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We present a phase-compensation rule for achieving coherent control of frequency combs via high-order
harmonic generation (HHG). The phase-compensation rule is illustrated by performing the generation of
frequency combs via HHG from a hydrogen atom subjected to an intense laser pulse train. The numerical
technique involves accurate and efficient solution of the time-dependent Schrödinger equation by means of
the time-dependent generalized pseudospectral method. The results indicate that the frequency combs are fully
optimized by employing the proposed phase-compensation rule, allowing direct control and generation of
frequency combs with either the regular structure or the denser repetition combs. The performance of phase
compensation is evaluated by analyzing the dynamical evolution of the harmonic spectra driven by several
phase-compensation schemes. We believe that our findings serve as a guide for the experimental realization
of phase coherent control of frequency combs via HHG at extremely high repetition frequencies.
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I. INTRODUCTION

Frequency combs (FCs) are generated by a precisely regu-
lar sequence of laser pulses, resulting in an optical spectrum
composed of evenly spaced spectral lines that repeat [1,2].
FCs provide a highly accurate and versatile frequency ref-
erence with applications in time-frequency metrology [3],
direct frequency-comb spectroscopy [4], and sensing, coher-
ent control of atomic, molecular, and optical systems [5,6].
Expanding the range of FCs into the extreme ultraviolet
(XUV) spectral region is of great interest, as it would enable
wide-bandwidth frequency metrology and facilitate innova-
tive tests in quantum electrodynamics [7,8]. Accessing this
high-bandwidth comb directly is hindered by the limited
power of single-frequency lasers and the lack of media for
frequency up-conversion. However, coherent high-order har-
monic generation (HHG) from atomic and molecular systems
driven by intense laser pulse trains offers a viable method
for realizing XUV FCs in both theoretical and experimental
studies [9,10].

In recent studies, Kandula et al. [11] demonstrated the
generation of FCs in the XUV region. Carrera et al. [12]
investigated the influence of pulse number and laser intensity
on the structure of FCs generated through HHG. Our team
also reported the coherent enhancement of FCs by combining
infrared laser pulses with terahertz (THz) laser fields [13].
However, achieving higher average power and pulse repetition
rates in HHG remains a challenge. The intensity required
for HHG with repetition rates exceeding 100 MHz demands
lasers with average powers of several kilowatts [14]. Such
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a power level can be attained through laser amplification
technologies like chirped-pulse amplification [15], optical
parametric chirped-pulse amplification [16,17], and femtosec-
ond enhancement cavities [18,19]. To increase the repetition
rates and drive HHG efficiently, it is desirable to employ
shorter laser pulses [20,21]. However, for few-cycle pulses,
the accurate stabilization of the carrier-envelope phase (CEP)
becomes crucial [22], as the CEP effects significantly impact
the generation of precision FCs [23,24].

In addition, the pulse repetition rates have an inverse re-
lationship with the time interval between consecutive pulses,
which corresponds to the repetition frequency of the FCs. This
parameter is crucial in determining the precision of FCs [25].
Femtosecond enhancement cavities are commonly employed
by various laboratories for XUV frequency comb generation
[19]. These cavities ensure that the coherence property of the
fundamental drive laser is effectively transferred to the XUV
with the original repetition frequency of the FCs [14]. There-
fore, controlling the coherence of the laser pulses on short
timescales is a direct approach to achieving higher precision
FCs [20]. However, by increasing the pulse repetition rates to
attain higher-precision FCs, it presents challenges due to lim-
itations in average laser power and single-pulse intensity [26].
Previous works [27] have investigated the potential limitations
of decreasing pulse duration to increase the repetition rate in
HHG. The structure of the harmonic FCs arises from quantum
interferences among induced dipole pulses [28,29].

