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Bound states in the continuum in asymmetric crossbar junctions in one-dimensional waveguides

Sofia Pinto ,1 Rafael A. Molina ,2 and Pedro A. Orellana 1

1Departamento de Física, Universidad Técnica Federico Santa María, Casilla 110 V, 2340000 Valparaíso, Chile
2Instituto de Estructura de la Materia, CSIC, Serrano 123, E-28006 Madrid, Spain

(Received 4 January 2024; accepted 8 May 2024; published 2 July 2024)

Over the past few decades, the study of bound states in the continuum (BICs), their formation, and properties
has attracted a lot of attention, especially in optics and photonics. It is particularly noticeable that most of
these investigations are based on symmetric systems. In this article, we study the formation of bound states
in the continuum in electronic and photonic transport systems consisting of crossbar junctions formed by
one-dimensional waveguides, considering asymmetric junctions with commensurable lengths for the upper
and lower arms. These BICs in an asymmetric system go beyond the symmetry-protected paradigm. We also
study how BICs form in linear junction arrays as a function of the distance between consecutive junctions and
their commensurability with the upper and lower arms. New commensurability conditions in the array’s central
section also give rise to Fabry-Pérot-type BICs. We solve the Helmholtz equation for the crossbar junctions and
calculate the transmission probability, local density of states in the intersections, and quality factor. The presence
of quasi-BICs is reflected in the transmission probability as a sharp resonance in the middle of a symmetric Fano
resonance, along with Dirac δ-functions in the probability density and divergence in the quality factors.

DOI: 10.1103/PhysRevA.110.013501

I. INTRODUCTION

Bound states in the continuum (BICs) are states that remain
spatially localized and show no decay despite coexisting with
the continuum of the radiation spectrum of the system [1,2].
Von Neumann and Wigner [3] first predicted them for quan-
tum mechanics. In their work, they found a solution to the
Schrödinger equation with a particular oscillating potential in
which a bound state with discrete and positive energy cou-
pled to the radiation continuum was formed due to multiple
interference processes, resulting in the complete suppression
of particle escape. For many decades, von Neumann and
Wigner’s results were considered nothing but a mathemat-
ical curiosity, probably due to the artificial characteristics
of the potential they used to demonstrate the properties of
BICs. In the 1970s and subsequent years, various theoret-
ical studies presented energy states with the characteristics
already mentioned, but the authors of those works did not
relate the results obtained to the phenomenon of BICs [4].
Then, in 1985, Friedrich and Wintgen reformulated von Neu-
mann and Wigner’s concept of the BIC in a more general
framework as a result of complete destructive interference
of two resonances undergoing an avoided crossing [5]. More
recent works showed that BICs could be made robust through
symmetry arguments [6,7]. In this case, the coupling to the
continuum is forbidden due to the conservation of some
symmetry. BICs were then divided into two categories: the
accidental ones, like in the works by Friedrich and Wintgen,
and the symmetry-protected ones [1]. A new category of
BICs can be related to large degeneracies induced by general
lattice symmetries [8–10]. An important development was
the realization that, on many occasions, a small symmetry
breaking in the case of symmetry-protected BICs or a small

change in parameters in the case of accidental BICs induces
the appearance of Fano-like resonances that were later called
quasi-BICs [11–13].

BICs, although first theoretically predicted in quantum me-
chanics, are a general wave phenomenon, which is reflected in
the experimental situation. The first reported evidence of the
formation of these states was made in an electronic system,
a semiconductor heterostructure [14]. However, it was not
until 2008 that symmetry-protected BICs were measured for
the first time in an optical waveguide array [15]. In the past
decade, the investigation of BICs has become an active topic,
with experiments in photonics, phononics, plasmonics, and
others, mainly due to their device-manufacturing applications
[16]. With this increase of attention came an increase in the
number of studies on different systems that may hold these
exotic states [17–19], most of which based their research on
symmetric properties. Accidental BICs have also been mea-
sured [13,20] and may have important applications as high-Q
narrow-frequency resonators [21]. Other applications of BICs
include sensors [22–24], lasers [25,26], filters [27], transduc-
ers [28], and actuators [29].

In this work, we study the appearance of BICs in asym-
metric crossbar structures. The studied system corresponds
to a quantum graph. These graphs are network systems
composed of vertices connected at the edges, where a dif-
ferential equation is defined at each edge [30,31]. Quantum
graphs are meant to be effective models of multiply con-
nected quasi-one-dimensional systems at low energies and
have been widely investigated [31–33], mainly due to the sim-
plicity of the models, allowing the understanding of complex
physical phenomena. In particular, these models have been
extensively used to study BICs, their properties, and formation
mechanisms. Our analysis relies on a simple scattering
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formalism of single-channel waveguides, which allows us
to find analytical solutions and a deep understanding of the
BIC formation mechanisms. The signatures of BICs in the
transmission show sharp resonances in the middle of antires-
onances when the commensurability between the lengths of
the side-attached structures breaks slightly (they are called
quasi-BICs in the literature [34–36]). The main result of our
work is that, when the sidearms of the junction have commen-
surable dimensions, we find an alternative type of BIC that
goes beyond the symmetry-protected BIC paradigm. We also
extend our analysis to two or more crossbar structures in a
series. The asymmetric BICs are still present and can even
form bands for many scattering units. However, other BICs
form due to the hybridization of the wave functions in the side-
attached bars and the central channel. These extra BICs can be
described by the previously known Fabry-Pérot mechanism
for BIC formation. Finally, we discuss the possibility of using
our setup as a sensor for the impurities or imperfections of the
systems.

