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Dual-polarization topological rainbow concentrators based on glide-reflection symmetry
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Topological rainbow concentrators (TRCs) have attracted intense attention due to their capability of capturing
photons with varying frequencies to distinct positions. However, the design of TRCs is not straightforward,
especially for wideband and dual-polarization ones. In this paper, we propose a general and efficient methodology
to realize TRCs by employing the glide-reflection symmetry operation. Starting from an ordinary photonic
crystal with complete band gaps, and employing the two degrees of freedom of glide-reflection symmetry, i.e.,
the position of mirror reflection and the gliding length, wideband and dual-polarization TRCs are constructed
successfully. Very interestingly, by monitoring the distance between the trapping positions of the two polar-
izations, the incident light frequency can be derived precisely. This paper introduces an efficient and flexible
approach to configure TRCs, and may contribute to the wide applications in spectral analysis and polarization
demultiplexing.
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I. INTRODUCTION

Topological rainbow concentrators (TRCs) exhibit the
capacity of dispersing and trapping different frequency com-
ponents to distinct spatial locations, while possessing the
merit of topological robustness to defects [1,2]. Due to these
merits, they hold broad prospects for applications in multiple
fields, such as optical information processing [3] and optical
storage [4]. Typically, TRCs can be achieved through the
combination of slow-light effect and topological properties.
Slow-light effect results in frequency-dependent deceleration
of electromagnetic waves within a specific frequency range,
which causes light to be trapped to different locations [5–9].
However, due to the enhanced interaction between light and
matter [10], slow-light systems are highly sensitive to defects,
leading to significant backward scattering and loss. In order
to overcome this challenge, the robustness of topological pho-
tonics offers an efficient solution.

Currently, there are two approaches to implement the
topological properties in rainbow devices. The first uses
photonic crystals (PCs) that possess topological properties
inherently [11–13], such as those achieved through photonic
quantum spin Hall effect [14,15] or photonic quantum valley
Hall effect [16]. However, due to the presence of topological
phase transition and band degeneracy [17,18], the bandwidths
of these structures tend to be narrow. The other approach en-
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tails the construction of synthetic dimension [1,2]. However,
the valid implementation techniques are relatively limited up
to now. Moreover, current TRCs are predominantly realized
for transverse electric (TE) waves or transverse magnetic
(TM) waves only, but not for both polarizations. Actually,
polarization dependent optical manipulation holds numerous
applications in diverse domains, such as in biosensing [19,20]
and polarization division multiplexing to enhance communi-
cation capacity [21–24]. Therefore, it is highly desirable to
explore TRCs valid for both TE and TM polarizations simul-
taneously with enhanced bandwidth and reliability.

Recently, glide-reflection symmetry is found to be useful
in acoustics for the generation of topological properties by
tuning the glide length [25]. In this paper, we extend the glide-
reflection symmetry operation to optics. More importantly,
we complete the glide-reflection operation by introducing
the new degree of freedom, i.e., the position of mirror sym-
metry. Then, two wideband and dual-polarization TRCs are
constructed by using inclined axis and synthetic-dimension
methods, respectively. This paper contributes an efficient and
general approach to configuring TRCs, and will broaden the
application of topological rainbow devices in diverse domains,
such as spectral analysis and polarization separation.

II. RESULT AND DISCUSSION

A. Topological properties of glide-reflection symmetry

Glide-reflection symmetry is the combination of mirror
reflection and translation operations. A previous paper only
discussed the effects of the glide parameter [25]. In fact,
glide-reflection symmetry has two degrees of freedom, which
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FIG. 1. Schematic and properties of the structure. (a) Schematic
of the PC with glide-reflection symmetry, where a = 500 nm, g =
0.5a, R = 0.5a, r = 0.1a, w1 = 0.05a, w2 = 0.03a, l = 0.6a. R de-
notes the position of the mirror reflection, defined as the distance
from the interface to the center of the nearest unit cell. g represents
glide length, defined as the displacement in the x direction of the
lower PC relative to the upper PC. a is the lattice constant. The
relative permittivity of the medium is 11.7. The remaining portions
are air, with a relative permittivity set to 1. (b) The complete band
gap of the PC exists above the ninth TM band and the fifth TE band,
with a relative bandwidth of 14.5%. (c, d) Parity of the TM and TE
modes at the � and X points, respectively, where the eigenmodes
with opposite parity are marked by blue and red ellipses.