This paper presents a phase-compensation rule designed
to control the coherence of FCs generated through HHG.
The aim is either to improve the repetition combs or op-
timize the structure of the FCs. The phase-compensation
rule is evaluated by analyzing the dynamical evolution of
the harmonic spectra driven by various phase-compensation

2469-9926/2024/110(1)/013506(6) 013506-1 ©2024 American Physical Society

https://orcid.org/0000-0002-4657-0960
https://orcid.org/0000-0002-4471-5935
https://ror.org/01a099706
https://ror.org/01a099706
https://ror.org/03sxpbt26
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.110.013506&domain=pdf&date_stamp=2024-07-10
https://doi.org/10.1103/PhysRevA.110.013506


LIANG, HE, LI, AND LI PHYSICAL REVIEW A 110, 013506 (2024)

schemes. Based on the dynamical evolution of FCs via HHG
under the given phase-compensation schemes, we find the
general phase-compensation rule for the generation of FCs via
HHG with either regular structures or the denser combs.

This paper is organized as follows. In Sec. II, we briefly
introduce the theoretical methods. In Sec. III, the phase-
compensation rule designed to control the coherence of FCs
generated through HHG is discussed. Section IV contains
concluding remarks.

II. THEORETICAL METHOD

To demonstrate the phase-compensation rule, we employ
the laser pulse train as the driving laser field for the laser-atom
interaction. This process can be treated by solving the time-
dependent Schrödinger equation (TDSE) in atomic units:

i
∂ψ (r, t )

∂t
= Hψ (r, t ) = [H0 + V (r, t )]ψ (r, t ), (1)

where H0 represents the unperturbed Hamiltonian of the hy-
drogen atom, and V (r, t ) is the time-dependent interaction of
the electron with the laser field in the dipole approximation:

V (r, t ) = −E(t) · r = −zE (t ). (2)

Here, E (t ) is the laser pulse train defined as [30]

E (t ) =
N∑

n=1

E0F (t − nτ ) exp[i(ωct − nωcτ + n�φ)], (3)

E0 is the peak amplitude of the laser field, F (t − nτ ) is
the Gaussian envelope function which can be expressed as
F (x) = exp[−2(ln2)x2/τ0

2], τ0 is the full width at half maxi-
mum, N is the number of laser pulses, and the pulse-to-pulse
phase shift is given by �φ. To accurately and efficiently
solve the TDSE in spherical coordinates, we employ the time-
dependent generalized pseudospectral (TDGPS) method [31].
The TDGPS method utilizes the generalized pseudospectral
technique for nonuniform optimal spatial discretization of the
coordinates and the Hamiltonian using only a modest number
of grid points. The time propagation of the wave function un-
der this method is carried out using the split operator method
[32] in the energy representation:

ψ (r, t + �t ) � exp

(
−iH0

�t

2

)
exp

[
−iV

(
t + �t

2

)
�t

]

× exp

(
−iH0

�t

2

)
ψ (r, t ) + O(�t3). (4)

Once the time-dependent wave function is obtained, the
time-dependent induced dipole moment in the length and ac-
celeration forms can be calculated as

dL(t ) = 〈ψ (r, t )|z|ψ (r, t )〉, (5)

dA(t ) = 〈ψ (r, t )| − z

r3
+ E (t )|ψ (r, t )〉. (6)

The FC spectra via HHG can be obtained as follows:

P(ω) = 2ω4

3πc3
|d̃ (ω)|2, (7)

FIG. 1. Schematics of phase compensation for laser pulse trains.
(a) Phase-compensation scheme 1 involves the phase design between
each laser pulse by changing the phase of one laser pulse with the
given CEP (blue solid lines) in the laser pulse train. Here, E0 denotes
the phase without compensation for each pulse, while E1, E2, E3, E4,
and E5 represent different cases of phase compensation. (b) Phase-
compensation scheme 2 involves the phase design between each laser
pulse by changing the phase of two laser pulses with the given CEP
in the laser pulse train.

where d̃ (ω) is the Fourier transformation of the induced dipole
moment in the acceleration form dA(t ) divided by the number
of pulses N to scale to the one-pulse case [29,31]:

d̃ (ω) = 1

Nω2

∫ ∞

−∞
dA(t )e−iωt dt = 1

N

N∑
n=1

d̃n(ω), (8)

and d̃n(ω) is the spectral dipole moment calculated by the nth
dipole pulse.

