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Isoentropic partially coherent optical fields that cannot be interconverted unitarily
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For partially coherent optical fields in which a single binary degree of freedom (DOF) is relevant, such as
polarization, entropy uniquely identifies the class of optical fields that can be converted into each other via
unitary transformations. However, when multiple DOFs are taken into consideration, entropy no longer serves
this purpose. We investigate the structure of the family of isoentropy partially coherent optical fields defined
by two binary DOFs (polarization and two spatial modes) and described by a 4 × 4 coherence matrix G. We
find that the rank of G (the number of its nonzero eigenvalues) plays a critical role in this context: whereby any
pair of isoentropy rank-2 fields can be converted into each other unitarily, this is not necessarily the case for a
pair of rank-3 or rank-4 fields. Furthermore, unitary transformations between isoentropy fields of different ranks
are strictly forbidden. Instead, such conversions require entropy-maintaining nonunitary transformations that
potentially combine filtering projections and randomizing operations. We experimentally synthesize partially
coherent isoentropy optical fields of all ranks and tomographically reconstruct their coherence matrices. More-
over, we steer the coherence matrix over isoentropy trajectories that maintain a fixed rank (intrarank conversion)
or that involve changes in the rank (interrank conversion). These findings offer a different perspective for the
potential utility of partially coherent light in optical communications and sensing.
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I. INTRODUCTION

Statistical fluctuations underpin the partial coherence of
optical fields [1]. The study of optical coherence over the
past century has provided a comprehensive framework for
describing statistical optical phenomena [2–4]—from inter-
ference and laser speckle [5–7] to higher-order statistical
effects [8–15]. Traditionally, the coherence of each degree
of freedom (DOF) of the optical field has been investigated
separately, whether for the spatial, spectral-temporal, or po-
larization DOF. However, it is now becoming clear that taking
multiple DOFs of the optical field jointly into consideration
opens up new vistas for studying optical coherence [16–23]
and is making possible a variety of new applications [24–35].

For concreteness, consider a field characterized by two
binary DOFs (polarization and two spatial modes) and thus
represented by a 4 × 4 coherence matrix G [22]. We have
found recently that the rank of this coherence matrix—the
number of its nonzero eigenvalues (a parameter not investi-
gated hitherto)—helps identify novel features of the field [36].
In the scenario studied here of two binary DOFs, the coher-
ence rank can take on values 1, 2, 3, or 4, thus leading to a
fourfold taxonomy of optical fields relative to their coherence
rank. Partially coherent optical fields can be distinguished by
structural features that depend on their coherence rank. For
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example, a novel insight uncovered in [36] is that rank-2
fields are always separable with respect to the two DOFs,
whereas rank-3 fields are never separable. Another salutary
property of the coherence rank is that it is a unitary invariant
of the field; i.e., the rank is invariant under deterministic
unitary transformations (reversible energy-preserving trans-
formations, henceforth “unitaries” for brevity) that modify
one DOF or the other, that modify both DOFs independently,
or that couple them in their joint space. Incidentally, the coher-
ence rank of each DOF separately from the other (determined
from the associated “reduced” coherence matrix after tracing
out the other DOF) is not invariant under some of these
unitaries—particularly unitaries that couple the two DOFs
[22,23,37].

Another critical descriptor of a partially coherent field
comprising multiple DOFs—besides its coherence rank—is
its entropy S, which is also a unitary invariant of the field
and is taken to quantify the field fluctuations [38,39]. The
coherence rank has profound implications for the range of
possible reversible conversion of entropy between DOFs via
unitaries [37,40]. We have shown in [36] that the entropy of a
rank-2 field that is initially shared between the two DOFs—no
matter how high—can always be reversibly concentrated into
one DOF, leaving the other DOF free of statistical fluctua-
tions. In contrast, the entropy of a rank-3 field—no matter how
low—cannot be concentrated into a single DOF, giving rise to
what we have denoted as “locked” entropy [36].

In the case of a single binary DOF, such as polarization [38]
or a pair of spatial modes [41–44], the entropy can be used
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to uniquely identify an equivalence class of optical fields. In
other words, any two optical fields in this scenario endowed
with the same entropy (henceforth “isoentropy” fields) can
always be converted into each other via a unitary. The ques-
tion we pose here in the context of two binary DOFs is the
following: does the entropy S remain a unique descriptor for
the equivalence class of all optical fields? In other words, can
isoentropy optical field configurations always be converted
into each other via unitaries? Or, do there exist isoentropy
fields that cannot be interconverted into each other except by
resorting to entropy-preserving nonunitary transformations?

Here, we show that the entropy S of a partially coherent
optical field encompassing multiple DOFs does not delineate
the class of fields that can be interconverted unitarily. There-
fore, there do indeed exist isoentropy partially coherent field
configurations that cannot be converted into each other except
by entropy-preserving nonunitary transformations, which typ-
ically comprise randomizing transformations that increase the
entropy and projective filters that decrease it.

We find that the coherence rank plays a key role in this
regard. We distinguish between two scenarios: “intrarank”
transformations (involving isoentropy fields of the same rank)
and “interrank” transformations (involving isoentropy fields
of different ranks). In the latter case, it is never possible for
two isoentropy fields of different ranks to be transformed
into each other via unitaries. In other words, unitary interrank
transformations are forbidden and nonunitary transformations
are required instead. Moreover, transforming between lower-
rank to higher-rank isoentropy fields requires a combination
of randomizing (entropy-increasing) and filtering (entropy-
decreasing) systems, whereas only an entropy-preserving
filtering system is needed for going in the opposite direction
(from higher-rank to lower-rank isoentropy fields). With re-
gard to intrarank transformations, the possibility of relying
solely on unitaries to convert isoentropy fields into each other
depends critically on the coherence rank. Trivially, all rank-1
fields (fully coherent fields) can be converted into each other
via unitaries. The same applies to all rank-2 optical fields,
where the entropy is a unique identifier of the field structure
(just as in the case of a single binary DOF). However, this is
not the case for rank-3 and rank-4 fields. Isoentropy rank-3
fields can be assembled into a one-parameter family of fields,
where fields associated with different values of this parame-
ter cannot be converted into each other unitarily. Isoentropy
rank-4 fields are assembled into a two-parameter family of
fields, where fields associated with different values of the two
parameters cannot be converted into each other unitarily.