are the position of the mirror reflection (R) and the glide
length (g). The structure and related parameters of a PC
with glide-reflection symmetry are shown in Fig. 1(a). The
interface between the upper and lower PCs corresponds to
the axis of mirror reflection symmetry. R is defined as the
distance from the interface to the center of the nearest unit
cell, and g is defined as the displacement in the x direction of
the lower PC relative to the upper PC. UC1 and UC2 repre-
sent the unit cells of the upper and lower PCs, respectively.
Actually, the unit cells are obtained by superposing a unit
cell with a connected dielectric wall, and another unit cell
with an isolated dielectric atom, which tends to generate band
gaps for TE and TM polarizations, respectively. Therefore, the
superposition of them results in a complete band gap (CBG)
for both polarizations. More details about the unit-cell design
can be found in Appendix A.

In Fig. 1(a), UC2 is obtained from UC1 by applying the
glide-reflection symmetry operation with the mirror reflection
position of R = 0.5a and the glide length of g = a/2 along the
x direction. It is evident that both unit-cell structures possess
the same band structure. As shown in Fig. 1(b), it possesses
complete TE and TM band gaps with a large relative band-
width of 14.5%. The band gap exists above the ninth TM band
and the fifth TE band. By virtue of the inversion symmetry of
the unit cell within the structure, the topological properties
of UC1 and UC2 in the x direction can be determined gauge

independently by the parities at the � and X points, which are
defined as [26–28]

θx = π

(∑
n

qn
x mod 2

)
, (−1)qn

x = η(X )

η(�)
, (1)

where η denotes the parity (±1), θx is the Zak phase in the
x direction, and the summation is over all the occupied bands.

We calculated the eigenmode patterns numerically of each
band at � and X for both TE and TM modes, and extracted
their parities by checking their symmetry under inversion
operations. If an eigenmode pattern coincides with itself after
a 180◦ rotation around the geometric center, it is classified
as even parity (+), otherwise it is classified as odd parity
(−). The parities of related modes are shown in Figs. 1(c)
and 1(d). According to Eq. (1), it can be deduced that the Zak
phases of both TE and TM modes in UC1 are zero, indicating
topological triviality. Conversely, for UC2, the Zak phases of
TE and TM modes are π , signifying topological nontriviality.
This demonstrates the topological protection of both TE and
TM modes in the glide-reflection symmetry structure. Further-
more, besides Zak phases, the topological properties of the
system can also be described using the Wannier center posi-
tion and symmetry indicators [29,30]. These results set solid
foundations for the glide-reflection symmetry based TRCs, as
detailed below.

B. Topological rainbow constructed via an inclined mirror
reflection symmetry axis

In this section, we discuss TRCs via an inclined mirror
reflection axis, as illustrated in Fig. 2(a), which is achieved
through gradual variation of R from 0.4a to 0.5a. The varia-
tion of R causes the change of PC in the y direction. However,
as x and y directions are orthogonal, this change has no
impact on the Zak phase in the x direction, and hence the
two-dimensional Zak phase. Therefore, the topological prop-
erties remain unaffected by changing R. The band structures
of TE and TM interface states are separately illustrated in
Figs. 2(c) and 2(d). Based on the observation of the dispersion
bands, it is evident that they display degeneracy at the X point
(i.e., kx = π/a), which is determined by the combined effect
of time-reversal symmetry and glide-reflection symmetry at
g = a/2 [25,31,32]. Furthermore, it is evident that two surface
state dispersive bands are present within each gap of the glide-
reflection structures. Additionally, a degeneracy point for TE
modes is observed at the interior of the Brillouin zone. These
phenomena are further elucidated in Appendix C. Addition-
ally, as R increases, the dispersion bands of both TE and TM
interface states shift downwards, but can separate from each
other clearly.