II. MODELS AND RESULTS

A. Single crossbar junction

First, we study the simplest setup, a system consisting
of a single crossbar junction of single channel waveguides
as shown in Fig. 1. The incident waves approach from the
left and can be transmitted or reflected at the junction. The
upper and lower arms are finite, with lengths L+ and L−,
respectively. Note that this setup can be considered a varia-

tion of a Michelson-Morley interferometer [37]. However, the
differences are important and allow bound states in vertical
arms. Under particular circumstances, some of these bound
states can decouple from the continuum in the horizontal
waveguide. When these BICs form, there are clear signatures
in the transmission spectrum, which we analyze below.

In Appendix A, we explain the analytical calculations for
the scattering problem in this system. The final result for the
total transmission probability is

T = |t |2 = 4

4 + [cot(kL+) + cot(kL−)]2
. (1)

To understand the result, we apply the following variable
changes:

L+ =
[

n + �

2

]
L0, (2)

L− =
[

m − �

2

]
L0. (3)

The variables n and m are integers, L0 is some measure with
units of length, and � is a dimensionless commensurability
parameter. By making these changes, it becomes easier to
analyze the impact of having commensurate top and bottom
sidearm lengths. We simplify the final expressions by renam-
ing k/π as k′, which will be expressed in units of L−1

0 or,
equivalently, in units of 1

L0
.

We then rewrite Eq. (1) using the new variables:

T = 4sin2
[
πk′L0

(
n + �

2

)]
sin2

[
πk′L0

(
m − �

2

)]
4sin2

[
πk′L0

(
n + �

2

)]
sin2

[
πk′L0

(
m − �

2

)] + sin2[πk′L0(n + m)]
. (4)

Analyzing the previous expression we see that, for � = 0,
there will be symmetric Fano resonances [38] for every value
of k′ that meets the following conditions:

k′ = s

n

(
units of

1

L0

)
and/or

k′ = p

m

(
units of

1

L0

)
∀ (s, p) ∈ N. (5)

In addition, the value of T will become undetermined for
� = 0 and every value of k′ that meets the condition

∃(s, p) ∈ N : k′ = s

n

(
units of

1

L0

)
= p

m

(
units of

1

L0

)
.

(6)

This mathematical condition of commensurable lengths marks
the presence of a BIC in the system at these values of the
renormalized momentum k′. As BICs do not couple to the
continuum, they cannot be observed in the transmittance of
the system. However, any small rupture of commensurability
turns the BIC into a quasi-BIC, which appears as a narrow
spectral resonance. So for � → 0 and the same commensu-

rability condition, we obtain T = 1. This is the signature of
BICs in the transmission spectrum.

Figure 2 displays the transmission probability (top) and
local density of states (bottom) for a single-crossbar junc-
tion, with n = 2 and m = 3, for two cases: commensurability
between the upper and lower arms with � = 0 (right) and
rupture of this commensurability with � = 0.001 (left). As
predicted, we can appreciate the formation of Fano resonances
in every value of k′ that meets the condition stated in Eq. (5)
and the appearance of quasi-BICs for the rupture of commen-
surability with � = 0.001 for every value of k′ that meets the
condition stated in Eq. (6), which leads us to recognize the
formation of BICs for these same values of k′ for the case of
absolute commensurability (� = 0).

On the other hand, when computing the local density of
states in the system, we notice the appearance of sharp peaks
for the same values of k′ at which quasi-BICs appear in the
case of � = 0.001. These peaks correspond to Dirac-δ with
no width in the case of absolute commensurability (� = 0),
so they are represented by a dashed line. The appearance of
these Dirac-δ confirms the formation of BICs for the values of
k′ already mentioned.

It is possible to interpret the interesting results and the
commensurability condition by considering that the vertical
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FIG. 1. Two setups consisting of a single crossbar junction in
a one-dimensional waveguide (top) and a double crossbar junction
(bottom). The system is open through its horizontal arms and remains
closed at the ends of its vertical arms, with their respective lengths
being L+ (in the cases shown, L0) and L− (in the cases shown, 3L0).
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FIG. 2. Results for the transmission (top) and local density of
states (bottom) vs k′ for a single-crossbar junction with n = 2 and
m = 3. The right panels show the results for full commensurability
between the upper and lower arms (� = 0), while the left panels
consider a small breaking of the commensurability (� = 0.001).