We have validated these theoretical results experimen-
tally by synthesizing partially coherent optical fields of
different rank and entropy (a total of 114 distinct par-
tially coherent field configurations) and reconstructing their
4 × 4 coherence matrix G via optical coherency matrix to-
mography (OCmT) [45,46]. The results are depicted in a
three-dimensional (3D) geometric space spanned by three
eigenvalues of the trace-normalized G. In addition, using
deterministic entropy-preserving nonunitary transformations,
we have steered rank-3 fields across the one-parameter curve
of isoentropy intrarank fields and rank-4 fields across the
two-parameter isoentropy intrarank surface. Finally, we have
steered the coherence matrix across an interrank isoentropy

trajectory. Starting from a rank-4 field, we produce a rank-3
field, from which we then produce a rank-2 field—all having
the same entropy. These interrank transformations utilize only
deterministic nonunitary transformations. We then reverse the
process and starting with a rank-2 field we produce a rank-3
field, from which we then produce a rank-4 field—all having
once again the same entropy. In this case, however, random-
izing transformations are required. Before concluding, we
explore the implications of these findings for using partially
coherent multi-DOF fields in optical communications.

II. GEOMETRIC REPRESENTATION
OF ISOENTROPY FIELDS

A. Vector-space formulation and entropy
of partially coherent optical fields

We consider optical fields characterized by two binary
DOFs, taken here to be polarization (spanned by horizontal,
H, and vertical, V, polarization components) and two spatial
modes (labeled “a” and “b”). The first-order coherence for this
field is described by a 4 × 4 unity-trace coherence matrix G
that is Hermitian and positive semidefinite [19,22,23]:

G =

⎛
⎜⎜⎜⎝

GHH
aa GHV

aa GHH
ab GHV

ab

GVH
aa GVV

aa GVH
ab GVV

ab

GHH
ba GHV

ba GHH
bb GHV

bb

GVH
ba GVV

ba GVH
bb GVV

bb

⎞
⎟⎟⎟⎠, (1)

where Gi j
kl = 〈Ei

k (E j
l )∗〉, 〈·〉 denotes an ensemble average,

i, j = H, V, and k, l = a, b. We define the entropy for G as

S = −
4∑

i=1

λilog2λi, (2)

where {λ1, λ2, λ3, λ4} are the eigenvalues of G and
∑4

i=1 λi =
1. In general, the entropy for two binary DOFs lies in the
range 0 � S � 2 bits. The condition S = 0 indicates the com-
plete absence of statistical fluctuations in the field (coherent
fields), whereas S = 2 bits corresponds to maximal statistical
fluctuations across both DOFs (incoherent fields). Of course,
each DOF separately can carry at most 1 bit of entropy. This
formulation is the foundation for our previous work on the
reversible exchange of entropy between the DOFs of the field
[36,37,40,47].

Any two fields whose coherence matrices G1 and G2

can be interconverted via a similarity transformation G2 =
Û12G1Û

†
12, where Û12 is a unitary transformation, will have

the same entropy because the eigenvalues are invariant un-
der such a transformation [23]. We refer to the two optical
fields represented by G1 and G2 as “isoentropy” fields. Of
course, the structure of the matrices G1 and G2 may differ
significantly and they would thus represent very different field
configurations. Nevertheless, they share the same eigenvalues
and are thus endowed with the same entropy.

B. Geometric representation of isoentropy fields

To emphasize the characteristics of the entropy, we intro-
duce a geometric representation for the coherence matrix that
relies solely on its eigenvalues. Consider diagonal coherence
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FIG. 1. (a) Geometric domain (in the form of a triangular pyra-
mid) corresponding to all 4 × 4 coherence matrices G, restricted to a
representation in terms of three of its eigenvalues 0 < λ1, λ2, λ3 < 1,
with the fourth eigenvalue given by λ4 = 1 − (λ1 + λ2 + λ3). In
this representation, a coherence matrix G corresponds to a point
in this geometric domain. (b) The faces, edges, and vertices of the
triangular pyramid in (a) have been translated from their original
positions for visualization. The front face is an equilateral triangle
(shown in slate blue) and the other faces are right-angled isosceles
triangles (shown in gray). The coherence matrices for rank-1 fields
correspond to the four vertices, rank-2 to the six edges, rank-3 to the
four faces, and rank-4 to the volume within the triangular pyramid
where λ1 + λ2 + λ3 < 1.

matrices of the form

G =

⎛
⎜⎜⎜⎝

λ1 0 0 0

0 λ2 0 0

0 0 λ3 0

0 0 0 λ4

⎞
⎟⎟⎟⎠ = diag{λ1, λ2, λ3, λ4}, (3)

where 0 � λ j � 1 and
∑4

j=1 λ j = 1. This diagonal coherence
matrix represents an entire “class” of coherence matrices that
can all be converted into each other via unitaries. We take
the diagonal coherence matrix in Eq. (3) to be representative
of this entire equivalence class and thus concern ourselves
henceforth only with such diagonal matrices. We define the
rank of G as the number of its nonzero eigenvalues, which can
thus take on the values 1, 2, 3, or 4, denoted rank-1, rank-2,
rank-3, or rank-4, respectively.