By calculating the slope ∂ω/∂kx of the dispersion bands,
the group velocity vg is obtained, as shown in Figs. 2(e)
and 2(f). When vg approaches zero, it corresponds to a flat
band, where light of a specific frequency will be localized
within the corresponding structure, and form a trapped state.
On the other hand, when vg is not equal to zero, light will
propagate along the interface as a transport state. The un-
derlying physical mechanism is a Bragg scattering, which
can be categorized into three main types [33]. The first type
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FIG. 2. Effects of mirror reflection position R on the optical properties of the interface states. (a) Schematic of the PC with glide-reflection
symmetry for different R’s from 0.4a to 0.49a. (b) Frequency ranges of TE and TM interface states change with R. (c), (d) Dispersion bands
of TE and TM interface states, respectively. The legends and colors show different R. (e), (f) Group velocity diagrams of TE and TM interface
states, respectively.

occurs at the center of the Brillouin zone, denoted as the �

point. The second type is observed at the boundary of the
Brillouin zone, marked as the X point. The third type arises
from the anticrossing induced by mode coupling at the interior
of the Brillouin zone. All three cases are manifested within
the structures discussed in this paper. By utilizing the trapped
states, the glide-reflection interface can spatially trap light of
different frequencies at different R locations, resulting in the
rainbow trapping. Figure 2(b) illustrates the frequency range
of TE and TM interface states as R changes. It can be observed
that the frequency ranges of TE and TM interface states for
the same structure are distinct and separated. In other words,
light with the same frequency but different polarization will
be trapped in different structures. Therefore, by constructing
structures with continuously changing reflection positions R,
the separation of TE and TM light can be achieved.

Inspired by the analysis mentioned above, we introduce an
inclined mirror reflection symmetry axis to the structure, as
depicted in Fig. 3(a), where the x axis is inclined at a small
angle θ to obtain the x′ axis. The number of unit cells along
the x direction is denoted as nx. In the schematic diagram of
Fig. 3(a), nx = 2.5 is shown for clarity. The upper portion of
the crystal is then reflected as a whole along the x′ axis and
glides along the x′ axis. The glide length along the x axis is
set to be 0.5a, forming a glide-reflection symmetry interface
with gradient R. In numerical simulation, nx is selected to be
nx = 60 while maintaining the gradient change of R from 0.4a
to 0.49a. The structure is excited by a plane wave along the
y direction. An incident plane wave is introduced from the
upper boundary, while the remaining boundaries are treated as
scattering boundary conditions. The simulation is established
in a Cartesian coordinate system. For the TE mode, electro-
magnetic waves are defined by the magnetic field, with the
relative intensity of the magnetic field set as (0, 0, 1). For the
TM mode, electromagnetic waves are defined by the electric
field, with the relative intensity of the electric field set as
(0, 0, 1).

The simulated results are illustrated in Fig. 3(e), which
clearly demonstrate that light of various frequencies is lo-
calized at distinct positions when incident from the top.
Additionally, the localized positions for TE and TM modes
differ also, corroborating the previously discussed predictions
of polarization separation. As shown in Fig. 3(b), the nor-
malized intensity distributions of TE and TM modes of light
at different frequencies along the x′ axis are plotted. The
positions of peak intensities are denoted by black circles.
Furthermore, Fig. 3(c) illustrates the frequency-dependent
changes in the peak positions for TE and TM modes. It
becomes evident that the localized positions for both polariza-
tions approximately linearly change with the frequency. The
distance between them also varies with frequency, providing
further support to the observations in Fig. 2(b). Figure 3(d)
intuitively illustrates the linear relations between these
variations.