III. RESULTS AND DISCUSSIONS

FCs’ structure of the harmonics arises from quantum in-
terferences among induced spectral dipole moments, and this
fundamental pattern remains unchanged regardless of the val-
ues of the pulse number N [12,28]. In this work, we focus on
the designing of phase-compensation schemes using five laser
pulse trains. Figures 1(a) and 1(b) show two different types
of schematics for phase compensation of laser pulse trains.
In Fig. 1(a), the phase compensation is achieved by changing
the phase of one laser pulse (blue solid lines) with a specified
carrier-envelope phase (CEP) π between four successive laser
pulses (red solid lines) as indicated by scheme 1. The phase
without compensation for each pulse is denoted as E0, and the
different cases of phase compensation are represented by E1,
E2, E3, E4, and E5. In Fig. 1(b), the phase compensation is
achieved by changing the phase of two laser pulses with the
given CEP between three successive laser pulses (red solid
lines), as indicated by scheme 2.

Figure 2(a) shows the FCs (pattern filled in red) near the
19th harmonic and the corresponding spectral phase without
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FIG. 2. FCs (pattern filled in red) near the 19th harmonic and the corresponding spectral phase (pattern with lines) for the phase-
compensation schemes 1 and 2 as shown in Figs. 1(a) and 1(b), respectively. For comparison, the FCs via HHG without the phase-compensation
case are depicted in panel (a). Panels (b) and (c) represent schemes 1 and 2, respectively. The driving laser field comprises five consecutive
pulses (N = 5) with an intensity of 0.8 × 1014 W/cm2. The laser wavelength used is 800 nm with a FWHM at 15 fs, and N is the number
of pulses. The quantum coherence of FCs are presented by the phases intersecting, marked by labels A (A′) and B (B′); the conical cross
section indicates the zoomed-in view of the intersection of several coherent phases of FCs. ωr is the repetition frequency of FCs. The notations
E0, E1, E2, E3, E4, and E5 have the same meanings as those shown in Fig. 1.

the phase-compensation case E0. In the simulation, the driving
laser field comprises five consecutive pulses (N = 5) with an
intensity of 0.8 × 1014 W/cm2. The laser wavelength used is
800 nm with a full width at half maximum (FWHM) at 15 fs,
and the repetition rate frep used is 5 THz (τ = 0.2 ps). The
repetition rate frep means pulse repetition frequency of the
pulse laser train; it is defined as the number of pulses emitted
every second, or the inverse temporal pulse spacing τ , and
it is inversely proportional to the pulse energy and directly
proportional to the average power. Higher repetition rates re-
sult in less thermal relaxation time at the focused spot, which
leads to more rapid material heating. The laser parameters
used are now available and provide a valuable research tool
for efficiently driving multiphoton processes.

The spectral phase θn(ω) is defined as the argument of the
Fourier transformation of the induced dipole moment shown
in Eq. (8):

θn(ω) = arg[d̃n(ω)]. (9)

For the FCs via HHG without phase compensation, the
structure of FCs includes a group of combs containing
two higher peaks and three interference substructures. The
spectral phases are represented as follows: red lines for
the laser pulse N = 1, green lines for N = 2, blue lines
for N = 3, yellow lines for N = 4, and violet lines for
N = 5. The phase intersecting, marked by A, B, and
B′, denote the quantum coherence of the FCs. Note that
the conical cross-section indicates the zoomed-in view of

013506-3



LIANG, HE, LI, AND LI PHYSICAL REVIEW A 110, 013506 (2024)

several coherent phases intersecting. The phase intersecting
means the same phases of harmonics generated by the differ-
ent pulses of laser trains. It implies that the phase-matched
harmonics are generated by the nth laser pulses. The phase
matching is very important to the enhancement of frequency
combs, and it is responsible for the frequency-comb struc-
tures. The label A represents all five phases intersecting
completely and indicates that the harmonic phases are fully
coherent, which leads to one high-pulse harmonic. The label
B represents three phases intersecting, and B′ represents two
phases intersecting. The phase coherence marked by B and B′
contributes to the same peaks of FCs. This implies that the
generation of FCs may come from two coherent channels for
E0 without phase compensation. The comb frequencies are
determined by ωk = kωr + ω0, where k is an integer index,
ωr is the repetition frequency, and ω0 is the offset frequency
[12,28]. ωr represents the spacing between adjacent high FC
peaks in HHG on the frequency scale. In Fig. 2(a), ωr is equal
to 5.0 THz, corresponding to the frequency range from the
harmonic order 18.9865 to 19.00 (0.0135 harmonic orders)
for a carrier wavelength of 800 nm.