Consider a four-dimensional (4D) space spanned by the
parameters {λ1, λ2, λ3, λ4}. Each coherence matrix G corre-
sponds to a point in this space and the constraint

∑4
j=1 λ j = 1

entails that coherence matrices are restricted to a subspace in
the form of a hyperplane. Because it is difficult to visualize
this geometric structure in 4D, we restrict ourselves to a 3D
space spanned by only {λ1, λ2, λ3} and rely on the restriction
λ4 = 1 − ∑3

j=1 λ j . The hyperplane in the full 4D space is pro-
jected in the restricted 3D space onto the volumetric structure
shown in Fig. 1(a): a triangular pyramid in which three faces
are right-angled isosceles triangles and the fourth face is an
equilateral triangle. Each point in this volume corresponds to
a diagonal coherence matrix that represents a class of fields
that share the same eigenvalues (and thus in turn the same
rank and entropy). Note however that coherence matrices
after permutations of the eigenvalues are not represented by
the same point. For example, G = diag{1, 0, 0, 0} and G =
diag{0, 1, 0, 0} correspond in the structure shown in Fig. 1(a)
to two different vertices (1, 0, 0) and (0, 1, 0), respectively.

This geometric structure is instructive because fields of
different rank correspond to distinct geometric features of this
representation. We explode the pyramid structure in Fig. 1(a)
in terms of its vertices, edges, and faces, as shown in Fig. 1(b);
the volume enclosed in the structure is omitted for clarity.
Each geometric feature isolated in Fig. 1(b) corresponds to
differently ranked optical fields. Furthermore, the structure
enables visualization of the entropy as a function of the
eigenvalues, which is illustrated on the faces in Fig. 2(a) and
Fig. 2(b), and for isoentropy surfaces within the volume in
Figs. 2(c)–2(h).

Rank-1 fields. Rank-1 fields comprise the class of co-
herent fields {λi} = {1, 0, 0, 0}, and permutations thereon,
whereupon S = 0 (no statistical fluctuations). Such fields are
represented by the vertices in Fig. 1(b).

Rank-2 fields. Rank-2 fields where {λi} = {λ1, λ2, 0, 0},
and permutations thereon, correspond to the edges of the
pyramid structure [Fig. 1(b)]. The entropy for rank-2 fields
is S = −λ1log2λ1 − (1 − λ1)log2(1 − λ1), whose value is in
the range 0 < S � 1, reaching its maximum value S = 1
when λ1 = λ2 = 1

2 . This is a one-parameter curve plotted in
Fig. 2(b), inset. Each value of entropy is associated with a
unique pair of eigenvalues, so that G is fully identified by S
(modulo permutations of the eigenvalues).

Rank-3 fields. Rank-3 fields where {λi} = {λ1, λ2, λ3, 0},
and permutations thereon, correspond to the faces of the
pyramid structure [Fig. 1(b)] with 0 < S � log2 3 and the
maximum value of S = log2 3 ≈ 1.585 is reached when λ1 =
λ2 = λ3 = 1

3 . In contrast to rank-2 fields, the entropy of rank-
3 fields cannot uniquely identify the eigenvalues of G—even
after accounting for their permutations. Rather, the entropy
places a constraint on the eigenvalues, thereby reducing isoen-
tropy rank-3 fields to a one-parameter trajectory in each face
of the pyramid [Fig. 2(b)]. When S > 1, this curve is closed
and contained within the triangular face and does not reach its
sides. When S = 1, the isoentropy curve is tangential to the
sides; in Fig. 2(b) these tangent points are (λ1, λ2) = ( 1

2 , 1
2 ),

( 1
2 , 0), and (0, 1

2 ), which all correspond to rank-2 fields. When
S < 1, the isoentropy locus is no longer contained within the
triangular face and instead is terminated at the sides, so that it
breaks up into three unconnected curves. Ultimately this curve
approaches the three vertices as S → 0.

Rank-4 fields. For rank-4 fields, where all the eigenvalues
of G are nonzero, we have 0 < S � 2, and the maximum-
entropy value S = 2 is reached when all the eigenvalues are
equal (λ j = 1

4 , j = 1 . . . 4), which corresponds to a fully in-
coherent field. The entropy S is defined over the 3D volume
of the triangular pyramid [Fig. 1(b)] excluding the vertices,
edges, and faces. Similarly to rank-3 fields, the entropy of
rank-4 fields does not uniquely identify the eigenvalues of
G. The constraint placed by the entropy on the eigenvalues
reduces the isoentropy rank-4 volume to a two-parameter sur-
face within the volume of the pyramid [Figs. 2(c)–2(f)].

Therefore, isoentropy rank-4 fields occupy a curved sur-
face within this volume. When S > 1.585, this isoentropy
surface is closed and lies entirely within the triangular pyra-
mid. When S = 1.585, the isoentropy surface is tangential
to all four surfaces of the triangular pyramid at their central
points (which correspond to maximum-entropy rank-3 fields).
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FIG. 2. (a) Entropy S for coherence matrices mapped onto the
faces of the triangular pyramid in Fig. 1(a). We show S on the
side face defined by λ2 + λ3 = 1 and the front face defined by
λ1 + λ2 + λ3 = 1. (b) The entropy S on the face λ1 + λ2 = 1 from
(a). Rank-1 fields correspond to the vertices at the points (1,0), (0,0),
and (0,1), rank-2 fields lie along the three sides, and rank-3 fields to
the interior area. The solid contours represent isoentropy trajectories
corresponding to S = 0.5, 0.75, 1, 1.25, and 1.5. We plot on the
left S for rank-2 fields in terms of λ1, with λ2 = 1 − λ1. Markers
represent the maximum-entropy states for each rank; for rank-3
this is S ≈ 1.585 at the center of the triangle. (c)–(h) Visualization
of isoentropy surfaces corresponding to (c) S = 0.5, (d) S = 1, (e)
S = 1.25, (f) S = 1.5, (g) S = 1.585, and (h) S = 1.9.

