional J . In each
iteration, the gradient of this functional is then calculated to
adjust the control pulses such that the functional is minimized.
It usually consists of two parts,

J = JT [ρ̂(T )] +
∑

l

∫ T

0
Jt [ρ̂(t ), Gl (t )] dt, (8)

where Gl (t ) is the lth time-dependent control field and ρ̂(t )
is the time-dependent state of the system. JT is the final-time
functional and typically encodes the target of the optimization,
e.g., a specific state or in general a property one wants to
achieve at final time T .

The goal of the present work is to optimize squeezing.
This corresponds to minimizing the variance of the resonator’s
quadrature X̂1, so we choose the final time functional

JT [ρ̂(T )] = 	X 2
1 (T ) = 〈

X̂ 2
1

〉
(T ) − 〈X̂1〉2(T ), (9)

where 〈.〉 (T ) denotes the expectation value with respect to the
final state.
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Optimal control theory is often used to optimize a con-
trol protocol in terms of both its figure of merit JT [ρ̂(T )]
and duration T . While with gradient-free optimization it is
straightforward to minimize T [39], gradient-based optimiza-
tions have so far resorted to simply decreasing the final time
until no more solution is found [22]. Recently, a rescal-
ing of time has been suggested to circumvent this issue in
gradient-based methods [28]. While a combination with Kro-
tov’s method should be possible, in the present work we have
resorted to manual tuning of the protocol duration, similar to
Refs. [19,22].

In Eq. (8), Jt expresses time-dependent costs. It can be
used, e.g., to penalize high amplitudes of the control field
or the population in unwanted states [40]. A common choice
is [35]

Jt [ρ̂(t ), Gl (t )] = λa,l [Gl (t ) − Gl,ref(t )]2. (10)

Gl,ref(t ) is typically chosen to be the field from the previous
iteration, whereas λa,l modulates the step size of the update.

Starting from an initial guess, the pulses are iteratively op-
timized according to an update equation. In Krotov’s method,
the update equation is chosen such that monotonic con-
vergence is ensured [36]. Since Krotov’s method assumes
time-continuous controls, a suitable set of parameters λa,l

must be chosen such that the update applied in each iteration
is not too large [36,38]. For an open quantum system as
considered here, the update equation for iteration step k + 1
reads [37]

G(k+1)
l (t ) = G(k)

l (t ) + 1

λa,l
Re

{
Tr

[
χ̂ (k)(t )

∂L
∂Gl

∣∣∣∣
G(k+1)

l (t )

× ρ̂ (k+1)(t )

]}
, (11)

where ∂L
∂Gl

is the derivative of the Liouvillian with respect to

the lth control. χ̂ (k)(t ), usually referred to as the costate, is
evolved backward in time according to the adjoint Liouvillian
L† with the control fields of the kth iteration,

d

dt
χ̂ (k)(t ) = −L†

[{
G(k)

l (t )
}]

χ̂ (k)(t ), (12)

with boundary condition

χ̂ (k)(T ) = −∇ρ̂JT |ρ̂ (k) (T ). (13)

The states ρ̂ (k+1)(t ) are obtained by solving the master
Eq. (4) with the new set of pulses {G(k+1)

l (t )}
d

dt
ρ̂ (k+1)(t ) = L

[{
G(k+1)

l (t )
}]

ρ̂ (k+1)(t ) (14)

with the initial condition

ρ̂ (k+1)(0) = ρ̂0, (15)

in which ρ̂0 is the initial state of the system.

III. SQUEEZING GENERATION
USING OPTIMAL CONTROL

In the following, we show that one can speed up the
transition into a squeezed state by using time-dependent am-
plitudes. Reference [19] already reported that a protocol with

TABLE I. System parameters used in all optimizations, taken
from the experiment in Ref. [17].

Cavity frequency ωcav 2π × 6.23 GHz
Resonator frequency � 2π × 3.6 MHz
Coupling strength g0 2π × 36 Hz
Cavity decay rate κ 2π × 450 kHz
Resonator decay rate � 2π × 3 Hz
Thermal occupancy nth 2

time-dependent amplitudes can speed up the squeezing pro-
cess when optimizing toward a specific squeezed target state.
We show that achieving speedups is also possible when opti-
mizing for arbitrary states of high squeezing, rather than for
a specific state. In contrast to Ref. [19], we investigate the
quantum speed limit for squeezing and how it is influenced
by the different system parameters. We furthermore study
the influence of the counter-rotating terms in Eq. (3) on the
control solutions.

A. Details of the optimization

The protocol starts with the cavity initially in the vacuum
state and the resonator in a thermal state with thermal oc-
cupancy nth. The goal of the optimization is to find pulses
that transform the resonator’s initial thermal state into a
highly squeezed one. To accomplish this, we employ Krotov’s
method as presented in Sec. II C.

Throughout this work, we use parameters from the experi-
ment by Wollman et al. [17] (see Table I), which realized the
setup proposed in Ref. [16]. However, we use a temperature
of about 0.4 mK for the thermal bath, compared to 10 mK in
the experiment, in order to ease the numerical simulation of
the system dynamics. Larger values of nth, i.e., higher tem-
peratures, result in higher initial population of the resonator
and thus also a larger system size that needs to be simulated.
We will argue below that the temperature does not influence
the control strategy and we will also discuss how the quantum
speed limit is affected by temperature.

In experiments, microwave fields can be manipulated on
timescales down to subnanoseconds [41,42]. Since our simu-
lations employ time steps larger than that, we do not have to
account for finite ramping times such that the pulses can start
at arbitrary values in the simulations. As guess pulses we use
constant amplitudes with G−/2π = 5.8 kHz and G+/G− =
0.7, similar to Ref. [19], and take the amplitudes to be real.
This implies squeezing a certain quadrature of the mechanical
motion (in the interaction picture), i.e., a specific orientation
of the squeezed state in phase space. It can readily be gen-
eralized toward arbitrary orientations by adding a constant
complex phase to the pulse amplitudes.