Figure 2(b) depicts the FCs obtained via HHG with phase-
compensation cases E1 (E5) in scheme 1. In this cases, the
structure of FCs consists of a group of combs containing
two higher peaks and two interference substructures. The
spacing between adjacent high peaks is equal to 0.0135 har-
monic orders, corresponding to a repetition frequency ωr

of 5 THz. However, the FCs’ structure is irregular. The la-
bel A represents four phases intersecting and the label B
represents two phases intersecting. This indicates that the
phase-compensation cases E1 (E5) have two kinds of phase
coherence. For the FCs via HHG with the phase-compensation
case E2 (E4) in scheme 1, the structure of FCs includes a
group of combs containing two higher peaks and one in-
terference substructure. The label A represents four phases
intersecting and the labels B and B′ represent two phases
intersecting, respectively. The repetition frequency is 0.5ωr

(0.006 75 harmonic orders) with irregular FC structure. For
the phase-compensation case E3, the structure of FCs includes
a group of combs containing three higher combs without
interference substructures. The frequency space of the FC is
0.44ωr and 0.56ωr , respectively. The label A represents four
phases intersecting and the label B represents three phases
intersecting. Although the cases E1 (E5) and E3 have similar
coherent channels A with four phases intersecting, the inter-
secting of these phases comes from the different driven-laser
cases, so the structures of the FCs are different.

Figure 2(c) displays the FCs near the 19th harmonic and
their corresponding spectral phases for the phase compensa-
tion in scheme 2, as shown in Fig. 1(b). For the FCs obtained
via HHG with the phase-compensation case E1 (E4), the
structure of FCs includes a group of spectra containing three
intense combs with 0.675ωr and 0.325ωr , and the structure
of the FCs is irregular. The higher peaks of the FCs have
spectral phases originating from two coherent channels, la-
beled as A and A′. The low substructures only have one
coherent phase channel, labeled as B. In the case of FCs
obtained via HHG with the phase-compensation case E2 (E3),
the structure of the FCs includes a group of spectra containing
two high peaks and one very low subpeak. The repetition
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FIG. 3. FCs near the 19th harmonic with the variations δ

(|�1 − �2|) of the neighbor phase difference of two laser pulses.

frequency is 0.5ωr by comparing with the case E0, and the
structure of the FCs is very regular. All spectral phases origi-
nate from two coherent channels, A and A′, where channel A
represents two phases intersecting and channel A′ represents
three phases intersecting. This implies that two different types
of phase coherence contribute to the main spectral peaks in
the phase-compensation case E2 (E3), which leads to regular
FC structures. Within a certain frequency range, the smaller
the interval between two comb teeth, the more comb teeth
there are, indicating the denser repetition combs of the FCs.

From the discussions about Figs. 2(b) and 2(c), it is appar-
ent that the structure and the repetition frequency of the FCs
can be manipulated through phase compensation of the laser
pulse train. Based on the analysis of the phase-compensation
schemes 1 and 2, we have derived a general rule for phase
compensation in arbitrary laser pulse trains, which can be
expressed as follows:

φn − φn−1 = �1 φn+1 − φn = �2, (n = 2, 3, 4, . . . , N ),

δ = |�1 − �2| = π, (10)

where φn is the phase of the arbitrary laser pulse, n is the
index of laser pulses (n � 2), and �1 and �2 denote the
phase difference of the arbitrary two adjacent laser pulses.
δ is the subtraction of the neighbor phase difference of two
laser pulses. The phase compensation is good only when δ is
specifically equal to a constant π .

