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Deep-learning-based recognition of composite vortex beams through long-distance
and moderate-to-strong atmospheric turbulence

Shen Cai , Zhihui Li, Zheqiang Zhong ,* and Bin Zhang
College of Electronics and Information Engineering, Sichuan University, Chengdu, Sichuan 610065, China

(Received 11 December 2023; accepted 24 June 2024; published 12 July 2024)

Orbital angular momentum (OAM), as a physical dimension of light, has been demonstrated to enhance the
channel capacity and turbulence resistance of free-space optical (FSO) communication. However, the channel
crosstalk in OAM-based FSO communication inevitably increases with transmission distance and turbulence
intensity. Here, we propose a deep-learning-based recognition of a composite vortex beam to extend the regime
of moderate-to-strong turbulence and long-distance FSO links. The composite vortex beam is generated by a
coherent combination of two subbeams carrying different helical charges and phase delays, providing its helical
charges and phase delay as new multiplexing dimensions and exhibiting better turbulence resistance compared
to a single subbeam. We also developed a modified regular network to achieve the high-accuracy recognition of
a composite vortex beam over a long distance at moderate-to-strong atmospheric turbulence. We believe that our
approach has potential in deep-learning-based OAM high-capacity communication systems.
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I. INTRODUCTION

Free-space optical communication (FSO) can achieve high
transmission rates, low latency, and high security through the
modulation and demodulation of lasers [1]. Orbital angular
momentum (OAM), as a promising degree of freedom for
multiplexing data, has been utilized to achieve high-capacity
communication in free space [2–5]. However, OAM-based
FSO communication inevitably suffers from the issues of
atmospheric effects, including diffraction, refraction, atmo-
spheric extinction, pointing errors, and most importantly,
turbulence [6–9]. These adventure effects will scramble the
wavefronts of OAM modes and destroy the orthogonality
between the OAM channels. The deteriorated orthogonality
will increase the interchannel fading and crosstalk [10,11].
Consequently, it is challenging to realize OAM-based commu-
nication through the atmosphere, especially in long-distance
and moderate-to-strong turbulence [12,13].

As a potential approach, a composite vortex beam with
more complex spatial structures and degrees of freedom has
been proposed [14]. For instance, Huang et al. analyzed the
antiturbulence performance of a perfect vortex beam [15].
Zhu et al. used a beam with three-dimensional information
containing a phase delay, helical charge, and radial index
[16]. In addition, machine learning methods, such as sup-
port vector machines (SVMs) [17], artificial network (ANN)
[18], k-nearest neighbors [19], naive Bayes classification [20],
and convolutional neural network (CNN) [21,22] have been
utilized to enhance the performance of FSO systems. For
instance, Zhou et al. achieved a recognition of fractional-
order helical charges with a resolution of 0.1 and an accuracy
of 99.07% in weak turbulence at a transmission distance of
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1500 m [23]. Zhang et al. achieved the classification of an
arbitrary superposition of two OAM modes with random heli-
cal charges by training a small sample of images [24]. These
previous works are mainly focused on the regime of weak
turbulence, suitable for short-range high-rate FSO links [25].
Extending the regime to long-distance and moderate-to-strong
turbulence in FSO links is still challenging.

Here, we propose a deep-learning-based recognition of a
composite vortex beam to extend the regime to moderate-to-
strong turbulence and long-distance FSO links. The composite
vortex beam is generated by a coherent combination of two
subbeams carrying different helical charges and phase delay,
providing its helical charges and phase delay as new multi-
plexing dimensions and exhibiting better turbulence resistance
compared to a single subbeam. Our results indicate that by
properly selecting the helical charges and phase delay, the
composite vortex beam can achieve high recognition accuracy
even with long-distance and moderate-to-strong turbulence.