C. Topological rainbow based on synthetic dimension

In this section, we investigate the influence of the glide
length g to the synthetic dimension based TRC. Inspired by
Lu et al. [2], we introduce the concept of synthetic dimen-
sion, including the glide length g and the Bloch wave vector
(kx, ky). Then a three-dimensional parametric space (kx, ky, g)
is formed, where all three parameters exhibit periodicity. The
Zak phase of the system varies with the glide length g. When
g changes by one lattice constant, it exhibits topological prop-
erties, and can be described by the Chern number. Keeping
ky fixed, for each g, the Zak phase of the nth band is defined
as [34]

θn(ky, g) =
∫ π/a

−π/a
〈un(kx, ky, g)|i ∂

∂kx
|un(kx, ky, g)〉dkx (2)

where |un(kx, ky, g)〉 represents the periodic component of the
Bloch function.
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FIG. 3. TRC constructed via inclined mirror reflection symmetry axis. (a) The schematic diagram of the structure. By inclining the x axis
at a small angle θ , the x′ axis is obtained. Then, reflecting and translating the upper portion of the PC along the x′ axis, the reflection position R
continuously changes within the range of 0.4a to 0.49a. The structure is excited by plane wave along the y direction. (b) Normalized intensity
distribution of TE and TM modes at different frequencies along the x′ axis. (c) The variation of peak intensity positions for TE and TM modes
with frequency. (d) The variation of separation distances between TE and TM modes with frequency, with a red dashed line representing the fit
curve. (e) Electric intensity distributions of TE and TM modes at frequencies of 510, 520, and 530 THz, respectively. The simulation employs
nx = 60 unit cells along the x direction.

By applying the Bloch theorem, we can deduce the follow-
ing result:

θn(ky, g) = θn(ky, 0) + 2πg

a
(mod 2π ). (3)

Please refer to Appendix B for the detailed deriving process of
Eq. (3). According to Eq. (3), it is evident that the Zak phase
of each band varies linearly with g. For bands with an initial
Zak phase of zero, the variation is illustrated in Fig. 4(a). Due
to the periodic nature of both the Zak phase and g, they can be
visualized as a torus, and the winding number of the Zak phase
corresponds to the Chern number [35]. When g continuously
varies from −a/2 to a/2, the change in the Zak phase divided

by 2π yields the Chern number:

Cn = 1

2π

∫ a/2

−a/2
dθn(ky, g). (4)

The dispersion bands of the interface states for TE and
TM modes under different glide lengths g are presented in
Figs. 4(c) and 4(d), respectively. Subsequently, the group ve-
locities of the interface states for each structure are calculated,
as depicted in Figs. 4(e) and 4(f). When the group velocity
approaches zero, it signifies that the structure will trap light of
corresponding frequency for TE or TM modes, respectively.
Figure 4(b) illustrates the variation of frequency ranges of
TE and TM polarizations with the changing of g. It can be
observed that, similar to Fig. 2(b), TE and TM modes can

FIG. 4. Effects of glide length g on the optical properties of the interface states. (a) Evolution of Zak phases with parameter g. The inset
presents the diverse geometric structures associated with different g. The torus structure is formed through the fusion of equivalent edges.
(b) The frequency range of TE and TM interface states varies with the glide length. (c), (d) Dispersion bands of the TE and TM interface states
are shown respectively, with different colored curves representing different structures. (e), (f) Group velocity diagrams of TE and TM interface
states, respectively.

013503-4



DUAL-POLARIZATION TOPOLOGICAL RAINBOW … PHYSICAL REVIEW A 110, 013503 (2024)

FIG. 5. TRC based on synthetic dimension of g. (a) The
schematic diagram of the synthetic dimension TRC, characterized
by the continuous change of the glide length g. (b) The normalized
intensity distributions of TE and TM modes at different frequencies
on the interface. (c) The frequency-dependent variation of peak in-
tensity positions for TE and TM modes. (d) The separation distances
between TE and TM modes exhibit frequency-dependent changes,
with a red dashed line representing the fit curve. (e) The electric
intensity distributions of TE and TM modes at frequencies of 520,
530, and 540 THz, respectively.

separate from each other within a certain frequency range.
Light of the same frequency will be trapped by structures with
different glide lengths for different polarizations.