To simplify and speed up the optimizations, we model the
system dynamics in the RWA, i.e., with the Hamiltonian in
Eq. (5). In general, the effects of the counter-rotating terms in
Eq. (3) are only negligible if one can separate the timescales
of the mechanical motion and the cavity decay, i.e., if κ � �.
In the literature, this is also referred to as the good cavity
limit or the resolved sideband regime [13,14]. As we use
system parameters for which κ/� = 1/8, it is possible that the
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counter-rotating terms impact the time evolution, particularly
at high amplitudes [16]. Therefore, special attention has to
be paid to whether the control strategy relies on the RWA
to achieve higher squeezing. Thus, we only use the RWA
in the optimizations to save resources but not in the final
propagation, and compare the time evolution with and without
RWA to quantify the effect of it. Based on this comparison,
we manually adjust the pulses to ensure they are physically
meaningful. The results we show in the following always refer
to the adjusted pulses.

B. Optimization results

We have conducted optimizations for final times be-
tween T = 0.1 µs and T = 150 µs and identified two different
regimes for the optimized pulses. For optimizations in which
the final time T > 2πκ−1 ≈ 2.2 µs, large amounts of squeez-
ing are achieved, and a general control strategy can be
identified. For optimizations with T < 2πκ−1, only small
amounts of squeezing can be achieved and there is no control
strategy easily identified. In the next section, we argue that this
is closely connected to the quantum speed limit of squeezing.
Since the explanation is based on the control strategy for the
larger final times, we discuss it first.

The control strategy consists of two parts: the cooling
phase (I) and the squeezing phase (II). An exemplary opti-
mization is shown in Fig. 1. The cooling phase (I) lasts to
about t = T/8 and reduces both variances of the resonator
close to the zero-point fluctuation of 1/2 [see Fig. 1(b)], i.e.,
the resonator is cooled from its thermal state to a state close to
the ground state. To accomplish this, the red drive’s amplitude
G−, which cools the resonator, is increased while G+, the
heating blue drive’s amplitude, is kept low, see Fig. 1(a).
Figure 1(c) shows the purity of the full composite system state
and the purity of the reduced states of both the resonator and
the cavity as a function of time. During the cooling phase, the
purity of the resonator’s state significantly increases while the
one of the cavity briefly decreases. This indicates that dur-
ing this phase, the initial thermal population in the resonator
transfers to the cavity, where it dissipates at a rate κ . During
the squeezing phase (II), both amplitudes are increased while
their difference decreases over time. This can be explained
using the Bogoliubov transformation, cf. Eqs. (6) and (7). By
decreasing the difference between G+ and G−, the ratio of
the two approaches one, meaning the squeezing parameter r
increases. Consequently, the X̂1-quadrature is squeezed, while
the variance of X̂2 increases. On the other hand, the effective
coupling G decreases as the amplitudes become closer in
value. However, G is dependent on the absolute difference and
can thus be maintained at a higher level by also increasing the
red drive’s amplitude.

To check the performance of the pulses optimized in the
RWA, we compare the time evolution of the variance of X̂1

with and without RWA in Fig. 1(b). One can see that the
discrepancy between the variance with and without RWA is
very small. It is thus reasonable to conduct the optimizations
in the RWA, since this allows us to find physically meaningful
solutions realizing large squeezing while at the same time
reducing the computational effort.

FIG. 1. Example for the outcome of an optimization taking T =
42 × 2πκ−1 ≈ 93.3 µs. (a) Optimized pulse amplitudes. (b) Vari-
ances of both quadratures of the resonator without RWA (solid lines)
and with RWA (dashed line). The line for X̂2 coincides with the one
without RWA. (c) Purity P = Tr[ρ̂2] of the resonator, the cavity,
and the full system. Maximum squeezing (variance divided by the
zero-point fluctuation of 1/2) with RWA: 12.2 dB, without: 11.1 dB.

To quantify the speedup gained from the optimization,
we compare the obtained solution to a protocol with fixed
amplitudes, as it was originally proposed in Ref. [16]. There-
fore, Fig. 2(a) displays the optimized pulses from Fig. 1(a)
(dash-dotted line) together with the constant-amplitude pro-
tocol (solid line). As can be seen in Fig. 1(a), the average of
G−/2π for the optimized pulse is about 0.07 MHz. Thus, to
be able to compare the results in terms of the used resources,
we also set for the constant protocol G−/2π = 0.07 MHz.
The value of G+ that achieves the highest squeezing in the
given time can be found by a simple line search and turns
out to be G+ = 0.86 G−. The resulting time evolution of the
variances 	X 2

1 and 	X 2
2 is shown in Fig. 2(b). First of all,

the optimized solution achieves in total a larger squeezing
of about 11.1 dB compared to the 10.1 dB of the constant
protocol. Secondly, it reaches the value of 10.1 dB within a
time of about 32 × 2πκ−1, which is only 76% of 42 × 2πκ−1,
the time the constant protocol needs. On the other hand,
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FIG. 2. Comparison of different squeezing protocols. (a) Pulse
amplitudes (G− in red and G+ in blue) for the optimized proto-
col from Fig. 1(a) (dash-dotted) in comparison with the constant
protocol from Ref. [16] (solid) and two proposals for a simplified
squeezing protocol based on the control strategy found from the
optimized pulses—a linearly increasing protocol (dashed), and a
constant-amplitude protocol with a delayed blue pulse G+ (dotted).
G+(T )/G−(T ) is 0.86 for the constant and delayed protocol, and
0.95 for the linear protocol. (b) The resulting temporal evolution of
the variances of the resonator’s quadratures without RWA (	X 2

1 in
orange and 	X 2

2 in purple). Maximum squeezing is 11.1 dB for the
optimized pulses, 10.1 dB for the constant protocol from Ref. [16],
10.3 dB for the delayed protocol, and 10.1 dB for the linear protocol.

one can also ask how fast a squeezing of 11.1 dB can be
achieved with the constant protocol and the amplitude fixed to
G−/2π = 0.07 MHz. The answer is 51 × 2πκ−1 with a ratio
of G+/G− ≈ 0.90. Also, in this comparison the optimized
protocol is faster and needs only about 82% of the constant
protocol’s duration.