II. METHODS

A. Model of a composite vortex beam

The generation, transmission, and recognition of a com-
posite vortex beam is schematically illustrated in Fig. 1. By
the coaxial coherent combination of Laguerre-Gaussian (LG)
beams with different OAM modes and phase delays, a com-
posite vortex beam can be obtained, expressed as

Ec(r, θ, z) =
∑
i, j

Ep,mi (r, θ, z) + Ep,mj (r, θ, z)

× exp(i �ϕi, j ) (i �= j), (1)

where �ϕ(i, j) is the phase delay between the OAM mode mi

and mj .
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FIG. 1. Schematic illustration of FSO link using a composite
vortex beam.

In the composite vortex beam, the helical charges m(i, j)

and phase delay �ϕ(i, j) can be the multiplexing dimen-
sions, enhancing the channel capacity. Compared to a single
subbeam, the composite beam also can exhibit better turbu-
lence resistance, thus providing potential in long-distance and
moderate-to-strong turbulence.

Hereafter, we take the composite vortex beam obtained by
two LG beams as an example. The LG beam, with zero central
light intensity, a helical wavefront, and a relatively simple
structure, is expressed as

Ep,m(r, θ, z) =
√

2p!

π (p + |m|)!
1

w(z)

[
r
√

2

w(z)

]|m|
L|m|
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z
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)]
, (2)

where r, θ, z denote the radial distance, azimuth angle, and
transmission distance of the beam, respectively. w(z) denotes
the radius of the beam waist, which is given by w(z) =
w0

√
1 + (z/z0)2, w0 denotes the beam waist, z0 denotes the

Rayleigh distance, z0 = πw2
0/λ, λ denotes the wavelength

of the beam, and k = 2π/λ denotes the wave number. The
term (2p + |m| + 1) tan−1(z/z0) denotes the Gouy phase, m
denotes the OAM mode, helical charge, or angular exponent,
p denotes the radial exponent, and L|m|

p denotes the Laguerre
polynomial of the contraction,

L|m|
p (x) = (−1)|m| d |m|

dx|m| Lp+|m|(x). (3)

Consequently, the composite vortex beam can be expres-
sed as

Em1,m2 (r, θ, z) = Ep,m1 (r, θ, z) + Ep,m2 (r, θ, z) exp(i�ϕ).
(4)

According to Eq. (4), the intensity distributions of the
composite vortex beam with different OAM modes and phase
delays are illustrated in Fig. 2. In Figs. 2(a)–2(d), the com-
posite vortex beam, generated by the superposition of an
OAM beam with m1 = −1, m2 = 1, exhibits two petals and
is rotated clockwise by π/4. Similarly, in Figs. 2(e)–2(h), the
composite vortex beam, generated by the superposition of an
OAM beam with m1 = −1, m2 = +2, and a phase delay of
�ϕ = π/2, has three petals and is rotated clockwise by π/6.

FIG. 2. Composite vortex beams: (a)–(d) m1 = −m2 = 1, (e)–
(h) m1 = −1, m2 = +2. The parameters are wavelength λ = 632.8
nm, beam waist w0 = 15 cm, and radial index p = 0.

In Fig. 2, it can be concluded that by changing the phase
delay of the LG beams, the composite vortex beam will rotate
�ϕ/|m1 − m2| clockwise (�ϕ > 0) or anticlockwise (�ϕ <

0). The rotation angle is dependent on both the phase delay
and the OAM modes. The recognition of such composite vor-
tex beam can be achieved by identifying the number of petals,
and the phase delay can be obtained by the pattern recognition
of the composite vortex beam. However, previous works have
primarily focused on identifying the helical charge of the
vortex beam, but not the pattern recognition of a composite
vortex beam.

B. Propagation of a composite vortex beam through atmosphere

The transmission of light in the atmosphere can be nu-
merically calculated using multilayer random phase screens.
The power spectrum inversion method based on fast Fourier
transform is used for generating the random phase screen,
based on the von Kármán spectrum [26], expressed as

�n(κ ) = 0.033C2
n

exp
(−κ2/κ2

m

)
(
κ2 + κ2

0

)11/6 , (5)

where 0 � κ < ∞, κ0 = 2π/L0, κm = 5.92/l0.
The phase spectrum is obtained by the Markov approxima-

tion, expressed as

�(κx, κy, z) = 2πk2�z�n(κx, κy, z), (6)

where k = 2π/λ is the wave number, and λ is the wavelength.
In Eq. (5), �z is the propagation distance between sequential
phase screens.