When 1 < S < 1.585, the isoentropy surface intersects with
each face of the triangular pyramid in a planar curve cor-
responding to the isoentropy rank-3 fields having the same
entropy as the rank-4 field. When 0 < S < 1, the isoentropy
rank-4 surface also intersects with the edges and these in-
tersection points represent rank-2 fields that have the same
entropy as the rank-4 field.

C. Isoentropy fields

In Figs. 2(c)–2(h) we examine the geometric representation
of isoentropy fields. For rank-1 fields we have S = 0; for rank-
2, 0 < S � 1; for rank-3, 0 < S � 1.585; for rank-4, 0 < S �
2. Therefore, in the range 0 < S � 1, the field may be rank-2,
rank-3, or rank-4; in the range 1 < S � 1.585, the field may
be rank-3 or rank-4; in the range 1.585 < S � 2, the field is
exclusively rank-4.

We plot in Fig. 2(c) the surface corresponding to isoentropy
fields with S = 0.5, which comprises rank-2, rank-3, and
rank-4 fields. The isoentropy surface consists of small discon-
nected surfaces in the vicinity of the vertices of the triangular
pyramid. Each separate area corresponds to a particular per-
mutation of the same eigenvalues. The inset to Fig. 2(c) shows
an enlarged view of one of these disconnected surfaces. The
portion of the surface inside the volume represents rank-4
fields, the terminating curves in the three neighboring faces of
the pyramid represent rank-3 fields, and the terminating points
on the three edges represent rank-2 fields.

With increase in entropy S → 1, the area of the isoen-
tropy surface increases, but the four separate areas remain
disconnected. At S = 1 the isoentropy surface becomes a
single connected surface [Fig. 2(d)]. The rank-2 fields with
G = diag{ 1

2 , 1
2 , 0, 0} lie at the points midway along the edges,

the rank-3 fields correspond to the closed curves lying in each
face and are tangential to the edges of the pyramid at their
midpoints, and rank-4 fields correspond to the points on the
surface that are within the volume.

In the range 1 < S � 1.585, the isoentropy surfaces no
longer reach the edges (no rank-2 fields), the surface is termi-
nated at each face with a closed curve corresponding to rank-3
fields, and the remainder of the surface inside the pyramid cor-
responds to rank-4 fields [Figs. 2(e) and 2(f)]. As S increases,
the isoentropy rank-3 curves shrink. At S = 1.585, the
isoentropy surface is enclosed within the pyramid and is tan-
gential to the four faces, with the tangent points corresponding
to the maximum-entropy rank-3 field G = diag{ 1

3 , 1
3 , 1

3 , 0}
and the remainder of the surface corresponding to rank-4
fields [Fig. 2(g)]. For 1.585 < S � 2, the isoentropy fields
in this exclusively rank-4 regime correspond to closed sur-
faces fully enclosed in the pyramid, not intersecting with the
edges or faces [Fig. 2(h)]. The size of the isoentropy surface
shrinks with increase in S, eventually reaching a single point
G = diag{ 1

4 , 1
4 , 1

4 , 1
4 } at the center of the pyramid when S = 2.

III. SYNTHESIS AND CHARACTERIZATION
OF COHERENCE MATRICES

We proceed to describe the experimental configuration
utilized for synthesizing optical fields of different rank and
entropy and for characterizing such fields via a restricted form
of optical coherence matrix tomography (OCmT) [45,46].

A. Synthesis of coherence matrices

We start with unpolarized, spatially incoherent light pro-
duced by a light-emitting diode (LED; Thorlabs M625L4)
with a center wavelength 625 nm and a bandwidth ≈17 nm
[full width at half maximum ((FWHM)]. Two spatial modes
are obtained by selecting light at two points in the field,
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FIG. 3. (a) Schematic of the experimental setup for synthesizing
and characterizing optical fields of different coherence rank. The
transformation S converts the source coherence matrix Gs to a target
Gout. L: lens; HWP: half-wave plate; P: linear polarizer; D: detector.
(b) Examples of the S transformation for preparing fields with rank
ranging from rank-1 to rank-4; BB: beam block.

denoted by positions “a” and “b.” This is achieved using two
vertical slits of width 100 µm each, which are separated by
23 mm, which is larger than the transverse coherence width
(i.e., points a and b are incoherent with respect to each other).
We thus restrict the field to two binary DOFs: the polarization
DOF spanned by the H and V polarization components and
the spatial DOF spanned by the positions a and b [Fig. 3(a)].
The field produced by the source in this configuration is the
maximum-entropy rank-4 field described by the coherence
matrix Gs = diag{ 1

4 , 1
4 , 1

4 , 1
4 }. We then make use of a nonuni-

tary transformation S to modify the field rank via projective
filtering, which reduces the entropy, examples of which are
depicted in Fig. 3(b). A rank-1 field is produced by blocking
the field at one point (say b) and placing a linear polarizer
at a (say along H), which results in the coherence matrix
Gout = diag{1, 0, 0, 0}. A rank-2 field is produced by placing
linear polarizers at both points (say along H), which yields
the coherence matrix Gout = diag{ 1

2 , 0, 1
2 , 0}. A rank-3 field

is produced by placing a linear polarizer (say along H) at one
point only (say at “b”), which yields the coherence matrix
Gout = diag{ 1

3 , 1
3 , 1

3 , 0}. Finally, a rank-4 field is produced via
the identity transformation, Gout = Gs.

