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We investigate the existence and stability of vortexlike collective excitations in nonlinear (NL) multicore fibers
(MCFs). We focus on realistic cored and coreless hexagonal MCFs where every core operates in the single-mode
regime while displaying polarization degeneracy. We model the propagation dynamics of vortex fields in such
MCF structures by NL discrete Schrödinger equations, finding families of homogeneouslike NL vortex fields
with constant power distribution over peripheral cores. By analyzing the stability of such collective modes with
distinct topological charges against perturbations, we find that they are all unstable. We further investigate the
existence and stability of inhomogeneous NL vortex fields, finding only one stable nonspinning localized NL
mode with vanishing topological charge in a narrow power range only for cored hexagonal MCFs. Our results are
relevant for the manipulation and control of collective excitations in NL MCFs, indicating that self-organization
into stable localized collective modes can be exploited in innovative MCF-based communication systems.
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I. INTRODUCTION

Optical vortices (OVs) hold significant potential for a wide
range of applications, e.g., high-capacity optical communica-
tions [1,2], microscopy [3,4], and information transmission
[5]. Optical-vortex-based traps are routinely used in biology
and medicine for the micromanipulation of living cells [6]
and chromosomes [7]. Moreover, OVs enable micromachine
management without external mechanical contact in a sealed
environment [8]. In addition, due to their intensity and phase
features, OVs are promising for applications in optical switch-
ing, modulation, and sensing. Indeed, they possess an intrinsic
phase vorticity characterized by an integer winding number
[9], also called topological charge (TC), that can be adopted,
e.g., for spatial-division multiplexing. Because the OV wave
front encompasses a screwlike motion determined by the TC,
its propagation results in circular energy flow accompanied by
orbital angular momentum (OAM) [10–14].

In nonlinear (NL) media, the balance between diffraction
and self-focusing nonlinearity can lead to the formation of
localized self-sustaining waves, known as spatial solitons.
Solitons with embedded OAM, also named vortex solitons [9],
are not stable in homogeneous NL media owing to azimuthal
instability produced by focusing nonlinearity [15,16]. Diverse
mechanisms, e.g., NL potentials [17], nonlocality [18,19], and
two-photon absorption [20], can be employed to hamper az-
imuthal instability. Moreover, twisted waveguide arrays with
discrete rotational symmetry [21] and two-dimensional opti-
cally induced photonic lattices [22,23] support stable discrete
vortex soliton formation.
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Multicore fibers (MCFs), consisting of multiple cores em-
bedded within the same cladding, can support vortex fields,
particularly promising for spatial-division multiplexing in
high-capacity fiber-optic communication systems [24–27].
The interplay between NL optical dynamics and phase vor-
ticity can be accounted by the discrete NL Schrödinger
equation (DNLSE) in the weak-coupling approximation
[2]. Moreover, the DNLSE enables one to account for
nonlinearity-induced thermalization [28–30], wave condensa-
tion and turbulence [31–33], spatiotemporal pulse compres-
sion [34,35], and beam self-cleaning [36–38] in multimode
fibers.

Here we investigate theoretically the existence, stability,
and localization properties of discrete OVs (DOVs) in cored
and coreless hexagonal MCFs operating in the single-mode
regime and with polarization degeneracy. By assuming weak
Kerr nonlinearity and coupling between the fiber cores, we
model optical propagation by DNLSEs, finding diverse fam-
ilies of homogeneouslike NL DOVs with distinct TCs and
uniform power distribution over peripheral cores. By analyz-
ing the stability of such NL DOVs over propagation, we find
that they are unstable. Such a stability scenario hints at the
possible existence of localized NL modes with nonuniform
power distribution over peripheral cores, which we investi-
gate systematically by a Newton-Raphson algorithm finding
diverse inhomogeneous NL DOV families. Finally, we investi-
gate the stability of such NL DOVs under perturbation, finding
that only NL DOVs with vanishing TC can be stable in cored
hexagonal MCFs within a narrow power range. Our results are
relevant for NL self-cleaning applications in MCFs.