Then, the phase screen P(x, y) can be written as

P(x, y) = IFFT[aR

√
�(κx, κy, z)], (7)

where IFFT is the inverse two-dimensional (2D) Fourier trans-
form, and aR is a complex uniform random matrix.

In this paper, the parameters for atmospheric turbulence are
as follows: The propagation distance is z = 10 km, the interval
distance is �z = 200 m, the outer scale is L0 = 10 m, and the
inner scale is l0 = 0.005 m. The refractive index structure con-
stants Cn

2 are set to 1 × 10−15 m−2/3, 1 × 10−14 m−2/3, and
1 × 10−13 m−2/3 for weak, moderate, and strong turbulence,
respectively.
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FIG. 3. Neural network structure of the modified RegNet-based
network. (a) Main structure of the proposed RegNet-based network.
(b) Structural diagram of each RegStage. (c) Structural diagram of
BottleNeck. (d) Structural diagram of ECA.

C. Modified RegNet-based network

Herein, to achieve the recognition of composite vortex
beam through long-distance and moderate-to-strong tur-
bulence, we have employed a modified regular network
(RegNet)-based network [27]. The network primarily involves
adjusting the model distribution by modifying the parameters
to derive varied network structures for addressing diverse
classification tasks. The key parameters include the number
of blocks in each RegStage di, the number of channels in the
output matrix of each RegStage wi, and the width of each
Group in the block g. By adjusting these parameters, network
performance can be optimized, and the number of parame-
ters in the model can be significantly reduced to accelerate
the training speed. In this paper, a modified RegNet-based
network is proposed for the recognition of composite vortex
beam, with the model framework illustrated in Fig. 3.

In the modified RegNet-based network, the image is first
input into the CBR_3 module for feature extraction, consist-
ing of Conv2d convolution, batch normalization (BN), and
ReLU activation function, denoted as the CBR_x module
in Fig. 3(a), where x represents the size of the convolution
kernel. Subsequently, the feature map is fed into the Body
consisting of four RegStages as depicted in Fig. 3(b), each

containing a BottleNeck_x structure resembling Fig. 3(c). The
distinction between BottleNeck_1 and BottleNeck_2 lies in
the addition of a Conv2d layer and a BN layer on the short-
cut branch in BottleNeck_1. Finally, for classification and to
avoid overfitting, the output of the body is fed into the global
average pooling and fully connected layer.

Compared with the original RegNet, the modified RegNet-
based network primarily enhances the grouped convolution
residual structure within each Block in RegStage, and inte-
grates the Efficient Channel Attention (ECA) module after the
grouped convolution [28]. This further focuses on the feature
distribution of the image and improves the feature extraction
ability of the model. The structure of the ECA model, illus-
trated in Fig. 3(d), is an effective channel attention mechanism
using a local cross-channel interaction strategy without di-
mensionality reduction. This approach conserves parameters
during cross-channel interactions and simultaneously avoids
channel cuts.

III. RESULTS AND DISCUSSION

Compared to a single vortex beam, the composite vortex
beam can provide more multiplexing dimensions and exhibit
better turbulence resistance. However, the proper selection
of OAM modes and phase delay is of importance. In this
work, to evaluate the performance of the modified RegNet-
based network on identifying the composite vortex beam, we
generate a data set corresponding to 80 classifications of a
composite beam consisting of nine OAM modes and multi-
ple phase delay, by fixing the helical charge of one of the
beams (m1 = −1) and adjusting the helical charge and the
phase delay of the other beam. In addition, in order to expand
the channel capacity while achieving a high recognition, we
evenly selected the phase delay for different combinations of
OAM modes. According to Fig. 2, the maximum rotation an-
gle φmax, denoting the angle between each petal, is expressed
as

φmax = 2π

|m2 − m1| , (8)

where m1 and m2 are the helical charge of beams.
We can easily find that the maximum rotation angle φmax

decreases with increasing OAM mode, so that the rotation
angular interval φ should decrease corresponding to the OAM
mode to maintain its high recognition. The rotation angular
interval φ is defined as

�φ = φmax

N
, (9)

where N is the channel number for each combination of OAM
modes.