A synthetic dimension based TRC with continuously vary-
ing glide lengths g is shown in Fig. 5(a), which is excited by
plane waves from the top. To facilitate the analysis, only the
section from g = 0 to 0.5a is illustrated, as g = −0.5a to 0.5a
exhibits symmetry. The electric-field intensity distributions
of TE and TM modes at different frequencies are shown in
Fig. 5(e). From these results, it can be evident that the TE
and TM modes are separated, and their separations vary with
frequency as predicted. The normalized intensity distributions
of TE and TM modes are shown in Fig. 5(b), with the peak
positions marked by black circles. Figure 5(c) shows the vari-
ation of peak positions with frequency. It can be observed
that the peak positions of TE and TM modes approximately
exhibit a linear relationship with frequency. Nevertheless, the

distances between the peaks of the two polarizations display
scattered variations with frequencies, as shown in Fig. 5(d).
The reasons for the variances will be discussed and optimized
in the following section.

D. Optimization of topological rainbows

As shown above, both types of TRCs can trap different
light to distinct positions for TE and TM modes. However,
it should be noted that the separation of intensity peaks for TE
and TM modes is not entirely linear with respect to frequency.
To enhance the application of these devices, it is imperative
to engage in a thorough discussion of this phenomenon. Gen-
erally speaking, there are two main factors affect the linearity
relation between them.

The first factor is the discrete nature of g and R. Taking
the structure of the inclined axis as an example, when nx is
small, the change of R is highly discrete, which consequently
causes a significant variation in the dispersion band of the
interface states across different unit cells. For some frequen-
cies, it is possible to lack the corresponding units to trap
them exactly (exact zero group velocity). As a result, they are
compelled to reside in the regions with relatively lower group
velocities. This is the main reason giving rise to the observed
phenomenon of “steplike” trapping, as depicted in Fig. 3(c).

The second factor is that light of some frequencies can be
trapped at multiple positions. From Fig. 2(f), it can be seen
that the group velocity of TM interface states may approach
zero at three distinct frequencies. This indicates that a specific
frequency will be localized on three positions with different R,
leading to the normalized intensity of light reaching extreme
values at all three positions. Given the discrete nature of our
structure, the maximum intensity may alternate between mul-
tiple positions. This phenomenon is evident in both Figs. 3(c)
and 5(c).

To mitigate the effects of these two factors, the first step
would be increasing the unit-cell number nx in the x di-
rection to achieve a more continuous variation of structure.
Figure 6(a) depicts the variation of the peak position of the
TM mode with frequency for different nx of 15, 30, 120, and
240. It is evident that as nx increases, the steplike phenomenon
significantly diminishes, resulting in a much better linear re-
lation.

Additionally, the impact of multiple localizations can be
weakened by modifying the criteria used to determine the lo-
calized positions more precisely. For this purpose, we select a
critical value δ, and extract all positions where the normalized
electric intensity exceeds δ. Subsequently, we calculate the
median value to determine the localized position. In Fig. 6(b),
the change in the localized positions of the TE mode with
frequency is depicted for various δ of 0.5, 0.7, 0.9, and 1.0. As
δ decreases gradually within a certain range, the phenomenon
of multiple localizations weakens, leading to a notable in-
crease in the linearity of the localized positions with respect
to frequency.