The speedup can be understood in terms of the control
strategy identified above. In the constant protocol, the cooling
phase is skipped and squeezing starts immediately. Since the
amplitudes G− and G+ must be close for high squeezing, the
coupling of the two systems is low and the entire squeezing
slow, especially when driving the system toward a highly
squeezed state. The main reason for the speedup is thus the
cooling phase in the beginning, in which the effective coupling
G is large, allowing for the initial thermal population in the
resonator to be removed efficiently. A further small speedup
is gained by increasing G− toward the end of the protocol,
i.e., investing more of the available resources toward the end
where G becomes smaller. In general, we observe for all
protocol durations that one can reduce the time to achieve a
certain amount of squeezing by 15%–25% with the optimized
pulses compared to the constant protocol.

It is interesting to compare our optimized protocols to
a recent proposal for squeezing a mechanical mode via

detuning-switched driving [43]. The proposal uses only a
single drive with effective amplitude G. It consists of the
periodic application of short pulses with strongly increasing
detuning. As a result an effective linear force acts on the
resonator, squeezing it. This comes with the advantage of not
being limited by the cavity decay rate such that in principle
squeezing can potentially be generated even faster than in our
protocols. However, Ref. [43] operates in the strong-coupling
regime G 
 � and requires a precise modulation of the laser
power and frequency on timescales t0 � 2πG−1. In contrast,
our optimized protocol just requires a slow modulation of
the amplitudes and works for smaller amplitudes. It is thus
potentially easier to implement in an experiment.

The two-stage control strategy and the form of the pulses
in Fig. 1(a) suggest that deriving an even simpler protocol is
possible. Indeed, the red drive’s amplitude is almost constant
during the protocol, whereas that of the blue drive is low
during the cooling phase and increased during the squeezing
phase. Therefore, Fig. 2(a) also displays two possible simpli-
fied squeezing protocols. The first one (dashed line) consists
of a constant red drive combined with a linear ramp in the
blue drive, whereas the second (dotted line) is a protocol with
constant amplitudes where the blue drive is switched on with
a time delay. To be able to compare the results, we set for both
new protocols G−/2π = 0.07 MHz, similarly to before. In the
linear-ramp protocol, we let G+ increase linearly from the ini-
tial value G+(0)/2π ≈ 0.025 MHz to a final value of G+(T )
such that G+(T )/G− ≈ 0.95, which is the ratio found in the
optimized pulses, see Fig. 1(a). In the time-delay protocol, the
blue pulse is switched on at the time at which the variance
of X̂1 becomes equal to the zero-point fluctuation in the opti-
mized squeezing scheme. The optimal amplitude of the blue
drive is again determined by a line search. Figure 2(b) shows
the quadrature variances over time for the constant protocol,
the optimized protocol, and the two simplified protocols. One
can see that the X̂1-quadratures of both simplified protocols
reach the zero-point fluctuations at almost the same time as the
one in the optimized protocol does. This is because they are
both able to leverage the stronger interaction strength of the
two subsystems during the cooling phase. After the cooling
phase, the time-delay protocol (dotted lines) performs almost
as well as the optimized one (dash-dotted lines), but eventu-
ally the variance reaches a plateau as the resonator approaches
its steady state, similar to the constant protocol (solid lines).
The linear-ramp protocol (dashed lines) initially outperforms
the protocol with constant amplitudes. However, it becomes
worse at later times and only catches up in the end when
the constant one runs into the steady state. The linear-ramp
protocol is most advantageous for shorter protocol durations.
This is illustrated in Fig. 3, showing again the four different
protocols, but this time for a duration of T = 8 × 2πκ−1 ≈
18 µs (with the parameters of the different protocols chosen
in the same way as in Fig. 2). Again, the optimized protocol
performs better than the constant protocol, but for this short
duration the linear-ramp protocol performs almost as well as
the optimized one and the time-delay protocol is only slightly
faster than the constant one. Thus, for the two simplified
protocols, the time-delay protocol is better for longer protocol
durations and the linear-ramp protocol for shorter durations.
This can be explained as follows: For shorter durations, it
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FIG. 3. Comparison of different squeezing protocols, analo-
gously to Fig. 2 but for a shorter protocol duration. (a) Pulse
amplitudes. G+(T )/G−(T ) is 0.70 for the constant protocol from
Ref. [16]; 0.71 for the time-delay protocol, and 0.91 for the linear-
ramp protocol. (b) The resulting temporal evolution of the variances
of the resonator’s quadratures (without RWA). The achieved maxi-
mum squeezing is 6.8 dB for the optimized pulses, 6.0 dB for the
constant protocol from Ref. [16], 6.2 dB for the time-delay protocol,
and 6.6 dB for the linear-ramp protocol.

becomes more important to remove the initial thermal en-
ergy in the resonator quickly, also for the constant protocol.
Thus, it is important to have a large effective coupling G =√