According to the relationship between angle and phase, we
can calculate calculate the phase delay interval, expressed as

�ϕ = 2π

N
= �φ|m2 − m1|. (10)

Equations (8)–(10) show a complete relationship between
the phase delay interval as well as the rotation angle. We
can know that both of them can be changed by changing the
combination of the number of channels and the number of
topological charges.
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TABLE I. Combinations of OAM modes and corresponding
channel number and phase delay interval.

Combinations Channel number Phase delay interval

(−1,+1) 32 π

16

(−1,+2) 16 π

8

(−1,+3) 8 π

4

(−1,+4) 8 π

4

(−1,+5) 8 π

4

(−1,+6) 4 π

2

(−1,+7) 2 π

(−1,+8) 2 π

As the phase interval decreases, for a specific combination
of helical charges, the number of channels increases, lead-
ing to a reduction in the angular interval. This suggests that
the differences between the images become smaller, facing a
greater challenge for the neural network in terms of identi-
fication. After many attempts and training, we have selected
the combination of OAM modes and corresponding channel
number given in Table I for an example. Figure 4 also gives
the maximum rotation angles and the rotation angular interval
corresponding to each combination of OAM modes.

From Fig. 4 and Table I, it can be seen that both the
maximum rotation angle and the phase delay interval decrease
with an increase of OAM modes, while the rotation angle
interval tends to increase with an increase of the selected
channel number, indicating the importance of choosing a
proper channel number. This is because the maximum rotation
angle of the combination of large OAM modes is very small,
and the neighboring petals within the rotating beam are very
close to one another. Under strong atmospheric turbulence, the
petals are easily twisted and destroyed, and may interfere with
each other, making it impossible to maintain high recognition
accuracy.

FIG. 4. Maximum rotation angle and rotation angular interval for
each combination of OAM modes.

FIG. 5. Degraded images in simulations with different helical
charge combinations, from (I) to (III) for weak, moderate, and strong
turbulence, respectively. (a) Beam waist w0 = 0.03 m, propagation
distance z = 1 km. (b) Beam waist w0 = 0.15 m, propagation dis-
tance z = 10 km.

A. Simulation results and analysis

The simulation generates 34 000 degraded images across
80 classifications, in which the training set and the test set
are divided in an 8:2 ratio, containing three kinds of tur-
bulence strengths, weak (1 × 10−15 m−2/3), moderate (1 ×
10−14 m−2/3), and strong (1 × 10−13 m−2/3). To optimize the
performance of the network under moderate-to-strong tur-
bulence, the data set includes images at weak, moderate,
and strong turbulence in a ratio of 1:2:5. The degraded im-
ages with diverse helical charge combinations with different,
through weak, moderate, and strong turbulence, are shown in
Fig. 5.

From Fig. 5(a), it can be found that the degradation of the
images in (I)–(III) increases with an increase of turbulence
intensity, but the degraded images can still be distinguished.
On the contrary, Fig. 5(b) shows the simulation results of
laser beams with a propagation distance of 10 km. Compared
with Fig. 5(a), the degradation in Fig. 5(b)(II) propagated
under long-distance and moderate turbulence is more serious.
In addition, the degraded image in Fig. 5(b)(III) propagated
by strong turbulence over a long distance has been severely
distorted.