The transformations S depicted in Fig. 3(b) yield the
maximum-entropy field configuration for each coherence
rank. Adding further optical components at a and b allows
tuning the entropy for each rank. We have found that combi-
nations of four optical components suffices for synthesizing
an optical field of any desired rank and entropy starting from
Gs: polarizers, half-wave plates, neutral density filters (that
reduce the overall power at one spatial point with respect to
the other), and partial polarizers (that adjust the power ratio
of the polarization at a point). For convenience, we also made
use of polarizing beam splitters, but their use is not necessary.
See Supplemental Material [48] for details. Permutations of
the eigenvalues for a particular G can be performed by appro-
priate rearrangements of the same optical components, which
are provided in detail in the Supplemental Material [48].

B. Characterization of coherence matrices

We reconstruct the synthesized coherence matrices using
the process of OCmT [45,46], which extends to multi-DOF
classical fields the well-known technique of quantum state to-
mography used for reconstructing multipartite quantum states
[49–51]. However, because the coherence matrices studied
here are diagonalized, only four measurements are required
and the task of reconstructing the coherence matrix is thus
simplified with respect to the general process of OCmT in
which 16 measurements are required [46]. If the coherence
matrix is G = diag{λ1, λ2, λ3, λ4}, then the eigenvalues can
be determined in terms of the generalized Stokes parameters
S�m that span both DOFs. To retain the nomenclature in our
earlier work [36,45,46], the eigenvalues can be written in
terms of S�m as follows:

λ1 = S00 + S01 + S10 + S11,

λ2 = S00 − S01 + S10 − S11,

λ3 = S00 + S01 − S10 − S11,

λ4 = S00 − S01 − S10 + S11. (4)

These Stokes parameters in turn can be expressed in terms
of measurements as follows: S�m = 4I�m − 2I0m − 2I�0 + I00,
where �, m = 0, 1, and the required measurements are ex-
pressed as follows: I00 = Ia + Ib (the total power), I01 = IaH +
IbH = IH (the total power in the H polarization component at
both a and b), I10 = IaH + IaV = Ia (the total power at point a),
and I11 = IaH (the power of the H polarization component at
point a). In all cases we made use of a power meter (Newport
843-R) connected to a silicon photodiode (Ophir, PD300R).

IV. MEASUREMENT RESULTS

We plot in Fig. 4 the OCmT measurement results for a wide
range of 4 × 4 matrices of different rank and entropy values.
For each value of entropy, we synthesize and characterize op-
tical fields whose rank is compatible with S. We have excluded
zero-entropy rank-1 fields.

When S = 0.5 [Fig. 4(a)], we produce fields with coher-
ence rank 2, 3, and 4 corresponding to the coherence matrices
G(2), G(3), and G(4), respectively:

G(2) = diag{0.89, 0.11, 0, 0},
G(3) = diag{0.916, 0.042, 0.042, 0},
G(4) = diag{0.925, 0.025, 0.025, 0.025}. (5)

For G(2), we have experimentally synthesized and recon-
structed 12 distinct permutations, for G(3) there are 12, and
for G(4) there are 4. The points corresponding to the 28 re-
constructions via OCmT are plotted in Fig. 4(a). As noted
earlier, the isoentropy surface S = 0.5 comprises four discon-
nected areas, with one of these areas expanded in the inset
of Fig. 4(a). Here, three permutations for the rank-2 field are
at the vertices of the area (the intersection points with the
edges of the pyramid), three permutations of the rank-3 field
lie on the curved edges of the area (which lie on the faces
of the pyramid), and the rank-4 field lies on the area (which
lies within the pyramid volume). The remaining permutations
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FIG. 4. Experimental results for reconstructing the coherence matrices of the synthesized partially coherent optical fields of different rank
represented on isoentropy surfaces: (a) S = 0.5, (b) S = 0.75, (c) S = 1, (d) S = 1.25, (e) S = 1.5, and (f) S = 1.75. The inset in (a) magnifies
one corner of the triangular pyramid. The white markers represent the experimentally reconstructed coherence matrices. Rank-2 fields are
represented by white triangles, rank-3 fields are represented by white squares, and rank-4 fields are represented by white hexagrams.

of the coherence matrices lie on the other three disconnected
areas in Fig. 4(a).

When S = 0.75 [Fig. 4(b)], fields with coherence rank 2, 3,
and 4 can be produced with targeted coherence matrices G(2),
G(3), and G(4), respectively:

G(2) = diag{0.785, 0.215, 0, 0},
G(3) = diag{0.852, 0.074, 0.074, 0},
G(4) = diag{0.873, 0.042, 0.042, 0.042}. (6)

The experimentally realized coherence matrices have the
same 28 permutations as those above for S = 0.5, with a simi-
lar distribution across the four disconnected areas in Fig. 4(b).

When S = 1.0 [Fig. 4(c)], fields with coherence rank 2, 3,
and 4 can be produced with targeted coherence matrices G(2),
G(3), and G(4), respectively:

G(2) = diag{0.5, 0.5, 0, 0},
G(3) = diag{0.772, 0.114, 0.114, 0},
G(4) = diag{0.811, 0.063, 0.063, 0.063}. (7)

For G(2) there are six distinct permutations, for G(3) there are
12, and for G(4) there are four. The points, corresponding to
the 22 reconstructions via OCmT, are plotted in Fig. 4(c). At
S = 1 the isoentropy surface is for the first time connected.
The permutations of G(2) are the six midpoints along the edges
of the pyramid. This isoentropy surface is tangential to the
pyramid at these points. The permutations of G(3) lie along
the curved edges of this surface, which all lie on the faces of
the pyramid. The permutations of G(4) lie on the isoentropy
surface away from its edges, which lies within the pyramid.