G2
− − G2

+ throughout the protocol. This is achieved by low-
ering the blue drive’s amplitude, at the expense of squeezing,
and explains the optimal ratio G+/G− = 0.70 for the constant
protocol in Fig. 3, compared to G+/G− = 0.86 in Fig. 2.
It also means that the speedup that is gained in the extra
cooling phase of the time-delay protocol is less significant.
On the other hand, the cooling phase takes a larger part of
the overall protocol. For the linear-ramp protocol, the blue
drive has thus already been increased to moderate values at
the end of the cooling phase. In other words, for short dura-
tions, the linear-ramp protocol realizes an optimal trade-off
between cooling (via the effective coupling G) and squeezing.
For longer protocols, the opposite is the case. Here, the rel-
ative duration of the cooling phase is shorter and it is more
important to realize large values of the squeezing parameter
r = artanh(G+/G−) with a lower effective coupling G. This
means that in the time-delay protocol, the relative increase of
G during the cooling phase compared to the constant protocol
is larger, which leads to greater speedup. On the other hand,
in the linear-ramp protocol, the blue drive’s amplitude grows
more slowly, and while the protocol benefits initially from a
large effective coupling G, it cannot reach the largest amount
of squeezing since the squeezing parameter r is small for a
large part of the protocol.

The difference between the two simplified protocols is
also reflected in the final states that are reached. Although
the squeezing is similar, the final purity in the linear-ramp
protocol is in general smaller and closer to that reached in the
optimized protocol. This can be understood in terms of the
final ratio G+(T )/G−(T ), which is larger in these protocols.
On the other hand, the time-delay protocol approaches the
same steady state as the constant protocol, which has in turn a
larger purity due to the smaller ratio of G+ and G−.

The results demonstrate that both simplified protocols can
achieve speedups comparable to the optimized one. At the
same time, they offer some advantages over the optimized
protocol: Due to their very simple pulse shapes, they are po-
tentially easier to implement in an experiment. Furthermore,
they provide a straightforward way to generalize the two-stage
control strategy to protocols of arbitrary duration as follows.
Instead of optimizing the pulse amplitude at each point in
time, it is sufficient to optimize two parameters when fixing
the amplitude of the red drive. One parameter is the final ratio
G+(T )/G−(T ) and effectively sets the amount of squeezing
reached. The other parameter—the time at which the blue
drive is switched on in the time-delay protocol, or the initial
value G+(0)/G−(0) in the linear-ramp protocol—effectively
sets the duration of the cooling phase. For the time-delay
protocol, the choice of the ratio of G+ and G− was already
discussed in Ref. [16], and the switch-on time can be esti-
mated, since the cooling process is only governed by κ and
G−. In the cases discussed here, G− is about one order of
magnitude smaller than κ , and the switch-on time should thus
be on the order of 2πG−1

− . Since all four protocols leverage
the dissipative dynamics governed by the cavity decay rate κ ,
we expect all of them to be robust against variations in the
Hamiltonian parameters for protocol durations larger than the
inverse decay rate.

C. Quantum speed limit for squeezing

With the control strategy for the larger final times at hand,
we can rationalize why it breaks down for shorter times, and
thereby determine the quantum speed limit for squeezing. In
order to quantify the quantum speed limit, we need to define
a threshold for squeezing.

In optomechanical systems, squeezing up to one half of
the zero-point fluctuation can be readily achieved by a simple
parametric driving scheme [44–48], while squeezing beyond
this value requires more advanced techniques such as quan-
tum nondemolition measurements combined with a coherent
feedback operation [14,49–51]. This suggests to take one half
of the zero-point-fluctuation as a threshold for the quantum
speed limit. Following the literature [8,16,52], we will refer
to it in the following as the 3-dB limit.

Figure 4 shows the maximum amount of squeezing
achieved in each optimization for a given final time. Squeez-
ing increases (i.e., the variance decreases) monotonously with
longer protocol durations, as expected. Further, one can see
that for final times T in the range of 2πκ−1 ≈ 2.2 µs or
below, squeezing rapidly decreases. It should be noted that the
average amplitude of both drives also increases toward shorter
protocol durations. The reason for this becomes apparent
when considering the control strategy identified in Sec. III B.
Since the cooling phase depends on the decay, the population
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FIG. 4. Maximum amount of squeezing for different final times.
Shown as blue dots are the results obtained in the RWA, and red
squares show the maximum amount of squeezing obtained with the
same pulses propagated without the RWA. The obtainable squeezing
is significantly reduced for final times T � 2πκ−1. Interestingly, it
seems that removing the RWA increases the variance always by a
constant factor.

always takes a time proportional to κ−1 to dissipate.1 This
implies that in general a smaller protocol duration results in
less time for the squeezing phase. Consequently, to achieve
the same amount of squeezing, it is necessary to further in-
crease both amplitudes during the squeezing phase. However,
care has to be taken, since then the counter-rotating terms
become more relevant and the RWA is not a good approx-
imation anymore. This is due to the variation of the pulse
amplitude derivatives over multiple periods of the oscillation,
which prevents the counter-rotating terms from averaging to
zero. This is important because Ref. [16] has shown that the
counter-rotating terms effectively heat the Bogoliubov mode
β̂, which corresponds to a decrease in squeezing. This de-
crease is also visible in Fig. 4. For each final time we show
the maximum squeezing that is reached when propagating
the system in the RWA and without it. One can see that the
ratio of the variances without and with RWA is always around
∼1.4. This means that for smaller final times where the pulse
amplitudes are larger and change more rapidly, the absolute
difference between the two cases is greater, which supports
the discussion above. This poses a physical limit to how large
one can make the pulse amplitudes before the squeezing pro-
tocol breaks down. By that, also the amount of squeezing that
can be achieved in a given time is limited, which explains why
the squeezing decreases from T = 150 µs to T = 10 µs.