II. MODEL

We focus on (a) coreless and (b) cored hexagonal MCFs
composed of (a) N = 6 peripheral cores and (b) a central
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FIG. 1. (a) Setup of the considered MCFs composed of N = 6
(coreless) peripheral cores and a (cored) central core. Every core has
a doped silica base and a radius r0 = 5 µm, and the intercore distance
is assumed to be d = 15 µm. The core (nI = 1.4446) and cladding
(silica with different doping concentration nO = 1.4420) refractive
indices are approximated to their value at wavelength λ = 1.5 µm.
(b) Dependence of the effective NL coefficient γ (λ) as a function of
the vacuum wavelength λ for the HE11 mode of every core. The inset
shows the intensity spatial profile. (c) Wavelength dependence of the
core propagation constant β(λ) (blue dashed curve) and coupling
coefficient C(λ) (red solid curve).

core with radii r0 = 5 µm and intercore distance d = 15 µm
[see Fig. 1(a)]. We assume realistic hexagonal MCFs where
every core is composed of germanium-doped silica (with re-
fractive index nI = 1.4446 at λ = 1.5 µm), while the cladding
is based on the same material with distinct germanium dop-
ing (with refractive index nO = 1.4420 at λ = 1.5 µm). Our
main results below refer to λ = 1.5 µm and we highlight
that dispersion of germanium-doped silica should be taken
into account to attain consistent results for different operating
wavelengths. We emphasize that in typical hexagonal MCFs
currently adopted for optical communications, the intercore
distance d is larger in order to attain weak coupling and
hamper nonlinear effects by coupling noise. However, be-
cause we aim at investigating collective NL dynamics in the
considered MCFs, we focus here on a realistic configuration
where coupling is higher (equivalent to a centimeter length
scale) and we can safely neglect coupling noise. Moreover, we
focus on ultrafast excitation with greater than 10 ps duration
such that dispersion is negligible and we can model optical
propagation in the slowly varying envelope approximation
neglecting group-velocity dispersion [39–41]. Owing to the
small refractive-index variation between core and cladding
media �n = nI − nO, every MCF core behaves like a weakly
guiding step-index optical fiber [42] supporting only one
mode (with polarization degeneracy), which couples with the
other cores’ modes. Indeed, at the considered wavelength
λ = 1.5 µm, every core supports only one HE11 mode [see

the inset in Fig. 1(b)], with linear propagation constant β =
6.051 µm−1 and polarization degeneracy. Collective excita-
tions in the considered systems arise from intersite linear
coupling and on-site Kerr nonlinearity, which can be modeled
by DNLSEs for the optical field with amplitudes φ

( j)
w (here

j = 1, 2 labels the two distinct polarizations of light in every
core) at the core sites labeled by the index w (w = 0 indicates
the central core, while w = 1, . . . , N indicates the peripheral
cores). Note that, owing to the periodicity of the considered
system, the peripheral core amplitudes satisfy periodic bound-
ary conditions (BCs) φ

( j)
w = φ

( j)
w+6 (for w > 0 since we label

the core by w = 0). Explicitly, DNLSEs for the considered
systems are given by

i∂zψ
( j)
w + C

(
ψ

( j)
w+1 + ψ

( j)
w−1 + ψ

( j)
0

)

+ γ
(∣∣ψ ( j)

w

∣∣2 + 2
∣∣ψ (3− j)

w

∣∣2)
ψ ( j)

w = 0, (1)

i∂zψ
( j)
0 + C

N∑
w=1

ψ ( j)
w + γ

(∣∣ψ ( j)
0

∣∣2 + 2
∣∣ψ (3− j)

0

∣∣2)
ψ

( j)
0 = 0,

(2)

where ψ
( j)
w = φ

( j)
w e−iβz is the rescaled field amplitude and z

is the longitudinal propagation direction of the considered
MCFs. Note that, owing to the cylindrical symmetry of the
MCF cores, linear intercore cross-polarization couplings van-
ish, while self-polarization couplings are degenerate [43] with
coefficients C = 4.11 cm−1 and explicitly given by

C = qOK0(qOk0d )

nIk0r2
0

(
q2

O − q2
I

)
K2

1 (qOk0r0)
, (3)

where qO,I =
√

(β/k0)2 − n2
O,I, k0 = 2π/λ, and Kn is the nth-

order modified Bessel function of the first kind. On-site Kerr
nonlinearity is accounted for by an effective NL parameter
accounting also for surface nonlinearity contributions [44],
explicitly given by