Based on the aforementioned approaches, optimizations
are carried out for both the inclined axis TRC and the syn-
thetic dimension TRC. Figures 6(c) and 6(d) present the
frequency-dependent variations in the interval between local-
ized positions for the TE and TM modes in both the inclined
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FIG. 6. Optimization of TRCs. (a) Variation of the peak positions
of TM mode in the inclined axis TRC with frequency, where nx
represents the quantity of unit cells in the x direction. Clearly, with
the increase of nx, the deviations decrease obviously. (b) Changes
of the localized positions of TE mode in the inclined axis TRC
with frequency, where δ serves as the threshold for determining the
localized positions. (c) The interval between localized positions of
TE and TM modes in the inclined axis TRC. nx = 240 and δ = 0.5.
(d) The interval between localized positions for the TE and TM
modes in the synthetic dimension TRC. nx = 240 and δ = 0.8.

axis TRC (nx = 240, δ = 0.5) and the synthetic dimension
TRC (nx = 240, δ = 0.8). Fitted curves, along with their
equations, are provided in the figures also, demonstrating a
high level of linearity.

In addition, the TE mode performs much better than the
TM mode in spatial localization in Fig. 3. This is due to the
existence of numerous structures supporting their propaga-
tion, as evident from Fig. 2(b). For instance, at 520 THz, the
range of reflection positions R corresponding to TM interface
modes spans from 0.440a to 0.474a, whereas for TE modes,
the range of reflection positions R is less than 0.004a. This
corresponds to the more localized nature of TE modes. Indeed,
designing unit-cell structures via algorithms can narrow the
range of structural variations for TE and TM modes at the
same frequency, which requires further investigation.

III. CONCLUSION

This paper presented a general and efficient approach to
configuring TRCs based on glide-reflection symmetry. By
utilizing the two degrees of freedom of the glide-reflection
symmetry, i.e., the position of the mirror reflection (R) and
the glide length (g), two kinds of dual-polarization TRCs are
constructed from an ordinary photonic crystal unit cell with
complete band gap. The first kind introduces an inclined axis,
which is protected by the topological properties of glide-
reflection symmetry. The second kind is based on synthetic
dimensions by continuously varying the glide length g. Both
the devices can trap light at separate positions for different
frequencies and different polarizations. Interestingly, the two

devices not only enable the separation of TE and TM modes,
but also can determine the frequency of incident light by
utilizing the interval distances between the trapping positions.
This dual determination of frequency achieves the purpose of
spectral and polarization analysis.

These devices reported in this paper have potential applica-
tions in various areas such as frequency division multiplexing,
and spectral imaging. Due to the principle of the device re-
lying on the variations of two inherent degrees of freedom
of the glide-reflection symmetry, as well as the presence of
a complete band gap, its operation frequency center and op-
eration bandwidth can be shifted and optimized by tuning
the crystal unit cell. Moreover, this method of implementing
TRCs is universal and readily extendable to diverse fields such
as acoustics and mechanics. The introduction of inclined axis
and synthetic-dimension methods based on glide-reflection
symmetry provides a different approach to configuring topo-
logical rainbows, offering a platform for the implementation
of topological photonic devices.
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APPENDIX A: DESIGN OF THE UNIT CELL WITH
COMPLETE BAND GAP

In the main text, we adopt a unit cell with complete band
gap to construct the rainbow concentrator. Here, we show how
the unit cell is determined using a universal methodology.

Normally, TE and TM band gaps do not coexist simultane-
ously in PCs. The presence of the TE band gap is associated
with Bragg scattering, while the TM band gap primarily orig-
inates from Mie resonances [36]. When interconnected in
regions of high dielectric constant, Bragg scattering makes the
occurrence of TE band gaps more likely. In the PC depicted
in Fig. 7(a), dielectric walls are mutually connected. As dis-
cerned from the band structure in Fig. 7(b), it is evident that
the TE mode exhibits a wider band gap. When separated in
regions of high dielectric constant, the optical field tends to
exhibit strong localization. In this scenario, Mie resonances
take precedence, leading to the emergence of TM band gaps.
As depicted in Figs. 7(c) and 7(d), the PC is composed
of isolated dielectric atoms, which results in a broader TM
band gap.