When S = 1.25 [Fig. 4(d)], fields with coherence rank 3
and 4 can be produced with targeted coherence matrices G(3)

and G(4), respectively:

G(3) = diag{0.668, 0.166, 0.166, 0},
G(4) = diag{0.736, 0.088, 0.088, 0.088}. (8)

For G(3) there are 12 distinct permutations and for G(4) there
are four. The points corresponding to the 16 reconstructions
via OCmT are plotted in Fig. 4(d).

For S = 1.5 [Fig. 4(e)], fields with coherence rank 3 and
4 can be produced with targeted coherence matrices G(3) and
G(4), respectively:

G(3) = diag{0.5, 0.25, 0.25, 0},
G(4) = diag{0.646, 0.118, 0.118, 0.118}. (9)

There are 12 distinct permutations for G(3) and for G(4) there
are four. The points corresponding to the 16 reconstructions
via OCmT are plotted in Fig. 4(e) and are similar to those in
Fig. 4(d) except for the more compact area of the isoentropy
surface.

Finally, when S = 1.75 [Fig. 4(f)], only fields with coher-
ence rank 4 can be produced with target coherence matrix
G(4):

G(4) = diag{0.526, 0.158, 0.158, 0.158}. (10)

There are four distinct permutations for G(4) and the points
corresponding to the four reconstructions via OCmT are plot-
ted in Fig. 4(f).

In the Supplemental Material [48], we provide the optical
arrangement for synthesizing each coherence matrix, the mea-
sured eigenvalues, and a comparison to the representation of
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FIG. 5. (a) General configuration for steering the coherence ma-
trix along isoentropy intrarank and interrank trajectories in the
geometric space depicted in Fig. 1(a). The transformations T j are
nonunitary. The coherence matrices G j are reconstructed after each
transformation T j . (b) Experimental results for steering rank-3 co-
herence matrices along the intrarank isoentropy curve corresponding
to S = 1. (c) A zoomed in and rotated view of the portion of
(b) enclosed in the dotted black square. (d), (e) Same as (b) but for
rank-4 fields along an intrarank isoentropy surface corresponding to
S = 1.5.

the theoretical coherence matrices on the isoentropy surfaces
corresponding to Fig. 4.

V. STEERING THE COHERENCE MATRIX ACROSS
AN INTRARANK ISOENTROPY TRAJECTORY

Each of the 114 coherence matrices described above
was synthesized directly from the maximum-entropy, rank-4
source coherence matrix Gs = diag{ 1

4 , 1
4 , 1

4 , 1
4 } via a distinct

optical arrangement that determines the rank and entropy of
the synthesized field. Here we consider a different scenario
where we start from the source Gs, but then subsequently
apply a sequence of transformation T j [Fig. 5(a)] to steer
the coherence matrix over an isoentropy trajectory on one
of the isoentropy surfaces (Fig. 2). After each such transfor-
mation, the coherence matrix is reconstructed. We consider
here this strategy for field transformations that maintain
the coherence rank, which we denote “intrarank” isoentropy
transformations.

Given a particular coherence matrix G, one could of
course apply a myriad of unitaries that produce different field
configurations, but their coherence matrices are represented
by the same point in the space defined in Fig. 1(a). We
thus exclude these unitaries here. A special case of unitaries
are those that produce permutations of the eigenvalues of G
in the diagonal representation. Although the corresponding
points representing these different diagonal representations
are distinct (as shown in Fig. 4), we also exclude these trans-
formations here since the eigenvalues remain invariant. This
exhausts all the possibilities for rank-1 and rank-2 fields where
it is always possible to perform intrarank conversion between
isoentropy fields unitarily. We are thus concerned here with
transformations that maintain the rank and the entropy for
rank-3 and rank-4 fields, but change the eigenvalues. These
are necessarily nonunitary transformations.

We first steer the coherence matrix of rank-3 fields along an
isoentropy curve at S = 1. Starting from the source coherence
matrix Gs, we first transform Gs to G1, G1 to G2, and then G2

to G3:

Gs
T1−→ G1

T2−→ G2
T3−→ G3, (11)

where the reconstructed coherence matrices are

G1 = diag{0.03, 0, 0.72, 0.25},
G2 = diag{0.06, 0, 0.75, 0.19},
G3 = diag{0.11, 0, 0.77, 0.11}, (12)

and the requisite entropy-preserving nonunitary transforma-
tions T1, T2, and T3 are

T1 = diag{0.205, 0, 1, 0.597},
T2 = diag{1, 1, 0.726, 0.602},
T3 = diag{1, 1, 0.734, 0.568}. (13)

These transformations can be constructed from partial polar-
izers and neutral density filters placed at a and b. A partial
polarizer at a would reduce the overall entropy, but then re-
ducing the power at a with respect to b can counterbalance
this decrease and thus return the entropy to its initial value.
The optical configurations corresponding to each of these
nonunitary transformations are provided in the Supplemental
Material [48]. The points corresponding to the experimentally
reconstructed coherence matrices represented in {λ1, λ2, λ3}
space are plotted in Figs. 5(b) and 5(c); the corresponding
theoretically targeted coherence matrices are plotted in the
Supplemental Material [48].

Next, we steer the coherence matrix along an isoentropy
trajectory on the isoentropy rank-4 surface at S = 1.5, while
maintaining the coherence rank at 4. Starting from the source
coherence matrix Gs, we convert it to the coherence matrix
G4, G4 to G5, and then G5 to G6:

Gs
T4−→ G4

T5−→ G5
T6−→ G6, (14)

and the reconstructed coherence matrices are

G4 = diag{0.12, 0.13, 0.64, 0.11},
G5 = diag{0.07, 0.09, 0.61, 0.22},
G6 = diag{0.05, 0.08, 0.53, 0.35}, (15)
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which are produced by the nonunitary transformations T4, T5,
and T6 given by

T4 = diag{0.428, 0.428, 1, 0.428},
T5 = diag{0.595, 0.595, 0.704, 1},
T6 = diag{0.701, 0.701, 0.755, 1}. (16)

The optical configurations corresponding to each of these
nonunitary transformations are provided in the Supplemental
Material [48]. The points corresponding to the experimentally
reconstructed coherence matrices represented in {λ1, λ2, λ3}
space are plotted in Figs. 5(d), 5(e) and 5(c); the correspond-
ing theoretically targeted coherence matrices are plotted in the
Supplemental Material [48].