FIG. 3. Contour plot of the transmission as a function of param-
eters k′ and � with n = 1 and m = 2.

top and bottom arms form an infinite well. The states in the
well are not affected by the continuum if there is a node
of their wave function in the connection to the transmission
waveguides. More information can be found in Appendix B.

Figure 3 displays a contour plot of the transmission as a
function of the renormalized momenta k′ and the asymmetry
parameter � for the case n = 1 and m = 2. The plot clearly
shows the evolution of the BICs into quasi-BICs and then into
more standard resonances as � increases.

The discovered BICs do not fit into the categories described
in previous works. Although they follow a formation mech-
anism similar to symmetry-protected BICs, the described
system does not meet the necessary conditions to enter such
a category, as it is clearly asymmetric. Therefore, these states
belong to a different category of BIC formation, depending
solely on the commensurability of their dimensions.

Now, we analyze the dependence of the quasi-BIC’s width
on the perturbation parameter �. In the case of single-channel
waveguides, an elastic perturbation in the arms can change
only the optical path and is equivalent to the � parameter
defined earlier. For simplicity, we consider the case with n = 1
and m = 2 without loss of generality. First, let us assume the
equation for the transmission, Eq. (4). In the limit � � 1
and the vicinity of k′ = 1(units of 1

L0
), we can write the equa-

tion for the transmission, Eq. (4), as

T ≈ 4 sin2(2πk′L0)

5 + 4 cos(2πk′L0)
+ 4 sin4

(
π�
2

)
4 sin4

(
π�
2

) + sin2(3k′πL0)
. (7)

We can then identify two different contributions to this
equation. The first contribution goes to zero for k′ =
f
2 (units of 1

L0
), with f being an integer, and describes the in-

terference effects and Fano resonances that appear for � = 0.
The second contribution has the form of a Breit-Wigner reso-
nance [T (x) = �2/(�2 + x2)] with width � = 2 sin2(π�/2)
for x = sin(3πk′L0). For small values of � and x = k′L0 the
width is just � ≈ ( �2π

6 ).
From the above equation, we can see that, for small per-

turbations � � 1, the width of the quasi-BIC is proportional
to the quadratic value of the perturbation parameter �2. This
formula should be helpful for the use of the system’s BICs
in metrological and sensing applications. In Fig. 4, we show
a comparison of the exact result with the Breit-Wigner ap-
proximation for two values of the perturbation, � = 0.05 and
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FIG. 4. Transmission vs k′ for a single-crossbar junction with
n = 1 and m = 2. The red long-dashed and green short-dashed lines
show the exact results from Eq. (4) considering � = 0.05 and � =
0.1, respectively, while the blue solid and orange medium-dashed
lines show the approximation given by Eq. (7). For these values of
�, both curves overlap.

� = 0.1, showing good agreement even for not very small
values of �.

Using Eq. (7), we can gather the data needed to calculate
the Q factor for this setup considering n = 1 and m = 2.
The Q factor, in this case, is represented by Q1 = π/�. The
Q-factor graph is shown in Fig. 5, with the asymmetry pa-
rameter � being the independent variable. As we can see, this
setup can achieve an ultrahigh Q factor that diverges at the
resonances.

B. Array of N crossbar junctions

We now study a generalization of the previous system
consisting of an array with N identical cross junctions equally
spaced from one another. The separation length is given by
the parameter a. As before, the system is open through its
horizontal arms and remains closed at the ends of its vertical
arms, with their respective lengths being L+ (upper arm) and
L− (lower arm).

We use the transfer-matrix method [39] to find the
transmission probability for this system, as explained in Ap-

FIG. 5. Q factor as a function of the asymmetry parameter � for
N = 1 considering n = 1 and m = 2.

FIG. 6. Transmission vs k′ for a system formed by different num-
bers of crossbar junctions for n = 1, m = 3, l = 5, and ν = 0. From
top to bottom, the three rows show the cases with N = 2, N = 5, and
N = 10, respectively. The left panels show the results for � = 0, and
the right panels show the results for � = 0.01.

pendix C. The final result is

TN (k) = 1

1 +
[

|α|sin(Nql )
2sin(ql )

]2 , (8)

with the parameter α = i[cot(kL+) + cot(kL−)] and

cos(ql ) = cos(ka) − [cot(kL+) + cot(kL−)]sin(ka)

2
. (9)

To analyze the transmission through the junction array and
the formation of BICs in the system, we make the variable
changes in Eqs. (2) and (3), as well as the following change:

a = [l + ν]L0, (10)

where the new parameter l is also an integer. The parameter ν

is a commensurability parameter that will play a similar role
to � but for the central region.

Careful examination of Eq. (8) reveals that there is perfect
transmission independent of the incident momentum for some
highly symmetric cases. We do not explore these cases further
in this work as we focus on BICs.