In order to accurately evaluate the recognition performance
of the modified RegNet-based network, we used the recogni-
tion accuracy, expressed as

accuracy =
∑N

n−1 f (n)

N
× 100%, (11)

f (n) =
{

1, ln = l∗
n ,

0, ln �= l∗
n ,

(12)

where ln is the real label corresponding to the degraded LG
beam image, l∗

n denotes the classification label predicted by
the network, and n is the label number. We first trained the data
set in Fig. 5(a) under different turbulence at a short distance
of 1 km, and then we found the recognition efficiency quickly
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FIG. 6. Schematic diagram of simulation results. (a) Schematic
diagram of the loss function and recognition accuracy while training.
(b) Recognition accuracy of propagation in turbulence channel with
different turbulence intensities.

reaches 100% after 3 epochs, which initially proved that our
proposed neural network structure and classification method
are effective. Later, we trained the network using the data
in Fig. 5(b) under different turbulence at a short distance of
10 km to further demonstrate the feasibility of our approach,
and the training results are shown in Fig. 6.

In Fig. 6(a), both the loss function values and the accuracy
on the validation set after 10 epochs of network iterations are
shown. Subsequently, we explored the relationship between
the accuracy of OAM recognition and turbulence intensity
in Fig. 6(b). Our investigation revealed that the recognition
accuracy can reach approximately 100% in both weak and
moderate turbulence intensities, while achieving 93.23% in
strong turbulence. As turbulence intensity increases, recog-
nition accuracy decreases to a certain extent, attributed to
the severe deformation and fragmentation of the composite
vortex beam under strong turbulence, making adequate feature
extraction challenging for the neural network.

FIG. 7. Schematic diagram of the loss function and recognition
accuracy while training. Transmission distance z = 10 km, (a) beam
waist size w0 = 0.12 m, and (b) beam waist size w0 = 0.18 m.

Since the size of the beam waist affects the divergence
angle, it also affects the result of beam degradation and the
recognition result of the network considering the practical
effects. In order to verify the recognition capability of our
network structure under different sizes of beam waist, we
set the beam waist size w0 to 0.12 and 0.18 m in addi-
tion to w0 = 0.15 m. The training results are presented in
Fig. 7.

Under the same training set structure, the recognition accu-
racy reaches 90.3% and 96.5%, respectively, in Figs. 7(a) and
7(b). This indicates that our network is suitable for composite
LG beam recognition under different practical conditions.

It is noteworthy that despite training our neural network
for long distances and in moderate-to-strong turbulence, our
model performs well, as demonstrated in Table II.

Table II shows a comparison of recent works and our work.
It is noteworthy that Ref. [23] and our work achieved a sim-
ilar recognition accuracy under a turbulence intensity of 1 ×
10−15 m−2/3. Moreover, Refs. [30,31] were both tested under
a turbulence intensity of 1 × 10−14 m−2/3, while Ref. [31] is
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TABLE II. Comparison of recent works and our work.

Reference Distance Turbulence intensity Mode amount Recognition accuracy

[23] 1500 m 1 × 10−15 m−2/3 10 99.07%
[29] 1000 m 1 × 10−14 m−2/3 30 85.83%
[30] 2000 m 1 × 10−14 m−2/3 16 87.73%
[31] 1500 m Up to 5 × 10−14 m−2/3 10 85.30%

1 × 10−15 m−2/3 99.55%
This work 10000 m 1 × 10−14 m−2/3 80 99.47%

1 × 10−13 m−2/3 93.23%

tested with a transmission distance of 2000 m, and the max-
imum turbulence intensity of Ref. [32] is 5 × 10−14 m−2/3.
Consequently, our work demonstrates the ability to enhance
channel capacity and achieve high recognition rates even over
long distances and in moderate-to-strong turbulence. This en-
hancement can be attributed to two factors: the construction of
an appropriate data set, which involved optimization of helical
charges and rotation angle, and the use of a modified RegNet.

Furthermore, we investigated the difference in recogni-
tion accuracy between different classifications of the images
shown in Fig. 8.