γ = 2πn2(k0/β )2

∫ ∞
0 ρn2(ρ)[2|e(ρ)|4 + |e2(ρ)|2]dρ∫ ∞

0 ρ Re[e(ρ) × h∗(ρ)] · êzdρ
, (4)

where ρ = |r − zêz|, with r = xêx + yêy + zêz the position
vector with components x = r · êx, y = r · êy, and z = r · êz

with respect to the unit vectors êx,y,z; n2(ρ) = n2
I �(r0 − ρ) +

n2
O�(ρ − r0), with �(x) the Heaviside step function; n2 =

2.7 × 10−20 W/m2 is the Kerr coefficient of silica; and e(ρ)
and h(ρ) are the electric- and magnetic-field complex vector
profiles of the considered HE11 modes, respectively, which we
do not report here for the sake of brevity. At the considered
wavelength λ = 1.5 µm we calculate numerically the integral
above, obtaining γ = 1.6 kW−1 m−1. The dimensionless pa-
rameters 1 and 2 in front of |ψ ( j)

w,0|2 and |ψ (3− j)
w,0 |2 indicate

the distinct self-polarization and cross-polarization NL con-
tributions, respectively. The wavelength dependences of the
NL parameter γ , core propagation constant β, and intercore
coupling coefficient C are illustrated in Figs. 1(b) and 1(c). We
emphasize that our approach applies to MCFs with cores sup-
porting single-mode propagation, while multimode dynamics
requires more sophisticated approaches beyond the DNLSE to
account for noise-induced random coupling within groups of
degenerate modes, e.g., Manakov equations [45].
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FIG. 2. Homogeneouslike NL mode profiles of the considered (a) cored (solid lines) and (b) coreless hexagonal MCFs (see Fig. 1) for TCs
m = 0, 1, 2 and fixed NL propagation constant μ = 6.052 µm−1. The inset shows the polarization-independent transverse power distribution
Pw of cored and coreless MCFs. (c) NL dispersion depicting the dependence of the total power P as a function of the propagation constant
correction �μ = μ − μl for m = 0 and m �= 0. Note that, while for m = 0 the NL dispersions of cored and coreless MCFs are distinct, they
coincide for m �= 0 due to the vanishing field amplitude at the central core.

III. DISCRETE OPTICAL VORTICES

A. Homogeneouslike NL modes

Homogeneouslike NL modes of Eqs. (1) and (2) are found
in the form of stationary DOVs with the TC m satisfying the
periodic BCs ψ

( j)
w = ψ

( j)
w+6 (for w > 0) by taking the ansatz

ψ ( j)
w = � ( j)ei(μz+hw), (5a)

ψ
( j)
0 = δm,0�

( j)
0 ei(μz+hw), (5b)

where δm,0 indicates the Kronecker delta function, � ( j) and
�

( j)
0 indicate the complex amplitudes of the j polariza-

tion peripheral and central core fields, respectively, μ is the
NL propagation constant of the considered DOVs, and h =
2πm/N . Note that, due to the vanishing cross-polarization
linear coupling and the global phase invariance of DNLSEs,
the relative phase between the two distinct polarization am-
plitudes is arbitrary. Inserting the above ansatz in Eqs. (1)
and (2), we get a system of four complex algebraic equa-
tions for the complex amplitudes � (1,2) and �

(1,2)
0 , which we

solve numerically by a Newton-Raphson algorithm enabling
the calculation of such complex amplitudes for every NL
propagation constant μ and TC m. In Figs. 2(a) and 2(b)
we illustrate the polarization-independent power distributions
Pw = P(1,2)

w = |ψ (1,2)
w |2 of the considered homogeneouslike

NL DOVs for (a) cored and (b) coreless MCFs with dis-
tinct TCs m and NL propagation constant μ. For such NL
DOVs, we further illustrate the dependence of the NL propa-
gation constant correction �μ = μ − μl over the total power
in Fig. 2(c), where μl = 2C cos h is the linear propagation
constant (for γ = 0). Note that, while m �= 0 modes (coin-
ciding for both cored and coreless hexagonal MCFs due to
the vanishing field amplitude at the core) display the common
linear �μ vs total power P = ∑

w Pw dependence, the NL
dispersion relation of m = 0 modes is more involved due
to the coupling with the central core. Indeed, owing to the
hexagonal structure, the central core is coupled to all the
peripheral cores, which conversely are coupled only to their
nearest neighbors. Such a distributed coupling of the central
core to all peripheral cores produces a NL �μ vs P depen-
dence for m = 0 NL DOVs (in cored MCFs). Moreover, such
localized NL DOVs present a localized peak at the MCF core

[see Fig. 2(a)] on top of a uniform peripheral background,
similarly to gray solitons.