Figure 6 displays the transmission profiles for an N-
junction system with different values of N . From top to
bottom, we show N = 2, N = 5, and N = 10. We set n = 1,
m = 3, l = 5, and ν = 0 for all cases. We compare the cases
with � = 0 (left panels) with those with � = 0.01 (right
panels). We observe the progressive formation of a band
structure as the value of N is increased. This band structure
replaces the pattern shown in the transmission of resonances
and antiresonances in the single cross junction. When � 	= 0,
new narrow bands from the quasi-BICs appear in the mid-
dle of the forbidden region with almost zero transmission.
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FIG. 7. Zoom of the first quasi-BIC structure formed for N =
10 crossbar junctions with n = 1, m = 3, and l = 5. The left panel
shows � = 0.01 and ν = 0, while the right panel shows � = 0 and
ν = 0.01.

Figure 7 shows zooms of the band structures formed for
N = 10 crossbar junctions with n = 1, m = 3, and l = 5
around k′ = 1(units of 1

L0
), where the formation of the first

quasi-BICs occurs. From the images, it is apparent that the
quasibound states in the continuum (quasi-BICs) which were
initially thought to be single sharp resonances can be a series
of peaks that are extremely close to each other, as in the case
shown in the right panel. Eventually, as commensurability
becomes full, these quasi-BICs merge into a single BIC. In-
creasing the number of cross junctions in the system leads to
a rise in maxima formed when commensurability is broken.
With proper calibration and depending on the spectral reso-
lution of the detectors, these crossbar junction arrays could
be employed to enhance sensitivity for BIC applications in
sensing and metrology.

BICs occur when the lengths from the upper and lower
arms of the system are commensurable, as previously
mentioned. Additionally, BICs will also appear when one
of the arms is commensurable with the new separation
length between consecutive intersections. Generally, based on
Eq. (C21), BICs will be formed for every value of k′ that
satisfies the following condition:

∃{ j1, j2} ⊂ {n, m, l} ∧ ∃{s, p} ∈ N :

k′ = s

j1

(
units of

1

L0

)
= p

j2

(
units of

1

L0

)
. (11)

Thus, if any two of these three lengths (n, m, and l) are
commensurate, there will be a BIC at such a value of k′.
Considering this condition and the discussion in Appendix B,
it is evident that the well states that give rise to BICs due
to their nodal structure can be the same as before or can
be hybridized states between the central region and either
the top or the bottom sidearm. The commensurate condition
with a implies that the stationary states formed by this hy-
bridization have nodes at x = ( j − 1)a and x = ja in addition
to canceling at y = L+ or y = L−. These hybridized states
are the continuum equivalent of compact localized states in
lattice models [40]. Similarly, like these compact localized
states do in infinite systems, they form BIC flat bands that
become quasi-BIC very narrow bands under infinitesimal
perturbations.
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FIG. 8. Local density of states vs k′ for a system formed by N = 2 crossbar junctions for n = 1, m = 3, and l = 5. From top to bottom,
the three rows show the local density of states for the arms of the first crossbar (entrance), middle section, and the arms of the second crossbar
(exit), respectively. The left panels show the results for � = ν = 0, the middle panels show the results for � = 0.001 and ν = 0, and the right
panels show the results for � = 0 and ν = 0.001.
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FIG. 9. Top panels show contour plots for the transmission with
n = 1, m = 3, l = 5, and N = 10 as a function of � and k′, with
ν = 0 (left) and ν and k′ with � = 0 (right). Red lines mark specific
sections of these contour plots shown in the bottom panels with the
corresponding transmission plots as a function of k′ with � = 0.1
and ν = 0 (left) and � = 0 and ν = 0.1 (right).

Figure 8 displays the local density of states for the system
with N = 2, n = 1, m = 3, and l = 5 (see Appendix D for
the analytical calculations). From top to bottom, the three
rows show the local density of states for the arms of the first
crossbar (entrance), the middle section, and the arms of the
second crossbar (exit), respectively. The left panels show the
results for � = ν = 0, the middle panels show the results for
� = 0.001 and ν = 0, and the right panels show the results for
� = 0 and ν = 0.001. Once again, the appearance of Dirac
δ-functions (with no width for the case of full commensura-
bility) for the same values of k′ at which they appear as sharp
resonances in the transmission profile confirms the formation
of BICs for the values of k′ already mentioned.

Based on the literature [1,2], BICs are formed by several
mechanisms, such as the symmetry-protected and Fabry-Pérot
mechanisms. The latter occurs when two separated resonators
have a perfect reflection. As we already showed in our analysis
of the single-crossbar-junction system, we can extend the
symmetry-protection mechanism to nonsymmetric systems
with commensurable dimensions. In the case of the system
formed by an array of N identical equally spaced crossbar
junctions, not all of the observed BICs are attributable to this
mechanism. Since some BICs appear depending on the length
of the region between crosses, we can attribute their formation
to the Fabry-Pérot mechanism. This structure is similar to the
one analyzed in Ref. [41].