The rapid decrease in squeezing for protocol durations
below T = 10 µs is explained in a similar sense. For times
T � 2πκ−1, the cooling phase cannot be sufficiently long and
the thermal population of the resonator transfers to the cavity
but remains there. Then, the control strategy breaks down and
squeezing beyond the 3-dB limit cannot be achieved anymore.
This poses a fundamental bound on how fast squeezing can

1Note that the limit above has an extra factor of 2π . Although κ−1

is the actual decay time, the cooling phase needs to take a multiple
of the decay time, which is why 2πκ−1 serves as a better limit in the
rest of this article.

be achieved—the quantum speed limit. Note that our finding
is different from the results of Ref. [19] targeting specific
(squeezed) states, where the maximum and average ampli-
tude of the pulses turned out to be monotonically decreasing
functions of the protocol duration that follow a power-law
dependence. While we find a similar dependence for the pulse
amplitudes, we have not considered specific target states and
can thus identify the physical limit for squeezing in the sys-
tem. This is further corroborated by the protocol durations
which in Ref. [19] were more than an order of magnitude
larger than the cavity decay time, and the moderate ampli-
tude values. This explains why neither the breakdown of the
control strategy nor the limiting effect of the counter-rotating
terms were observed in Ref. [19].

This explanation allows us to analyze the role of the system
parameters—the thermal occupancy nth, the resonator fre-
quency �, and the decay rates of the cavity κ and the resonator
�—in the squeezing process and the control protocol. We start
by discussing the effect of nth. We do not expect the overall
control strategy to change for a higher thermal occupancy,
since the way to deal with the increased initial population is
to increase the amplitude of the red drive during the cooling
phase (as far as possible within the rotating wave approxi-
mation). Alternatively, one could extend the cooling phase.
For instance, one could start with an additional cooling phase,
wherein G+ is set to 0, in order to cool the resonator down to
nth = 2 prior to commencing with our control protocol. Thus,
we generally expect the quantum speed limit to shift to longer
times for higher temperatures.

The resonator frequency � only affects squeezing through
the influence of the counter-rotating terms. As already demon-
strated in Ref. [16], these terms limit squeezing and their
impact grows as one moves away from the good cavity limit
κ � �. Thus, we generally expect that smaller values of κ/�

will result in higher possible squeezing and a shorter time for
the quantum speed limit.

Further, the control scheme and the quantum speed limit
are inherently connected to the decay time κ−1. For lower
rates κ , the duration of the cooling phase must be increased
because the thermal population is now removed from the
system more slowly. In contrast to a higher temperature, this
cannot be overcome by means of higher amplitudes.

Since we only consider timescales T � 2π�−1 ≈ 0.33 s,
the resonator decay rate is basically irrelevant in our opti-
mizations. However, if one considers higher values for � or
steady-state squeezing [16,19], it is also a factor that limits
squeezing, since it leads to a decay of the resonator back
toward the initial thermal state. This decay must be counter-
acted to achieve the same results, which requires additional
resources. However, as long as � stays orders of magnitudes
smaller than κ and �, we do not expect it to influence the
quantum speed limit.

The cavity decay greatly enhances the speed of the
squeezing process, since it allows to remove the entropy
initially stored inside the resonator from the system during
the cooling phase. It is natural to ask whether the decay is also
helpful during the squeezing phase, i.e., whether the protocol
also benefits from a high cavity decay rate κ with nth = 0.
Therefore, we simulate the system dynamics with the constant
controls shown in Fig. 2(a), artificially reducing the decay
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FIG. 5. Variance of X̂1 for the constant amplitudes shown in
Fig. 2(a) for different artificially reduced cavity decay rates κred and
a thermal occupancy of the resonator of nth = 0. The time is given
in units of the decay rate κ = 2π × 450 kHz used in the rest of this
paper.

rates by one and two orders of magnitude, respectively, and
a thermal population of the resonator nth = 0. The resulting
time evolutions of the variance 	X 2

1 are shown in Fig. 5.
They all approach a different steady-state value where the
ones for lower decay rates also show damped oscillations and
reach the maximum squeezing much earlier than for κred = κ .
Neglecting again the effect of �, the results can be explained
as follows. While for κred = κ the cavity acts like a reservoir
to the resonator, the time evolution becomes almost unitary
in the limit of κred → 0. Without dissipation, and since the
Hamiltonian (3) is symmetric, the reduced states of resonator
and cavity are identical at all times, which means that the
cavity evolves into a squeezed state as well. At later times,
recurrences occur, which partially destroy the squeezing that
was built up at previous times. This is the reason for the
oscillatory behavior seen for the reduced decay rates. For the
squeezing phase, a lower decay rate is thus more beneficial,
since the transition to the squeezed state is only governed
by the amplitude of the drives and thus is much faster. Note
that a smaller decay rate also allows, in principle, for a more
highly squeezed state when choosing a larger ratio G+/G−.
However, smaller dissipation also implies a longer cooling
phase, since the thermal energy is removed from the system
more slowly. One thus needs to balance cooling and squeezing
when choosing a suitable decay rate for the system at hand.

To summarize, a high cavity decay rate is advantageous
for achieving squeezed states quickly, since it allows to re-
move the thermal energy inside the resonator efficiently. On
the other hand, if one aims at a highly squeezed state and
time is less important, a lower cavity decay rate might be more
favorable.

IV. CONCLUSION AND OUTLOOK

We have investigated how to generate squeezing in an op-
tomechanical system in a limited amount of time. To this end,
we have considered driving at both mechanical sidebands,
originally proposed in Ref. [16]. Building on previous work
[19], we have taken the amplitudes to be time dependent and
used optimal control theory to design suitable time dependen-
cies. Contrary to Ref. [19], here we have used the variance of

one of the quadratures of the mechanical motion as the target
functional to directly optimize squeezing. This has allowed us
to identify a different class of control solutions.