To confirm the rule of the phase compensation as shown
in Eq. (10), we present the FCs near the 19th harmonic with
the variations δ (|�1 − �2|) of the neighbor phase difference
of two laser pulses. Here, the choice of the phase of the first
pulse φ1 and the second pulse φ2 may be arbitrary, leading to
the arbitrariness of �1 and �2. δ is equal to 0, π/4, and π/2
as shown in Fig. 3 . For the reference, we present that the δ

is equal to π . We find that, only for δ = π , the FCs either
have the regular structure or the denser repetition combs.
Therefore, the phase-compensation rule is a general principle.
In addition, we find that the intensity of harmonic spectra will
be lower while the δ is not equal to zero. This implies that the
quantum interferences not only affect the FC structure but also
affect the intensity of the frequency comb spectra, and similar
results can be found in Ref. [29].
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FIG. 4. FCs near the 19th harmonic are shown for the phase-
compensation case E2 (E3) with the changing number of laser pulse
trains in scheme 2. (a) For the odd laser pulse trains. (b) For the even
laser pulse trains.

In Figs. 4(a) and 4(b), we check the sensitivity of the phase
compensation to the number N of the laser pulse, we show
the FCs near the 19th harmonic for the phase compensation
E2 (E3) in scheme 2 when the number of laser pulse trains is
changed. For the case of the odd pulse trains, results similar
to those of the discussion above have been obtained. For the
case of the even pulse trains, the peaks of FCs appear to shift,
and the shift is very obvious in the case of the small pulse
number N , but the structures of FCs with phase compensation
cannot be changed when the number N is larger than 10.
It is demonstrated that the schemes of phase compensation
produce a more stable FC structure in a larger number of laser
pulse trains.

To explain the spectra shift of FCs in the case of a
small even number of laser pulse trains, we calculate the
phase differences of FCs in the vicinity of the 19th harmonic
(H18.9898) marked by the black dashed line in Fig. 4 in the
cases of either the odd pulse trains or the even pulse trains,
respectively. In calculation, the harmonic spectral phase dif-
ferences can be obtained by Eq. (9). For the phase differences
of FCs generated by the odd pulse trains as shown in Fig. 5(a),
the values are always located at around 1.5π . However, for the
phase differences of FCs generated by the even pulse trains
as shown in Fig. 5(b), the values have a sharp oscillation
in the case of a smaller number of laser pulse trains. The
phase differences of FCs are closing 1.5π with increasing
the number of laser pulse trains, and it becomes more stable
when the number of laser pulse trains is larger than 10. For
the comparison, the phase difference of FCs generated by ten
laser pulse trains (N = 10) is marked by an arrow in Fig. 5(a).
Our results indicate that the coherent interference from the
unstable phase differences of each adjacent laser pulse leads
to the shift of comb teeth.

1.25

1.50

1.75

(a)P
ha

se
 D

iff
er

en
ce

 (π
)

1.25

1.50

1.75

(b)P
ha

se
 D

iff
er

en
ce

 (π
)

Harmonic order

N=3 N=5 N=7 N=9

N=4 N=6 N=8 N=10

N=10

FIG. 5. Phase differences of FCs in the vicinity of the 19th har-
monic (H18.9898) marked by the black dashed line in Fig. 4. (a) For
the odd laser pulse trains. (b) For the even laser pulse trains.

IV. CONCLUSION

In summary, we have established a phase-compensation
rule by analyzing the dynamical evolution of the harmonic
spectra driven by various phase-compensation schemes. This
rule represents a general approach for phase coherent control
of FCs via HHG driven by a larger number of pulse trains.
Our results demonstrate that the FCs can be fully optimized
by applying the designed phase-compensation rule, facilitat-
ing direct control and generation of FCs with either regular
structure or denser repetition combs, and this FC structure
appears within each of the harmonics, ranging from the first
harmonic to the cutoff harmonic. Obviously, the proposed
phase difference in adjacent pulses, for δ = π , can easily
be implemented in experiments. Our findings contribute to
a comprehensive understanding of the fundamental physics
underlying the manipulation of the frequency-comb structure
through phase compensation, offering valuable insights for
experiments aiming to achieve high-precision FCs in the vac-
uum ultraviolet regions. We believe that this method proposed
can be extended to other systems and can provide an efficient
method for the production of the optimizing FCs.
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