Figure 9 shows a contour plot of the transmission for a
system with N = 10, n = 1, m = 3, and l = 5. In the left
panels, we show the case with ν = 0 as a function of � and
k′, while in the right panels, we show the case with � = 0
as a function of ν and k′. The parameter � is symmetric
between positive and negative values as the change in sign
only switches the role of the upper and lower arms of the
junction. However, the parameter ν shows clear asymmetry
between positive and negative values because larger or smaller
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FIG. 10. System formed by N = 2 crossbar junctions with mea-
sures n = 4, m = 2, and l = 1. The left panels correspond to the
transmission, while the right panels show the local density of states
for different regions separated by colors: blue (large dashed) lines
for the arms in the first crossbar, purple (small dashed) for the
middle section, and pink (continuous) lines for the arms in the second
crossbar. From top to bottom, the three presented rows correspond to
� = ν = 0, � = 0.01 with ν = 0, and finally ν = 0.01 with � = 0.

central regions change the commensurability conditions of the
arms differently.

Figure 10 displays the transmission and local density of
states of a system consisting of two crossbar junctions with
dimensions of n = 4, m = 2, and l = 1. In the right panels,
the colored curves represent the local density of states for
three different regions: the arms of the first crossbar, the
middle region, and the arms of the second crossbar. According
to expression (11), we expect BICs to form for values of
k′ = s

2 (units of 1
L0

), with s being an integer. Considering the
formation of quasi-BICs shown in the middle and bottom
panels (where the system’s commensurability has been broken
with � = 0.01 and ν = 0.01, respectively), we confirm the
formation of BICs for the expected values. Depending on
the breaking that we have in the system’s commensurability,
different quasi-BICs form. In the middle panels the rupture
occurs between n and m, between n and l , and between m
and l , so quasi-BICs are formed for every value of k′ =
s
2 (units of 1

L0
). These quasi-BICs appear in the profiles of the

local density of states as a superposition of very narrow peaks
for the different regions of the system. In this case, quasi-BICs
are formed in the arms of both crossbar junctions but not in the
middle section; this is a superposition of the blue long-dashed
and pink solid almost Dirac-δ lines in the profile. On the other
hand, in the bottom panels, the rupture occurs only between n
and l and m and l . However, commensurability between n and
m remains unbroken. That is why quasi-BICs form for only
integer values of k′ as k′ = s

1 (units of 1
L0

), with s ∈ N. In this
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case, quasi-BICs are formed in both crossbar junctions and in
the middle section; this is a superposition of the blue long-
dashed, pink solid, and purple short-dashed narrow peaks in
the profile.

III. T-SHAPED JUNCTIONS

A T-shaped junction is a particular case of our crossbar
junction model with one of the lengths going to zero. For
example, let us set L− = 0; the transmission formula is then
simplified to

T = |t |2 = 4

4 + [cot(kL+)]2
. (12)

All allowed momenta in the infinite well of length L+ become
BICs and, with the condition for BIC formation, become
k j = j π

L+ . A change in the length of the sidearm does not
induce a quasi-BIC but moves the position of the BIC in
the momenta. Recently, BICs in this kind of structure were
explored experimentally for radio-frequency circuits [42].

In the case of a T-shaped junction array, we recover a com-
mensurability condition between the length of the sidearm L+
and the central region between two consecutive junctions a.
The results can also be obtained as the limit for the crossbar
junction arrays with L− = 0. The commensurability condition
for the existence of BICs then becomes

∃(s, p) ∈ N :

k′ = s

n

(
units of

1

L0

)
= p

l

(
units of

1

L0

)
.

(13)

Then, the states of the system that give rise to BICs are
hybridized states between the sidearm and the central region.

IV. SUMMARY AND CONCLUSIONS

In summary, we studied the formation of BICs in a
system consisting of crossbar and T-shaped junctions in one-
dimensional waveguides. To solve the problem, we used
the transfer-matrix method. We calculated the transmission
spectrum and the local density of states of the structure.
First, we investigated a single-crossbar junction and found
the formation of BICs, even in highly asymmetric structures,
as long as the upper and lower arms of the crossbar junc-
tions had commensurable lengths. The formation mechanism
of these BICs, despite their similarities to the paradigm of
symmetry-protected BICs, does not correspond to the forma-
tion mechanisms studied and described in previous works [1].
It constitutes an alternative way of categorizing these peculiar
states: BICs formed in nonsymmetric systems that exhibit
commensurability of their dimensions. Second, we showed
another mechanism for forming BICs due to the hybridization
of the states in the intercrossbar region or a T-shaped junction
with the states of the arms of the junctions. In addition, we
identified a third mechanism for forming BICs by indirectly
coupling two junction levels through the common unidimen-
sional channel. An important aspect of our work is that the
simplicity of the studied models allows for complete analyt-
ical treatment and a good understanding of the mechanisms
behind the formation of such elusive states as these BICs.