VI. STEERING THE COHERENCE MATRIX ACROSS
AN INTERRANK ISOENTROPY TRAJECTORY

We now consider isoentropy trajectories that extend across
ranks, which we denote “interrank” transformations. These
also require entropy-preserving nonunitary transformations
for their realization. We carry out our experiments over an
isoentropy interrank trajectory with S = 1. Starting with the
rank-4 source, we first convert Gs to G4 (rank-4), G4 to G3

(rank-3), and then G3 to G2 (rank-2), where these isoentropy
coherence matrices are given by

Gs
T1−→ G4

T2−→ G3
T3−→ G2. (17)

The required entropy-preserving nonunitary transformations
utilized to produce these changes are given by

T1 = diag{0.279, 0.279, 1, 0.279},
T2 = diag{1, 0, 0.727, 1},
T3 = diag{1, 1, 0.383, 0}. (18)

These transformations can be constructed from partial po-
larizers and neutral density filters placed at a and b. The
reconstructed coherence matrices are given by

G4 = diag{0.06, 0.07, 0.81, 0.06},
G3 = diag{0.11, 0, 0.76, 0.12},
G2 = diag{0.5, 0, 0.5, 0}. (19)

The points corresponding to the experimentally reconstructed
coherence matrices represented in {λ1, λ2, λ3} space are plot-
ted in Figs. 6(a) and 6(b).

We now consider traversing the same isoentropy (S = 1)
trajectory in the opposite direction:

G4
T6←− G3

T5←− G2
T4←− Gs. (20)

The transformation T4 that converts the source Gs to the rank-
2 G2 is given by

T4 = diag{1, 0, 1, 0}, (21)

which involves filtering out the V polarization component at
a and b (resulting in a field that is spatially incoherent and
linearly polarized along H). Converting G2 to G3 poses a new
challenge: whereas reducing the coherence rank can always
be done by projective filtering, increasing the coherence rank

FIG. 6. (a) Experimental results for interrank steering of a coher-
ence matrix along an isoentropy trajectory corresponding to S = 1.
(b) Zoomed-in section of the plot in (a) showing the results of the
descending order trajectory from rank-4 to rank-3 to rank-2. (c) Same
as (b) but for ascending order from rank-2 to rank-3 to rank-4.

cannot. Instead, to introduce a third nonzero eigenvalue as re-
quired here necessitates a randomizing transformation rather
than a deterministic one, which invariably increases the field
entropy. Following such a transformation with an appropriate
projective filter restores the entropy to the target value without
changing the coherence rank.

We implement this randomizing nonunitary transformation
by placing a rotating HWP at a and averaging the detection
over multiple full rotations, which has the effect of randomiz-
ing the polarization at a. The trasnsformation corresponding
to this randomizing system cannot be described by a 4 × 4
operator T and instead requires a “superoperator” representa-
tion (see Supplemental Material [48]). We make use of two
such polarization randomizers, one at a and the other at b,
to increase the rank from 2 to 3 and then from 3 to 4, re-
spectively. Each HWP rotates at 25◦/s and measurements are
averaged over 30 s. Following this randomizing operation is a
projective filtering operation to restore the target entropy. The
transformation T5 comprises a polarization randomizer placed
at a followed by a projective filter T′

5, and T6 comprises a
polarization randomizer placed at b followed by a projective
filter T′

6, where T′
5 and T′

6 are given by

T′
5 = diag{0.271, 0.271, 1, 0.383},

T′
6 = diag{1, 1, 0.972, 0.707}. (22)
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The reconstructed coherence matrices are given by

G2 = diag{0.50, 0.02, 0.48, 0},
G3 = diag{0.11, 0.01, 0.77, 0.11},
G4 = diag{0.06, 0.08, 0.80, 0.07}. (23)

The points corresponding to the experimentally reconstructed
coherence matrices represented in {λ1, λ2, λ3}-space are plot-
ted in Figs. 6(a) and 6(c). See Supplemental Material [48]
for more detail on the nonunitary transformations used for
isoentropy interrank conversions.

VII. DISCUSSION

A. Relevance to optical communications

The formulation of optical coherence presented here (in
terms of multiple coupled discrete DOFs) immediately sug-
gests applications in optical communications and sensing,
whereupon one encodes information physically into the eigen-
values of the joint coherence matrix G. Specifically, such a
scheme offers unique advantages with regards to propagation
in a perturbing environment. Multiple models can be adopted
for the environment as follows.

1. Unitary transformation of the polarization and/or
the spatial DOFs

Such a transformation of course changes the polarization
state and/or the spatial state. However, these transformations
do not change the degree of coherence of either DOF (after
tracing out the other DOF). Additionally, a medium modeled
by such a transformation leaves the eigenvalues of G invariant.

2. Unitary coupling of the two DOFs

Such a transformation of course changes the polarization
and spatial states and also changes the degree of coherence of
both DOFs [23]. Nevertheless, such a transformation does not
affect the eigenvalues of G.

3. Nonunitary transformation of the DOFs

The coherence matrix is immune to certain classes of
nonunitary transformations, such as an overall lossy chan-
nel that reduces the power of all the field modes equally.
Such a transformation does not change the eigenvalues of
G. However, G will be distorted through other nonunitary
transformations, such as (1) polarization-dependent losses or
spatially dependent losses, (2) projective filtering transforma-
tions (that reduce the entropy), and (3) randomizing channels
(that increase the entropy).

