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Impurity in a zero-temperature three-dimensional Fermi gas
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We consider an impurity in a sea of zero-temperature fermions uniformly distributed throughout the space.
The impurity scatters on fermions. On average, the momentum of impurity decreases with time as t−1/(d+1) in d
dimensions, and the momentum distribution acquires a scaling form in the long-time limit. We solve the Lorentz-
Boltzmann equation for the scaled momentum distribution of the impurity in three dimensions. The solution
is a combination of confluent hypergeometric functions. In two spatial dimensions, the Lorentz-Boltzmann
equation is analytically intractable, so we merely extract a few exact predictions about asymptotic behaviors
when the scaled momentum of the impurity is small or large.

DOI: 10.1103/PhysRevA.110.013328

I. INTRODUCTION

Describing the properties of an impurity interacting with
a bath of fermions, a Fermi polaron, remains an intriguing
theoretical challenge. This problem has a long and venerable
history [1–6]. Experimental progress in cold atoms provides
new motivation for studying polaronic phenomena [7–23]. An
extreme case of an impurity immersed in a zero-temperature
Fermi gas has become relevant [24–26], and the control of
dimensionality [27] suggests investigating polaronic phenom-
ena in various dimensions. In one dimension, the impurity
exhibits peculiar behaviors [28–41] such as momentum oscil-
lations in the presence of an external force [29–31], a drastic
dependence on whether or not the masses of the impurity and
the host fermions are equal [32], quantum flutter phenomenon
[33], and nonequilibrium steady states [37,38].

Qualitatively different and typically more robust behaviors
emerge when d � 2, particularly in three dimensions. We can
ignore the disturbance of the infinite system of fermions by
a single impurity in d � 2 dimensions. Hence, the fermions
remain in a Fermi-Dirac distribution throughout the evolution,
and relying on this feature, Kim and Huse [12] derived a
Lorentz-Boltzmann equation (LBE) for the momentum dis-
tribution of the impurity in a zero-temperature Fermi gas.
The momentum distribution quickly becomes isotropic and
approaches a scaling form in the long-time limit. Despite us-
ing the zero-temperature Fermi-Dirac distribution, we follow
Ref. [12] and treat the impurity classically. Quantum effects
enter only through the amplitude in the LBE expressed via the
Planck constant, the scattering length, and the effective mass
of the impurity. We treat this amplitude as known and absorb
it into the time variable.

The LBE for the scaled momentum distribution is an in-
tegrodifferential equation. This complicated LBE admits an
analytical solution in three dimensions. The derivation of this
exact solution is our chief result. One can similarly treat the
impurity in a zero-temperature Fermi gas for general d � 2.
In two dimensions (2D), we derive an explicit LBE for the
scaled momentum distribution. This LBE appears analytically
intractable, and we only deduce asymptotic behaviors in the

limits when the scaled momentum is small or large. The
same pattern persists in higher dimensions: The LBEs are
intractable in even dimensions. We briefly discuss the simplest
case beyond d = 3, viz., d = 5.

The outline of this paper is as follows. In Sec. II, we
show that in three dimensions, the governing equation for the
scaled momentum distribution admits an analytical solution.
In two dimensions, the governing equation for the scaled mo-
mentum distribution appears analytically intractable, but one
still can extract asymptotic behaviors (Sec. III). In Sec. IV,
we discuss a few challenges for future work. The most ob-
vious are computing the position distribution and the joint
position-momentum distribution of the impurity in a zero-
temperature Fermi gas. We also discuss the massless impurity
that may provide a curious implementation of the Fermi ac-
celeration phenomenon in the zero-temperature Fermi gas. In
Appendix A, we give details of the analysis of the scaled
momentum distribution in two dimensions. In Appendix B,
we outline generalizations to higher dimensions.

II. THREE DIMENSIONS

The momentum distribution F (q, t ) of an impurity in a
zero-temperature Fermi gas evolves according to

dF (q, t )

dt
=

∫ ∞

q
dQ Q(Q2 − q2)F (Q, t ) − 2

15
q4F (q, t ) (1)

in three dimensions [12]. We measure the momentum of the
impurity q in units of the Fermi momentum pF . In Eq. (1),
we set to unity an amplitude in the gain term on the right-
hand side. In dimensionful variables, the amplitude involves
the (effective) mass of the impurity, the Planck constant, the
scattering length, etc. [12]. We absorbed the amplitude into
the time variable.

Major assumptions underlying the applicability of Eq. (1)
are the following: (i) The impurity is treated classically;
(ii) the influence of the impurity on an infinite system of
fermions is neglected, so the host fermions remain in a
zero-temperature Fermi-Dirac distribution; (iii) the energy of
impurity is low compared to Fermi energy; (iv) the momentum
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distribution is spherically symmetric in the long-time limit;
see Kim and Huse [12] for explanations and justifications
of the above assumptions. Internal excitations of the polaron
are impossible when the momentum q is sufficiently small.
Below, we show that the average momentum decays with
time, so if initially q � 1 (i.e., q � pF in dimensional units),
this holds throughout the evolution process, thereby support-
ing (iii). If F (q, 0) is anisotropic, F (q, t ) quickly becomes
isotropic. We want to understand the asymptotic behavior, so
(iv) is valid in the interesting regime. We also tacitly assume
that the effective mass of the impurity is comparable with
the mass of fermions; different behaviors may occur for the
massless impurity (Sec. IV).