In conclusion, we characterized the formation of BICs in
asymmetric systems, with the condition of commensurability
between the different sections of the structure. Furthermore,
another mechanism that contributes to the formation of BICs,
which is connected to the Fabry-Pérot mechanism, was identi-
fied. This mechanism uses two consecutive crossbar structures
as perfect mirrors, generating stationary waves within the
effective cavity that decouples from the continuum. Our re-
sults could be applied to developing sensors because we
have studied how the width and the Q factor of the quasi-
BICs depend on a perturbation. Our results go beyond the
symmetry-protected BIC paradigm and may inspire a new
search for BICs and their applications in different wave sys-
tems. We expect the BICs reported in this work to be observed
in many different classical and quantum wave systems. An
interesting setup to observe these states would be standing
waves in acoustic waveguides with resonant cavities based on
the work carried out by Huan et al. [19]. A simple extension
of the experimental setup by Khattou et al. with stubbed
structures in coaxial cables working in the radio-frequency
domain [42] should allow us to test our results. Moreover, our
work raises questions to answer in future investigations and
the possibility of interesting extensions. What would the role
of disorder be in the case of junction arrays? What happens if
we increase the dimensionality of the arrays? Can the results
be extended to multichannel systems? The condition for BICs
will probably depend on the mode, but this dependence may
have interesting applications for mode selectivity. Engineering
the lengths and couplings in our models, it should be possible
to induce nontrivial topology in the arrays, as has already been
done in different photonic systems [42,43]. It would be excit-
ing to check whether the analytical results can be obtained
for nontrivial topological systems. Studying the anomalous,
highly symmetric cases mentioned earlier for the array of N
identical cross junctions with perfect transmission would also
be interesting. We plan to explore all these aspects in future
works.
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APPENDIX A: ANALYTIC SOLUTION
OF THE SINGLE-CROSSBAR JUNCTION

In this Appendix, we present the analytic solution for the
scattering problem of the single-crossbar junction as pre-
sented in Fig. 1.

We separate the system into four sections: the left arm is
section 1, the right arm is section 2, the upper part is section 3,
and the lower part is section 4. Each of these sections has an
associated wave function. We consider an incident wave plane
from the left, reflecting with amplitude r and transmitting with
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amplitude t :

�1(x) = eikx + re−ikx, (A1)

�2(x) = teikx, (A2)

�3(y) = Ceiky + De−iky, (A3)

�4(y) = Feiky + Ge−iky. (A4)

We seek to determine the amplitudes r, t,C, D, F , and G,
for which we must apply the corresponding boundary con-
ditions [44]. The wave function must be continuous at every
point, so considering the junction point x = y = 0, the first
condition to be fulfilled is

�1(0) = �2(0) = �3(0) = �4(0)

�⇒ t = 1 + r = F + G = C + D. (A5)

Second, we assume that wave functions at the ends of both
vertical arms (sections 3 and 4) go to zero, which mathemati-
cally implies

�3(L+) = 0 �⇒ D = −Ce2ikL+
, (A6)

�4(−L−) = 0 �⇒ F = −Ge2ikL−
. (A7)

The last condition states that the difference between the
derivatives of the wave functions in the horizontal direction
and those of the vertical direction must take the same value at
the intersection point:

∂�2

∂x

∣∣∣∣
0+

− ∂�1

∂x

∣∣∣∣
0−

= ∂�3

∂y

∣∣∣∣
0+

− ∂�4

∂y

∣∣∣∣
0−

. (A8)

These conditions impose the following relation among the
wave-function coefficients in the different regions:

t + r − 1 = C + G − D − F. (A9)

We must solve for coefficients r (reflection amplitude), t
(transmission amplitude), C, D, F , and G using Eqs. (A5) to
(A9). The explicit solution can be written as follows:

t = 2

2 − i[cot(kL+) + cot(kL−)]
, (A10)

r = 2

2 − i[cot(kL+) + cot(kL−)]
− 1, (A11)

F = 2eikL−

4isin(kL−) + 2sin(kL−)[cot(kL+) + cot(kL−)]
, (A12)

G = −2e−ikL−

4isin(kL−) + 2sin(kL−)[cot(kL+) + cot(kL−)]
, (A13)

C = −2e−ikL+

4isin(kL+) + 2sin(kL+)[cot(kL+) + cot(kL−)]
, (A14)

D = 2eikL+

4isin(kL+) + 2sin(kL+)[cot(kL+) + cot(kL−)]
. (A15)

From the squared transmission amplitude |t |2 we can com-
pute the total transmission as in Eq. (1) in the main text.