B. Stability of homogeneouslike NL DOVs

In principle, the stability of homogeneouslike NL DOVs
may be investigated by the system Hamiltonian minima. How-
ever, in order to gain insight into the instability perturbations
and corroborate our numerical findings, we take the ansatz

ψ ( j)
w = (� ( j) + δ�

( j)
+ egz+ilw + δ�

j∗
− eg∗z−ilw )ei(μz+hw),

(6a)

ψ
( j)
0 = δm,0

(
�

( j)
0 + δ�

( j)
0+egz + δ�

j∗
0−eg∗z

)
eiμz, (6b)

where l is the arbitrary winding number of the perturbation
field and g is a complex coefficient whose real part Re(g)
indicates the longitudinal growth rate of small perturbations
with amplitudes δ�

( j)
± and δ�

( j)
0± . Inserting in Eqs. (1) and (2)

the ansatz above, with the assumptions |δ� ( j)
± | � |� ( j)

± | and
|δ� ( j)

0±| � |� ( j)
± |, we get the linearized homogeneous system

of equations M̂Hδ� = 0, where δ� is an eight-component
array containing the amplitude perturbations δ�

( j)
± and δ�

( j)
0± ,

and M̂H is a cumbersome 8 × 8 coefficient matrix that we do
not report here for the sake of brevity. Nontrivial solutions
are obtained by setting a vanishing discriminant detM̂H = 0,
leading to a complex NL algebraic equation for the growth
rate g. We solve numerically such an equation by a Newton-
Raphson algorithm, enabling us to calculate the gain spectrum
Re[g(l )] for every homogeneouslike NL DOV mode with total
power P, TC m, and every fixed perturbation TC l .

In Fig. 3(a) we plot the instability gain parameter Re(g)
as a function of the total power P for the considered cored
(solid line) and coreless (dashed line) hexagonal MCFs. Note
that, because the gain parameter is positive [Re(g) > 0], all
the considered extended DOVs are unstable since small-
amplitude perturbations are amplified over propagation. We
further confirm such calculations by the direct numerical
solution of Eqs. (1) and (2) by a fourth-order Runge-Kutta
algorithm provided with a perturbed NL DOV at the input.
In Figs. 3(b) and 3(c) we plot the results of such numerical
simulations for the considered cored and coreless hexagonal
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(c) m = 1.

MCFs, respectively, confirming the stability scenario provided
by linear stability analysis.

C. Inhomogeneous NL DOVs

The stability scenario described above indicates the exis-
tence of other localized NL DOVs with inhomogeneous power
distribution over the peripheral cores, similarly to discrete
solitons in extended waveguide arrays [46–48]. In order to in-
vestigate systematically the existence of such inhomogeneous
collective excitations, we take the ansatz

ψ ( j)
w = � ( j)(w)eiμz+ihw, (7a)

ψ
( j)
0 = δm,0�

( j)
0 eiμz+ihw, (7b)

where the peripheral core amplitudes � ( j)(w) are not uniform
but are dependent on the site w. Inserting the ansatz above
in Eqs. (1) and (2), one gets a system of 14 coupled NL
equations, which we solve numerically by a Newton-Raphson
algorithm for every propagation constant μ. We find several
families of inhomogeneous NL DOVs with distinct TCs m.
In Figs. 4(a) and 4(b) we illustrate their power distributions
for distinct TCs m = 0, 1, 2 and fixed propagation constant
μ = 6.052 µm−1 and fixed power P = 1 MW, respectively,
while in Fig. 4(c) we plot their NL dispersion relations �μ =
μ − βl vs total power P. Again, we emphasize that the re-
ported m = 0 NL DOVs refer to cored hexagonal MCFs (and
do not exist for coreless MCFs), while m �= 0 NL DOVs coin-
cide for both cored and coreless MCFs owing to the vanishing
field amplitude at the core. Note that m = 1, 2 NL DOVs
are peaked at two opposite peripheral cores and have lower
value at the other cores for the total power P = 1 MW. In
turn, owing to the doubled-peak nature of such NL localized
modes, they are of higher order with respect to the m = 0
(cored MCF) homogeneouslike NL DOVs presenting a power
peak at the central core embedded within a lower homoge-
neous power background [see Fig. 2(a)]. For comparison, in
Fig. 4(d) we plot the NL dispersion relations �μ vs P for
the m = 0 1© homogeneouslike and 2© inhomogeneous NL
DOVs, illustrated in Fig. 4(e) for P = 1.5 MW. Note that, as
discussed above, inhomogeneous solutions are of higher order
and exist above a critical power threshold where they bifurcate
from homogeneouslike solutions.