According to Fig. 8, we attribute the superior recognition
accuracy of our model to our pattern classification method,
which leverages two distinct features: rotation angle and
helical charge. The significant differences in characteristics
between each helical charge combination contribute to the
effectiveness of our approach. Each composite beam exhibits
a unique intensity distribution, enabling our CNN-trained neu-
ral network model to maintain accurate classification even
when the light intensity distribution is disrupted by strong
turbulence. Consequently, in future work, we aim to further
reduce the angular spacing of the dual-mode beams, allowing
for the utilization of each helical charge combination.

B. Experimental results and analysis

The diagram of the experimental setup is shown in
Fig. 9(a). In our experimental setup, using the method in

FIG. 8. Representative classifications and corresponding recog-
nition accuracy.

Ref. [32], we initially generate the original images corre-
sponding to 80 composite vortex beams. Subsequently, we
employed the Gerchberg-Saxton (GS) algorithm to generate
the Fresnel holograms. The Gaussian laser beam exits through
the polarizer and small aperture diaphragm and then passes
through the beam expander mirror before going to SLM1 to
be modulated by an OAM hologram, and after that it passes

FIG. 9. (a) Schematic diagram of the experimental setup. SLM:
spatial light modulator. CMOS: complementary metal-oxide semi-
conductor. (b) Degraded experimental images with different helical
charge combinations, from (I) to (III) for weak, moderate, and strong
turbulence, respectively. (c) Schematic diagram of the loss function
and recognition accuracy.
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through the phase screen loaded on SLM2 and receives the
image at the CMOS camera.

In order to simulate a realistic atmospheric transport envi-
ronment, a set of phase screens consisting of three different
turbulence intensities were generated from Eqs. (5)–(7) in this
study. The experimental parameters are set as follows: Both
the SLMs’ resolutions are Nx × Ny = 1272 × 1024, wave-
length λ = 632.8 nm, inner scale l0 = 0.005 m, outer scale
L0 = 10 m, and turbulence screen interval �z = 1000 m.
With different modes of holograms, we loaded different turbu-
lence screen images and constructed the data set by capturing
the images at the CMOS.

As in Fig. 5, we can see that for moderate and strong tur-
bulence in Figs. 9(b)(II) and 9(b)(III), there is some degree of
degradation compared to the weak turbulence in Fig. 9(b)(I),
and the degradation in Fig. 9(b)(III) is more severe under
strong turbulence than the degraded image under moderate
turbulence in Fig. 9(b)(II).

In total, a total of 16 000 images were captured at the
CMOS under different turbulence intensities using holograms
of 80 OAMs, out of which 3200 images were used as the test
set and the remaining 12 800 images were used as the training
set. A total of 10 epochs of training were carried out with a
total time of 1590 s, and the relationship between the loss
function and the accuracy on the validation set is shown in
Fig. 9(c).

From Fig. 9(c), we can find that the recognition accuracy
reaches 100%, which is the same as our simulated data set,
and this demonstrates the correctness of our classification
method.

IV. CONCLUSION

In conclusion, we have proposed the deep-learning-based
recognition of a composite vortex beam through long-distance
and moderate-to-strong turbulence. Our approach involves the
simultaneous recognition of helical charges and the phase
delay of the composite vortex beam. To maintain high recog-
nition accuracy, the OAM modes and phase delay have been
carefully selected, and the data set is also specifically de-
signed. In the simulation, we achieved a recognition accuracy
of 93.23% for different OAM modes through a 10 km distance
of moderate-to-strong turbulence. Furthermore, experimental
results confirmed the method’s effectiveness, with a recog-
nition accuracy of 100% over a strong turbulence channel.
Both the simulation and experiment demonstrate that by
appropriately choosing the helical charge and phase delay,
the composite vortex beam can maintain high recognition
accuracy over long distances and under moderate-to-strong
turbulence. We believe that our approach has the potential
to be applied in next-generation, deep-learning-based OAM
high-capacity communication systems.
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