We can also find the local densities of states as a function
of k for the upper and lower sections of the crossbar junction,

which are respectively given by

P3 =
∫ y=L+

y=0
|�3|2dy

= −2cot(kL+) + 2kL+csc(kL+)2

k{4 + [cot(kL+) + cot(kL−)]2} , (A16)

P4 =
∫ y=0

y=−L−
|�4|2dy

= −2cot(kL−) + 2kL−csc(kL−)2

k{4 + [cot(kL+) + cot(kL−)]2} . (A17)

APPENDIX B: QUANTUM WELL SOLUTION

We can apply the solution of a well with infinite walls to the
vertical sidearms. Taking the textbook solution for the infinite-
potential well [44], the allowed momenta of the stationary
waves solving the problem are then

k j = j
π

L+ + L− , (B1)

with j ∈ N. The corresponding wave functions

� j = A sin

[
k j

(
y − yc + L+ + L−

2

)]
, (B2)

where A is the normalization constant and yc = (L+ − L−)/2
is the middle point of the well. It is easy to get the condition
for the wave function to have a node at the connection point
with the transmission lines � j (0) = 0 when L+ = nL0 and
L− = mL0, with � = 0 as in the definitions of Eqs. (2) and
(3):

k = sπ

(
units of

1

L0

)
, (B3)

with s ∈ N, which, when taking into account the allowed
momenta (B1), is equivalent to the condition written in Eq. (6)
in the main text.

APPENDIX C: ANALYTIC SOLUTION OF THE ARRAY
OF N IDENTICAL CROSSBAR JUNCTIONS

In this Appendix, we present in detail the analytic solution
for the scattering problem of the array of N crossbar junctions
presented in Sec. II B and solved through the transfer-matrix
method. The transfer matrix is the matrix that connects the
waves to the right of the system with the waves to the left of
the system as opposed to the scattering matrix that connects
outgoing waves to incoming waves [39].

First, let us consider the jth cross junction from the array,
placed in the position x = ( j − 1)a, as shown in Fig. 11.

Like we did for the single-junction case, we separate the
system into four sections: the left arm is described by the wave
function � j−1(x), the right arm is described by � j (x), the up-
per arm is described by 
u

j (y), and the lower arm is described
by 
d

j (y). In the end, considering plane-wave solutions, we

013501-8
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FIG. 11. jth cross junction from an array formed by N identical
cross junctions equally spaced from one another. The studied junc-
tion is in position x = ( j − 1)a.

have

� j−1(x) = Aj−1eikx + Bj−1e−ikx, (C1)

� j (x) = Aje
ikx + Bje

−ikx, (C2)


u
j (y) = Cje

iky + Dje
−iky, (C3)


d
j (y) = Fje

iky + Gje
−iky. (C4)

We now apply the corresponding boundary conditions,
which are analogous to the ones described by Eqs. (A5) to
(A8):

Aj−1eik( j−1)a + Bj−1e−ik( j−1)a

= Aje
ik( j−1)a + Bje

−ik( j−1)a

= Fj + Gj = Cj + Dj, (C5)


u
j (L

+) = 0 �⇒ Dj = −Cje
2ikL+

, (C6)


d
j (−L−) = 0 �⇒ Fj = −Gje

2ikL−
, (C7)

Aje
ik( j−1)a − Bje

−ik( j−1)a − Aj−1eik( j−1)a

+Bj−1e−ik( j−1)a

= Cj − Dj − Fj + Gj . (C8)

Let us consider, for simplicity, the following variable changes
in which we have absorbed the exponential into the coeffi-
cients:

Aje
ik ja = A′

j ∀ j, (C9)

Bje
−ik ja = B′

j ∀ j. (C10)

We can now write the equation system described by Eqs. (C5)
to (C8) in its matrix form as(

A′
j

B′
j

)
=

((
1 + α

2

)
eika α

2 eika

−α
2 e−ika

(
1 − α

2

)
e−ika

)(
A′

j−1
B′

j−1

)
. (C11)

For simplicity, we introduce a new parameter α, which corre-
sponds to

α = 1 + e2ikL+

1 − e2ikL+ + 1 + e2ikL−

1 − e2ikL− = i[cot(kL+) + cot(kL−)].

(C12)
With this, we find the transfer matrix that represents a single
cross junction of the whole system:

M1 =
((

1 + α
2

)
eika α

2 eika

−α
2 e−ika

(
1 − α

2

)
e−ika

)
. (C13)

The final transfer matrix for the whole array is given by the
N th power of the M1 matrix, that is,

M = MN
1 =

((
1 + α

2

)
eika α

2 eika

−α
2 e−ika

(
1 − α

2

)
e−ika

)N

. (C14)

From the latter expression, we notice det M1 = 1, and we can
use Chebishev’s identity to compute the N th power of the
matrix.