The optimized pulse shapes are easily rationalized: The
control strategy for protocols with a duration longer than the
decay time of the cavity consists of two phases. It starts with
a cooling phase in which the initial thermal population of
the resonator dissipates via the cavity, followed by a phase
in which the state of the resonator is driven into a squeezed
state. The protocol achieves a speedup of about 15%–25%
compared to a control scheme with constant amplitudes [16].
The simulations were done using parameters from an actual
experiment [17] (except for temperature) and are thus close to
physical reality. The obtained pulse shapes could, for exam-
ple, be implemented with arbitrary waveform generators. By
extending the duration of the cooling phase, the protocol can
also be applied to systems with higher initial thermal popu-
lations. A recent proposal for squeezing a mechanical mode
via detuning-switched driving [43] could potentially achieve
even faster speedups, but it operates in the strong-coupling
regime and requires fast modulation of the laser power and
frequency. In contrast, our scheme is readily applicable for
moderate amplitude values and slow amplitude modulations.

Based on the insight into the control strategy, we have
also derived two simplified protocols. In both protocols, the
amplitude of the red-detuned drive is held constant. In the
first simplified protocol, the blue-detuned drive is ramped
up linearly, whereas in the second one it is initially zero
and switched on with a time delay. These protocols achieve
speedups comparable to those obtained in the optimized pro-
tocols, and may be even easier to implement in an experiment.
Moreover, they provide a simple way to implement the two-
stage control strategy for arbitrary protocol duration, without
the need of reoptimization.

Finally, we have determined the quantum speed limit for
squeezing by carrying out optimizations for various protocol
durations. Our control strategy utilizes the dissipation of the
cavity and thus benefits from higher cavity decay rates (as
long as one stays within the good cavity limit). For proto-
col durations shorter than the cavity decay time, the control
strategy breaks down and the amount of squeezing that can
be achieved is strongly reduced. This implies that the quan-
tum speed limit is inherently connected to the decay time
of the cavity. We have also found, similarly to Ref. [16],
that the counter-rotating terms limit squeezing. As a result,
larger amounts of squeezing cannot simply be achieved by
increasing the amplitude of the drives.

Our work provides an example for maximizing an observ-
able of interest directly with quantum optimal control, similar
to earlier work minimizing energy [53]. Targeting the actual
quantity of interest—the amount of squeezing—rather than
a specific state (that happens to be squeezed) [19] allows
for more flexibility in the optimization, which in turn has
resulted in identifying different control solutions. Our work
thus underlines the importance of choosing the most suitable
figure of merit in quantum optimal control.
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APPENDIX: DERIVATION
OF THE OPTOMECHANICAL HAMILTONIAN

For completeness, we show how to derive the Hamilto-
nian in Eq. (3) reported in Ref. [16], paying special attention
to new terms that arise due to the finite derivatives of the
pulse amplitudes. We start by considering the Hamiltonian
in Eq. (1) and apply a displacement transformation with
d̂ → ā+(t )e−iω+t + ā−(t )e−iω−t + d̂ . This transformation can
be executed by means of a displacement operator D̂(α) =
eαd̂†−α∗d̂ , which has the property D̂†(α)d̂D̂(α) = α + d̂ [1].
The Hamiltonian is then transformed using the standard trans-
formation rules

Ĥdisp(t ) = D̂†(α(t ))Ĥ (t )D̂(α(t ))

+ ih̄

{
d

dt
D̂†(α(t ))

}
D̂(α(t )), (A1)

where α(t ) = ā+(t )e−iω+t + ā−(t )e−iω−t . This transformation
removes the driving Hamiltonian, Eq. (2). After neglecting
terms proportional to the identity and going into an interaction
picture with respect to the free Hamiltonian [the first two
terms in Eq. (1)], the Hamiltonian looks like

Ĥ ′
disp = −h̄d̂†[G+b̂† + G−b̂] + H.c.

− h̄d̂†[G+b̂e−i2�t + G−b̂†ei2�t ] + H.c.

− ih̄

g0
d̂†

[
dG+
dt

e−i�t + dG−
dt

ei�t

]
+ H.c.

− h̄

g0
[G2

+ + G2
− + 2G+G− cos 2�t]b̂†ei�t + H.c.

− h̄g0d̂†d̂[b̂†ei�t + b̂e−i�t ]

≡ Ĥ0 + Ĥrot + Ĥd + Ĥrf,G + Ĥq, (A2)

where here and in the following, we neglect time dependen-
cies of the amplitudes and the Hamiltonians in the notation for
convenience. Ĥ0 is the main interaction term and Ĥrot is the
interaction term that vanishes in the RWA. The two extra driv-
ing terms are given by Ĥd , the derivative term, and Ĥrf,G, the
radiation force term induced by G±. Ĥq is an interaction term
quadratic in the cavity quadratures. In the literature [13,14],
one usually neglects the driving terms and also performs a
so-called linearization using that in almost all cases G± 
 g0

to neglect the quadratic term. However, at this point we do not
assume anything about the different amplitudes and keep all
terms.

For the system parameters we use, the variance of the
photon number d̂†d̂ is small and the corresponding term in
Ĥq can be replaced by its expectation value 〈d̂†d̂〉, which we
treat in the following as another time-dependent parameter.
With that, we first notice that Ĥ0 and Ĥrot only involve terms
in which a single annihilation or creation operator from each
system appears, while the other three parts of the Hamiltonian
involve only a single operator of the cavity or resonator. This
has the consequence that the latter have no influence on the

variance of the quadratures and thus also not on the squeezing,
which means that they can be neglected when only consider-
ing squeezing. Although our numerical simulations show that
this is indeed the case, we also present a mathematical proof
in the following. This is done by going from the interaction
picture to the Heisenberg picture and by analyzing how the
different terms influence the time evolution of the quadratures.