By superposing both the unit cells together, it is possible
to find a compromise that enables simultaneous band gaps for
both polarizations, which is known as CBG, as illustrated in
Figs. 7(e) and 7(f). The PC with a CBG was achieved through
the superposition of dielectric rods interconnected by dielec-
tric walls, followed by parametric scanning and optimization
adjustments. The relative bandwidth is measured to be 14.5%,
positioned above the ninth TM band and the fifth TE band.
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FIG. 7. Design of the unit cell with complete band gap by su-
perposing two unit cells with TE and TM band gaps, respectively.
(a) Schematic diagram of a unit cell with interconnected dielectric
walls. (b) Corresponding TE band gap of the unit cell shown in (a).
(c) Schematic diagram of a unit cell with isolated dielectric rods.
(d) Corresponding TM band gap of the unit cell shown in (c). (e)
Schematic diagram of the combination of dielectric rods connected
by dielectric walls. (f) A large complete band gap is obtained for the
unit cell shown in (e).

APPENDIX B: VARIATION OF ZAK PHASE WITH g

Suppose photonic crystal B is obtained as a result of ap-
plying a glide translation in the x direction with g to photonic
crystal A. Let the reciprocal lattice vectors be G1 and G2,
respectively. For the nth energy band, according to the Bloch
theorem, the wave functions of crystals A and B can be written
as follows:

ϕn,k(r) =eik·run,k(r) = ei(kxrx+kyry )un,k(r), (B1)

ϕn,k,g(r) =eiχ (k,g)ϕn,k(r − gx). (B2)

Since the crystal returns to its original state after a glide length
of g = a, let χ (k, g) be an arbitrary periodic real function,
satisfying

eiχ (k+G,g) = eiχ (k,g+a) = eiχ (k,g). (B3)

Then we have

un,k,g(r) = eiχ (k,g)e−ikxgun,k(r − gx). (B4)

FIG. 8. (a) The band structure of TM polarization when R =
0.49a and g = 0.5a is shown. Points i and ii denote two interface
modes at kx = 0.5π/a, with frequencies 485.0 and 475.5 THz, re-
spectively. The corresponding mode profiles at points i and ii are
also depicted. (b) When the position of the mirror reflection is fixed
at R = 0.49a, variations in the glide length g lead to the band crossing
and band anticrossing phenomena in the TE mode.

Defined by the Zak phase,

θn(B) =
∫ π/a

−π/a
dkx

∫∫
BZ

un,k,g(r)i
∂

∂kx
un,k,g(r)d2r. (B5)

Substituting into Eq. (B4), we obtain

θn(B) = θn(A) + 2πg

a

−
[
χ

(
1

2
G1 + kyG2, g

)
− χ

(
−1

2
G1 + kyG2, g

)]
.

(B6)

Therefore, the influence of g on the Zak phase is

θn(ky, g) = θn(ky, 0) + 2πg

a
(mod 2π ). (B7)

APPENDIX C: THE EMERGENCE OF PAIRED
INTERFACE STATES AND DEGENERACY POINTS

To elucidate the appearance of two surface modes within
the band gap, we illustrate in Fig. 8(a) the mode profiles of
interface states, using the example of TM modes. The expo-
nential decay of electric-field intensity along the y direction
indicates that both states are interface states.

Moreover, the field distribution of a photonic crystal is
defined as F(x, y, z). The operator representing the glide-
reflection operation is denoted as ĝ. The field distribution
corresponds to the eigenfunctions of the operator ĝ with eigen-
value g:

ĝF(x, y, z) = gF(x, y, z). (C1)

Applying the operator ĝ twice and utilizing the Bloch the-
orem, we obtain

ĝĝF(x, y, z) = F(x + a, y, z) = eikxaF(x, y, z). (C2)

The eigenvalues of the operator ĝ are given by

g = ±eikxa/2. (C3)

Clearly, the field distribution can be categorized into two
distinct modes. When g = +eikxa/2, it corresponds to the “+”
mode; conversely, when g = −eikxa/2, it represents the “−”
mode. From Fig. 8(a), it is evident that neither mode is purely
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odd or even, but rather can be understood as linear combina-
tions of odd and even modes, exhibiting a zigzag pattern at the
interface.