Chebishev’s identity states that for a matrix of the form

M =
(

a b
c d

)
, (C15)

whose eigenvalues have the form

λ1 = eiql, (C16)

λ2 = e−iql, (C17)

its Nth power is given by

MN =
(

a b
c d

)N

=
(

aUN−1 − UN−2 bUN−1

cUN−1 dUN−1 − UN−2

)
,

(C18)
where UN is defined as a function of q as

UN = sin (N + 1)ql

sin ql
. (C19)

We can now obtain the final expression for the transfer matrix
of the complete array by applying Chebishev’s identity:

M =
((

1 + α
2

)
eikaUN−1 − UN−2

α
2 eikaUN−1

−α
2 e−ikaUN−1

(
1 − α

2

)
e−ikaUN−1 − UN−2

)
. (C20)

Last, we can derive the transmission probability of this system
from Eq. (C20):

T = 1

1 +
[

|α|sin(Nql )
2sin(ql )

]2 . (C21)

APPENDIX D: LOCAL DENSITY OF STATES OF AN
ARRAY OF TWO IDENTICAL CROSSBAR JUNCTIONS

When considering a system formed by N = 2 identical
crossbar junctions, it is reduced to the one shown in Fig. 12.
From Eq. (8) we express the transmission probability for
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FIG. 12. System consisting of two identical crossbar junctions,
separated by a distance a from one another.

N = 2 as

T = |t |2 = 1

1 + |α|2[cos(ka) − [cot(kL+ )+cot(kL− )sin(ka)
2

]2 .

(D1)
We seek to determine the local density of states for three
regions of interest: the intermediate region between both junc-
tions, the vertical region of the left crossbar, and the vertical
region of the right crossbar. For this purpose, we calculate
the coefficients by applying the corresponding boundary con-
ditions shown in Eqs. (C5) to (C8) for j = 1, 2, A0 = 1,
B0 = r, A1 = A, B1 = B, A2 = t , and B2 = 0. The results for
the coefficients are

A = t (2 − α)

2
, (D2)

B = tαe2ika

2
, (D3)

C1 = t (2 − α + αe2ika)

2(1 − e2ikL+ )
, (D4)

D1 = −te2ikL+
(2 − α + αe2ika)

2(1 − e2ikL+ )
, (D5)

G1 = t (2 − α + αe2ika)

2(1 − e2ikL− )
, (D6)

F1 = −te2ikL−
(2 − α + αe2ika)

2(1 − e2ikL− )
, (D7)

C2 = teika

1 − e2ikL+ , (D8)

D2 = −te2ikL+
eika

1 − e2ikL+ , (D9)

G2 = teika

1 − e2ikL− , (D10)

D2 = −te2ikL−
eika

1 − e2ikL− . (D11)

The local density of states for the region between junctions is
calculated as

Dm =
∫ x=a

x=0
|�m|2dx

=
∫ x=a

x=0
[AA∗ + BB∗ + AB∗e2ikx + A∗Be−2ikx]dx

=
∫ x=a

x=0

[
2 + |α|2

2
+ −|α|2 − 2α

4
e2ik(x−a)

+−|α|2 + 2α

4
e−2ik(x−a)

]
|t |2dx. (D12)

For the vertical region of the left crossbar, we have

D1 =
∫ y=L+

y=−L−
|�1|2dy

=
∫ y=L+

y=0

∣∣�A
1

∣∣2
dy +

∫ y=0

y=−L−

∣∣�B
1 |2dy, (D13)

with �A
1 and �B

1 being the wave functions for the upper and
lower arms, respectively, and their quadratic values being

∣∣�A
1

∣∣2 = [C1C
∗
1 + D1D∗

1 + C1D∗
1e2iky + C∗

1 D1e−2iky]

= |t |2{2 − 2cos[2k(y − L+)]}
2[2 − 2cos(2kL+)]

×{2 − 2|α|sin(2ka) + |α|2[1 − cos(2ka)]}, (D14)∣∣�B
1

∣∣2 = [F1F ∗
1 + G1G∗

1 + F1G∗
1e2iky + F ∗

1 G1e−2iky]

= |t |2{2 − 2cos[2k(y − L−)]}
2[2 − 2cos(2kL−)]

×{2 − 2|α|sin(2ka) + |α|2[1 − cos(2ka)]}. (D15)

And for the vertical region of the right crossbar, we have

D2 =
∫ y=L+

y=−L−

∣∣�2

∣∣2
dy

=
∫ y=L+

y=0

∣∣�A
2

∣∣2
dy +

∫ y=0

y=−L−

∣∣�B
2

∣∣2
dy, (D16)

with �A
2 and �B

2 being the wave functions for the upper and
lower arms, respectively, and their quadratic values being

∣∣�A
2

∣∣2 = [C2C
∗
2 + D2D∗

2 + C2D∗
2e2iky + C∗

2 D2e−2iky]

= |t |2{1 − cos[2k(y − L+)]}
1 − cos(2kL+)

, (D17)

∣∣�B
1

∣∣2 = [F2F ∗
2 + G2G∗

2 + F2G∗
2e2iky + F ∗

2 G2e−2iky]

= |t |2{1 − cos[2k(y − L−)]}
1 − cos(2kL−)

. (D18)
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