We start by considering the master equation for observ-
ables in the Heisenberg picture, the so-called adjoint quantum
master equation [30]. Note that we denote the Heisenberg
picture version of observables in the following with a small
letter and an explicit time dependence. For an arbitrary ob-
servable Â, the adjoint master equation for the Heisenberg
picture version â(t ) reads (setting h̄ ≡ 1 in the following)

dâ(t )

dt
= i[Ĥ, Â]H +

∑
k

(
L̂†

k ÂL̂k − 1

2
{L̂†

k L̂k, Â}
)

H

+
(
∂Â

∂t

)
H

,

(A3)

where the index H denotes that all operators coming out of the
calculation are replaced by their Heisenberg picture version
at time t . Since the quadratures are all not explicitly time
dependent, the last term vanishes in all cases in the following.
With this equation, one can start to calculate the quadratures
in the Heisenberg picture.

We define the quadrature operators (in the interaction pic-
ture) in the following for the resonator as

X̂1 = 1√
2

(b̂† + b̂); X̂2 = i√
2

(b̂† − b̂), (A4)

and for the cavity as

Ŷ1 = 1√
2

(d̂† + d̂ ); Ŷ2 = i√
2

(d̂† − d̂ ), (A5)

with the commutators

[X̂1, X̂2] = i = [Ŷ1, Ŷ2]. (A6)

In the following, we apply Eq. (A3) to the quadrature
operators. Therefore, it is useful to rewrite the Hamiltonian
in terms of the latter. Introducing the abbreviations

G =
√

2

g0
[G2

+ + G2
− + 2G+G− cos 2�t] +

√
2g0〈d̂†d̂〉

	G = G− − G+
G = G− + G+

	α = −
√

2

g0

d	G

dt

α = −
√

2

g0

dG

dt
,

one can rewrite the Hamiltonian as

ĤXY = −(GŶ1X̂1 + 	GŶ2X̂2) − (GŶ1X̂1 − 	GŶ2X̂2) cos(2�t )

− (
GŶ1X̂2 + 	GŶ2X̂1

)
sin(2�t )

+ αŶ2 cos(�t ) − 	αŶ1 sin(�t )

− GX̂1 cos(�t ) − GX̂2 sin(�t )

≡ Ĥ0 + Ĥrot + Ĥd + Ĥrf, (A7)

013512-9



HALASKI, KRAUSS, BASILEWITSCH, AND KOCH PHYSICAL REVIEW A 110, 013512 (2024)

TABLE II. Commutators of the individual parts of the Hamiltonian with the quadrature operators of resonator and cavity.

Â i[Ĥ0, Â] i[Ĥrot, Â] i[Ĥd , Â] i[Ĥrf, Â]

X̂1 −	GŶ2 −GŶ1 sin(2�t ) + 	GŶ2 cos(2�t ) 0 −G sin(�t )

X̂2 GŶ1 +GŶ1 cos(2�t ) + 	GŶ2 sin(2�t ) 0 G cos(�t )

Ŷ1 −	GX̂2 −	GX̂1 sin(2�t ) + 	GX̂2 cos(2�t ) α cos(�t ) 0

Ŷ2 GX̂1 +GX̂1 cos(2�t ) + GX̂2 sin(2�t ) 	α sin(�t ) 0

where we combined Ĥq and Ĥrf,G into Ĥrf as they both act
as an effective radiation pressure force on the resonator. Us-
ing the commutator relations (A6), one can calculate the
commutators of the quadratures with the individual terms in
the Hamiltonian. We summarized them in Table II. One can
see that the interaction terms Ĥ0 and Ĥrot only contain two
quadratures, such that the commutators yield only terms with
a single quadrature. The extra driving terms Ĥd and Ĥrf only
involve a single quadrature operator in each term, and thus
the commutator with any quadrature yields in this case a
scalar multiple of the identity, which one can see in the two
columns on the right. This implies that for all times, x̂1(t ) only
has contributions that involve a single quadrature or that are
proportional to the identity. Further, since the identity operator
is always mapped to itself, the driving terms do not contribute
to the terms involving quadratures and thus have no influence
on the squeezing. In the following, we exemplify this in a
general way for the X̂1-quadrature, since this is the one to be
squeezed in the main text, although the same can be done for
the other three quadratures.

For the full time evolution, one also needs to calculate the
nonunitary part. We again summarized the contributions in
Table III. Using Tables II and III and inserting the expressions
into Eq. (A3), the equation of motion for the Heisenberg
picture quadrature x̂1(t ) reads

dx̂1(t )

dt
= − ŷ1(t )G sin(2�t ) − ŷ2(t )	G[1 − cos(2�t )]

− �

2
x̂1(t ) − G sin(�t ). (A8)

Similar expressions can be obtained for x̂2(t ), ŷ1(t ), and
ŷ2(t ). Now one can use that at t = 0, i.e., before switching on
the driving fields, all operators coincide in the Heisenberg and
Schrödinger picture. This allows to divide the time evolution
into two parts, a part which is a linear combination of the
four quadratures with time-dependent weights and one part

TABLE III. Nonunitary part of the evolution of the quadratures
and the squared quadratures. Here, we defined the dissipative part as
LÂ = i[Ĥ , Â] + Ld Â.

Â Ld Â Â2 Ld Â2

X̂1 −�X̂1/2 X̂ 2
1 −�

[
X̂ 2

1 − (nth + 1/2)
]

X̂2 −�X̂2/2 X̂ 2
2 −�

[
X̂ 2

2 − (nth + 1/2)
]

Ŷ1 −κŶ1/2 Ŷ 2
1 −κ

(
Ŷ 2

1 − 1/2
)

Ŷ2 −κŶ2/2 Ŷ 2
2 −κ

(
Ŷ 2

2 − 1/2
)

proportional to the identity

x̂1(t ) = χ̂1(t ) + R1(t ) (A9)

with

χ̂1(t ) = [1 + a1(t )]X̂1 + a2(t )X̂2 + b1(t )Ŷ1 + b2(t )Ŷ2,

where a1(t ), a2(t ), b1(t ), b2(t ), and R1(t ) are some real func-
tions of time with an initial value of zero. Please note that we
put the time dependency into the scalar functions and used
the four time-independent quadratures (and the identity) as a
basis.