Furthermore, due to the presence of time-reversal symme-
try, the eigenfunctions remain unchanged under the transfor-
mation k → −k, implying g = ±e±ikxa/2. At point X , kx =
π/a. For the “+” mode, we have g = e±i·π/a·a/2 = ±i. For the
“−” mode, g = −e±i·π/a·a/2 = ∓i. Both represent equivalent
ĝ. This leads to the appearance of degenerate points at the
Brillouin-zone boundary.

Another intriguing phenomenon is the existence of an-
other degeneracy point for the TE mode in the middle of the
Brillouin zone, as shown in Fig. 2(c). We attempt to explain
this degeneracy point using the coupled-mode theory. The
coupling coefficient κ between two guided modes n1 and n2

in the band gap with the same wave vector k can be defined as
the overlap integral:

κ ∝
∫

	Ek
n1

(	r) · 	Ek∗
n2

(	r)[ε(x, y, z)]d3	r. (C4)

When guided modes are coupled, κ = 0 corresponds to band
crossing, whereas κ �= 0 corresponds to anticrossing. As
shown in Fig. 8(b), when g = 0.5a, the two “±” guided modes
of the TE mode precisely result in κ = 0, leading to a band
crossing phenomenon, while when g �= 0.5a, from a pertur-
bative perspective, it is equivalent to a slight perturbation
in the dielectric constant κ ∝ ∫ 	Ek

n1
(	r) · 	Ek∗

n2
(	r)[ε(x, y, z) +

ε(x, y, z)]d3	r, leading to the guided mode coupling coeffi-
cient κ �= 0, thus resulting in the anticrossing phenomenon,
with the degeneracy point being opened. Therefore, this is
an accidental degeneracy caused by the coupling strength
κ = 0, rather than determined by symmetry. This can be
further rigorously analyzed through asymmetric space group
theory [31,37].

APPENDIX D: EXPERIMENTAL FEASIBILITY
AND TOPOLOGICAL PROPERTIES

The TRCs discussed can be achieved by employing all-
dielectric materials on a silicon-based platform. This process
can be facilitated through a complementary metal-oxide semi-
conductor compatible nanofabrication [16]. For example,
electron-beam lithography can be utilized to manufacture two-
dimensional photonic crystal slabs [38].

Additionally, a scanning near-field optical microscope sys-
tem has been utilized to characterize the performance of a

FIG. 9. (a) The schematic diagram illustrates the TRC with de-
fects constructed via the inclined axis, where r, w1, and w2

are all set to 10%. (b) The frequency-dependent variation of peak
intensity positions for TE and TM modes of the inclined axis TRC.
The gray bands correspond to defect positions. (c) The variation of
separation distances between TE and TM modes of the inclined axis
TRC with frequency, featuring a red dashed line denoting the fitted
curve.

TRC in Ref. [1]. This further demonstrates the feasibility and
practicality of the proposed experimental setup.

Fabrication errors may result in machining deviations in
the photonic crystal unit-cell structure. In Fig. 9(a), we in-
vestigate the localized impact of such TRCs on light under
these circumstances. It is noteworthy that despite machin-
ing deviations, the localized positional changes are minor.
Furthermore, we plotted the relationship between frequency
and peak intensity positions, as well as the variation in sep-
aration distance between TE and TM modes with frequency
[Figs. 9(b) and 9(c)]. We observed that both the peak inten-
sity position and the separation distance still exhibit a linear
relationship with frequency.

In the paper, we also introduced methods to increase nx
and introduce δ to optimize the determination of localized po-
sitions, which further enhances the accuracy of the judgment.
In conclusion, our structure exhibits immunity to defects,
providing a stable and reliable solution for spectral analysis
and frequency division multiplexing.
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