We have not considered here optical channels that intro-
duce additive noise sources that are independent of G, which
will of course change its eigenvalues. It would be interesting
to consider the impact of such sources of noise, in addition
to the nonunitary transformations mentioned above, on the
representation of a coherence matrix in the geometric space
depicted in Fig. 1. This would inform the choice of coherence
matrices whose separating “distance” in this space is sufficient
to render their states of the associated optical fields suffi-
ciently distinct after transmission through such a prescribed
channel. Much experimental and theoretical work is antici-
pated along these lines.

B. Larger-dimensional DOFs

We have couched our formulation in terms of two bi-
nary DOFs. However, this analysis can be readily extended
to larger-dimensional DOFs or even continuous DOFs after
using the Schmidt decomposition to obtain a viable finite-
dimensional representation [52–55]. In fact, while Schmidt
number and Schmidt rank are typically used to measure quan-
tum entanglement, there have been recent adoptions in the
classical regime to measure the nonseparability of the contin-
uous temporal and spatial DOFs [29,34]. In general, for two
DOFs of dimension N1 and N2, the dimension of the joint
space is N1 × N2 and the size of the associated coherence
matrix is (N1 × N2) × (N1 × N2). Although this provides a
large-dimensional space to increase the information-carrying
capacity, the number of measurements required to reconstruct
G nevertheless poses a challenge, which we address below.

An example is transmission over a multimode fiber. One
may easily increase the number of available modes by increas-
ing the fiber diameter. In so-called spatial-mode multiplexing,
the number of channels in a multimode fiber is increased over
that in a single-mode fiber by exploiting each spatial mode (in
an orthogonal modal set) as an independent communications
channel [56–60]. A major impediment for such schemes is
of course the potential coupling between these modes at fiber
bends or caused by variations in temperature or stress in the
fiber, especially over large propagation distances. Moreover,
the spatial modes may couple to polarization [61], which can
further distort the communications channels. Our approach
here could help address this challenge by encoding the infor-
mation globally in G.

In addition to the spatial modes utilized here or those of a
multimode optical fiber, our scheme can be readily extended
to other spatial modal bases, including those of orbital angular
momentum [46,62] and spatial parity states [22,63,64], among
a host of others [65–68]. In principle, the same approach out-
lined here can be extended to quantum states of light, whether
single-photon or entangled-photon states [69].

C. Potential for high-speed optical communications
with partially coherent fields

Of course, a high-speed automated approach to recon-
structing the coherence matrix is needed to make such
schemes relevant to optical communications. The same con-
straint applies to the synthesis of partially coherent fields with
a given coherence matrix. In this context, a recent proposal by
Miller et al. [70] opens a new avenue that increases the rele-
vance of partially coherent light for optical communications.
In earlier work on coherent fields, the independent com-
munication modes were determined that can be established
between arbitrary transmitters and receivers defined solely by
the relative positions of their two volumes [71–73]. Subse-
quently, a generic algorithm was proposed that could be used
to identify these channels without prior knowledge and an
implementation in terms of a mesh of Mach-Zehnder interfer-
ometers was put forth [74,75]. This allows for realizations of
the entire procedure to be integrated onto a photonic chip [76].
The recent theoretical proposal in [70] extends this strategy to
partially coherent fields and the independent communication
channels can be identified with the basis of the diagonalized
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coherence matrix. Our experiments here deal with two binary
DOFs rather than one high-dimensional DOF, but the gen-
eral strategy in [70] can likely be modified to adapt to the
multi-DOF configuration. Importantly, the on-chip realization
proposed in [70] would make possible high-speed synthe-
sis and measurements of these multi-DOF partially coherent
fields, which may stand to revolutionize the applications of
such fields.

Finally, we note a distinct theoretical proposal made re-
cently by Novotny et al. [77], in which a partially coherent
field with a high-dimensional spatial DOF is used for enhanc-
ing the channel capacity over a multimode optical fiber by
encoding information in the correlations between the various
basis modes (corresponding to the off-diagonal elements of
G). This is a distinct proposal for utilizing the partial coher-
ence of an optical field to carry out a task for which a coherent
field of the same dimension falls short. Such a scheme is
susceptible to scattering, in contrast to our proposal here that
is immune to scattering (as defined above). However, our
approach does not offer a higher channel capacity as in [77].
These recent developments indicate the growing awareness
of the rich possibilities made possible with partially coherent
light that are only now coming to the fore.

VIII. CONCLUSIONS

In conclusion, we have explored the geometry of isoen-
tropy, partially coherent optical fields comprising two binary
DOFs—polarization and a pair of spatial modes. In the case of

optical fields characterized by a single binary DOF, any two
isoentropy field configurations can always be converted into
each other via a unitary transformation. In contrast, isoen-
tropy optical fields combining two such DOFs—rather than
one—do not follow the same pattern. Instead, the rank of
the associated 4 × 4 coherence matrix—the number of its
nonzero eigenvalues—plays a deciding role. The entropy for
rank-1 and rank-2 fields uniquely determines the optical fields
that can be converted into each other unitarily. This is not the
case for rank-3 or rank-4 fields. To convert two isoentropy
rank-3 fields (or two isoentropy rank-4 fields) into each other,
one may need to resort to nonunitary transformations. More-
over, interrank transformations can only be achieved using
nonunitary systems.

We have experimentally synthesized a wide range of par-
tially coherent fields of different rank and entropy and have
tomographically reconstructed their associated coherence ma-
trices. Finally, we have steered the coherence matrix over
intrarank and interrank isoentropy trajectories via nonunitary
transformations. These results suggest different applica-
tions for partially coherent light in optical communications
schemes that may offer advantages in the presence of scatter-
ing in the optical channel.
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