D. Stability of inhomogeneous NL DOVs

In order to investigate the stability of inhomogeneous NL
DOVs, we take the ansatz of Eqs. (5a) and (5b) with the pre-
scription that the peripheral core amplitudes � ( j)(w) depend
over the site w. Inserting the ansatz into Eqs. (1) and (2), we
linearize the ensuing 28 × 28 algebraic system of equations to
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FIG. 5. (a) Gain spectrum of inhomogeneous NL DOVs, where
the instability gain parameter Re(g) is plotted vs the total power P of
NL DOVs with distinct TCs m = 0, 1, 2 for fixed l = 2π/6. (b)–(f)
Propagation of randomly perturbed NL DOVs for TCs m = 0, 1, 2
with distinct total power labeled 1©– 8© in (a). The inset in (a) shows
a narrow stability window observed for m = 0 (cored MCFs).

obtain M̂Lδ� = 0, where the cumbersome M̂L matrix ac-
counts for the inhomogeneous NL DOV profiles, while the
28-dimensional array δ� contains the site-dependent per-
turbation amplitudes δ�

j
±(w) and δ�

j
0±(w). By calculating

numerically the eigenvalues of M̂L, we obtain the instability
gain spectrum g(l ) of every NL DOV, depending on the total
power P. In Fig. 5(a) we depict the dependence of the maxi-
mum gain coefficient Re(g) on the total power P of several NL
DOVs with distinct TCs m = 0, 1, 2 and fixed perturbation
winding number l = 2π/6. The solid (dashed) lines indicate
results corresponding to cored (coreless) MCFs. We find that
all NL DOVs are unstable except the nonspinning m = 0 NL
DOV within a narrow stability window [see Fig. 5(a) and its
inset] where Re(g) vanishes. We confirm such semianalytical
predictions by direct numerical solutions of Eqs. (1) and (2) by
a fourth-order Runge-Kutta algorithm propagating perturbed
NL DOVs of both cored and coreless MCFs at the input [see

Figs. 5(b)–5(i)]. Note that only type- 4© NL DOVs in cored
MCFs with total power P̄ � 0.99 MW remain stable upon
perturbation [see Fig. 5(e)], while other NL DOVs are unsta-
ble for both cored and coreless MCFs. We emphasize that the
power range centered at P̄ where stability is achieved depends
on the coupling coefficient C and the nonlinear parameter γ .
In turn, we can tailor such a stability window by modulating
the MCF core size and intercore separation. In particular, we
find that P̄ and its power range increase with C for fixed γ , i.e.,
by reducing the intercore separation d while keeping the core
radii r0 fixed. In turn, our analysis enables the identification of
the role played by intersite linear coupling and the on-site Kerr
nonlinearity, indicating that instability arises from such two
competing effects. Overall, instability reduces when power
is reduced and P̄ increases when the nonlinear coefficient is
reduced.

IV. CONCLUSION

We have investigated the existence and stability of vortex-
like NL collective excitations in cored and coreless hexagonal
MCFs operating in single-mode regime with polarization de-
generacy. By modeling propagation dynamics of such NL
fields through nonlinearly coupled discrete Schrödinger equa-
tions, we found families of homogeneouslike NL vortex fields
characterized by a uniform power distribution over peripheral
cores. Linear stability analysis of such collective modes upon
perturbations revealed that homogeneouslike NL modes are
unstable. We further extended our investigation to the exis-
tence of inhomogeneous NL waves with embedded vorticity,
finding that only one stable nonspinning localized NL mode
can become stable in a narrow power range for cored hexag-
onal MCFs, while radiation NL dynamics remains unstable
for coreless MCFs. Our results shed light on self-organization
properties into collective excitations in NL MCFs, indicating
that self-organization can be exploited to devise innovative
MCF-based communication systems. Furthermore, our anal-
ysis can find applications in other communication systems;
e.g., it can be useful to gain an understanding of self-cleaning
and thermalization in multimode fibers.
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