Assuming a structure for the other quadratures similar to
Eq. (A9),

x̂2(t ) = χ̂2(t ) + R2(t )

ŷ1(t ) = γ̂1(t ) + C1(t )

ŷ2(t ) = γ̂2(t ) + C2(t ),

and inserting this into Eq. (A8), one can observe that the
differential equation separates into two independent ones:

dχ̂1(t )

dt
= − γ̂1(t )G sin(2�t ) − γ̂2(t )	G[1 − cos(2�t )]

− �

2
χ̂1(t ), (A10)

dR1(t )

dt
= − C1(t )G sin(2�t ) − C2(t )	G[1 − cos(2�t )]

− �

2
R1(t ) − G sin(�t ). (A11)

Now it becomes apparent that the extra driving terms Ĥd and
Ĥrf indeed only influence R1(t ), R2(t ),C1(t ) and C2(t ), i.e.,
only the terms proportional to the identity.

In the variance, the square of the expectation value appears.
It reads

〈x̂1(t )〉2 = 〈χ̂1(t )〉2 + 2R1(t )〈χ̂1(t )〉 + R2
1(t ). (A12)

We now consider the second part of the variance, i.e., the
squared operator. The equation of motion reads

dx̂2
1 (t )

dt
= 2(X̂1i[Ĥ (t ), X̂1])H

− �
(
x̂2

1 (t ) − (nth + 1/2)
)

= 2

(
X̂1

{
i
[
Ĥ (t ), X̂1

] − �

2
X̂1

})
H

+ �(nth + 1/2). (A13)
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This equation looks very similar to

dx̂1(t )2

dt
= 2x̂1(t )

dx̂1(t )

dt
.

However, an extra constant arises from the decay on the
right-hand side of Eq. (A13). This demonstrates that in gen-
eral the squared operators evolve differently than the squares
of the evolved operators for systems undergoing dissipa-
tion. Therefore, we consider the constant in the following
as an inhomogeneity in the differential equation and show
that the homogeneous equation is indeed solved by x̂2

1 (t ) =
[x̂1(t )]2. To see this, we write out the commutators. With that,
Eq. (A13) becomes

dx̂2
1 (t )

dt
= −2[x̂1ŷ2](t )	G[1 − cos(2�t )]

− 2[x̂1ŷ1](t )G sin(2�t ) − �x̂2
1 (t )

− 2x̂1(t )G sin(�t ) + �(nth + 1/2), (A14)

where [x̂1ŷ1/2](t ) = (X̂1Ŷ1/2)H . Note that x̂1(t ) is known from
Eq. (A8) and independent of the other variables in Eq. (A14).
Now, we make the Ansatz

x̂2
1 (t ) = [x̂1(t )]2 + γ11(t ) (A15)

and similar for the other products of operators

[x̂ix̂ j](t ) = x̂i(t )x̂ j (t ) + γi j (t ) (A16)

[x̂iŷ j](t ) = x̂i(t )ŷ j (t ) + βi j (t ) (A17)

[ŷiŷ j](t ) = ŷi(t )ŷ j (t ) + ki j (t ), (A18)

where i, j ∈ {1, 2} and γi j (t ), βi j (t ), ki j (t ) are real functions
proportional to the identity with an initial value of zero.
What is left to show is that these actually fulfill the differ-
ential equations. We again take x̂2

1 (t ) as an example. Inserting

Eqs. (A16)–(A18) into Eq. (A14) yields

dx̂2
1 (t )

dt
= 2x̂1(t )

{
− ŷ2(t )	G[1 − cos(2�t )] − �

2
x̂1(t )

− ŷ1(t )G sin(2�t ) − G sin(�t )

}
+ [−2β11(t ) − 2β12(t ) − �γ11(t )

+�(nth + 1/2)], (A19)

!= 2x̂1(t )
dx̂1(t )

dt
+ dγ11(t )

dt
. (A20)

The bracket in the first two lines of Eq. (A19) exactly coin-
cides with Eq. (A8), which justifies the Ansätze in Eqs. (A16)
to (A18). Further, this yields a differential equation for
γ11(t ) as

dγ11(t )

dt
= −2β11(t ) − 2β12(t ) − �γ11(t ) + �(nth + 1/2).

(A21)

Similar equations can be written down for the other products
of two quadratures. This yields an important feature of the
solutions γi j (t ), βi j (t ), and ki j (t ). Since they are all initially
zero and obey a differential equation similar to Eq. (A21), they
are indeed only proportional to the identity and do not involve
any quadratures. More importantly, it also shows that γ11(t ) is
independent of the driving terms.

Finally, we can calculate the variance of the X̂1-quadrature
in the Heisenberg picture. Using Eqs. (A12) and (A15) yields

	X 2
1 (t ) = 〈

x̂2
1 (t )〉 − 〈x̂1(t )

〉2
= 〈

χ̂1(t )2 + 2R1(t )χ̂1(t ) + R2
1(t ) + γ11(t )

〉
− [〈χ̂1(t )〉2 + 2R1(t )〈χ̂1(t )〉 + R2

1(t )
]

= 〈χ̂1(t )2〉 − 〈χ̂1(t )〉2 + γ11(t ). (A22)

As shown earlier, χ̂1(t ) and γ11(t ) are independent of the driv-
ing terms. This in turn means that the three driving parts Ĥd ,
Ĥrf,G, and Ĥq in Eq. (A2) have no influence on the squeezing
and can thus be neglected. This yields the final Hamiltonian
in Eq. (3).
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