Once the amplitude in the gain term on the right-hand side
of Eq. (1) is set to unity, the amplitude in the loss term is fixed
by normalization

∫
dq F (q, t ) = 4π

∫ ∞

0
dq q2F (q, t ) = 1. (2)

Indeed,
∫ ∞

0
dq q2

∫ ∞

q
dQ Q(Q2 − q2)F (Q, t )

=
∫ ∞

0
dQ QF (Q, t )

∫ Q

0
dq q2(Q2 − q2)

= 2

15

∫ ∞

0
dQ Q6F (Q, t ).

The form of (2) accounts that the momentum distribution is
spherically symmetric. As we have already asserted, Eq. (1) is
applicable when q � 1.

The Lorentz-Boltzmann equation (LBE) for the momen-
tum distribution, Eq. (1), is linear, so a linear Boltzmann
equation is an alternative name for (1) and similar equa-
tions [42–44]. For the classical Lorentz model with massless
impurity [45–47], only the direction of velocity changes in
elastic collisions of the impurity with scatters. Therefore,
the velocity distribution quickly becomes isotropic. The joint
position-velocity distribution of the impurity satisfies a solv-
able LBE (see Ref. [46]). The LBEs are integrodifferential
equations that are generally unsolvable. The linearity is a sim-
plifying feature of the LBEs that makes them more tractable
than nonlinear Boltzmann equations [44,48,49].

Our chief interest is the large-time behavior. In this
situation, the momentum distribution approaches a scaling
form, viz.,

F (q, t ) = t3/4g(s), s = t1/4q, (3)

when t → ∞ and q → 0 with scaled momentum s = t1/4q
kept finite. In this scaling limit, Eq. (1) reduces [12] to the
integrodifferential equation

(
3

4
+ s

4

d

ds

)
g(s) = − 2

15
s4g(s)

+
∫ ∞

s
dσ σ (σ 2 − s2)g(σ ) (4)

for the scaled momentum distribution.

It proves convenient to recast Eq. (4) to a differential equa-
tion. Differentiating (4) yields

g′ + 1
4 sg′′ + 2

15 (s4g)′ = −2sG(s). (5)

Here, we shortly write (·)′ = d (·)/ds and use the auxiliary
momentum distribution function

G(s) =
∫ ∞

s
dσ σg(σ ). (6)

Rewriting (5) in terms of G we arrive at a linear ordinary
differential equation

s2G′′′ + 2s
(
1 + 4

15 s4
)
G′′ = 2

(
1 − 4

5 s4
)
G′ + 8s3G. (7)

This equation admits a remarkably simple solution,

G(s) = AF
[− 3

4 ; 1
2 ; − 2

15 s4] − s2BF
[− 1

4 ; 3
2 ; − 2

15 s4]. (8)

Here, F [a; b; x] denotes a confluent hypergeometric function
[50] with parameters a and b.

The general solution of the third-order linear ordinary
differential equation (7) is a combination of three linearly
independent solutions and only two appear in Eq. (8). The
general solution of (7) is given by (8) plus

C(45s−1 + 32s3). (9)

The s−1 divergence at the origin and the s3 divergence at
infinity are physically unacceptable, e.g., the normalization
requirement is violated [cf. with (13)]. Therefore the ampli-
tude must vanish, C = 0.

Hence the auxiliary momentum distribution is given by (8).
We should also determine g(s). Combining (6) and (8), and
recalling the identity [50]

d

dx
F [a; b; x] = a

b
F [1 + a; 1 + b; x], (10)

we deduce the scaled momentum distribution of an impurity
in a zero-temperature Fermi gas in three dimensions,

g(s) = 2B F
[− 1

4 ; 3
2 ; − 2

15 s4
] + B 4

45 s4F
[

3
4 ; 5

2 ; − 2
15 s4

]
− A 4

5 s2F
[

1
4 ; 3

2 ; − 2
15 s4

]
. (11)

To determine the amplitudes in (8) and (11) we require the
scaled momentum distribution vanish when s → ∞:

G(∞) = g(∞) = 0. (12)

Also, the normalization (2) must be obeyed. In terms of the
scaled momentum distribution, Eq. (2) becomes

4π

∫ ∞

0
ds s2g(s) = 4π

∫ ∞

0
ds G(s) = 1. (13)

Using Eqs. (12) and (13) we fix the amplitudes

A = �(1/4)

51/4(3/2)5/4 π5/2
= 0.083 493 . . . ,

B = 51/4

63/4 π3/2 �(9/4)
= 0.061 826 . . . . (14)

The asymptotic decay of the scaled momentum distribution
is very sharp (see Fig. 1). The leading asymptotic can be ex-
tracted from Eq. (7) using the WKB approach [51], viz., seek-
ing the solution in the form G = e−S with rapidly increasing
S. The dominant exponential decay is G(s) ∝ E (s) = e−2s4/15.
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FIG. 1. The plot of the scaled momentum distribution function,
Eq. (11), with amplitudes given by (14).

A more accurate WKB treatment gives the leading algebraic
prefactor, G ∼ s−5E (s), which in conjunction with (6) yields

g ∼ s−3 exp
[− 2

15 s4
]
. (15)

The scaled momentum distribution (11) is maximal at the
origin. Near the origin

g(s) = 2B − 4
5 As2 + 2

15 Bs4 + 4
225 As6 + · · · . (16)

III. TWO DIMENSIONS

The two-dimensional case is also experimentally acces-
sible. The momentum distribution of an impurity in a 2D
zero-temperature Fermi gas approaches a scaling form,

F (q, t ) = t2/3g(s), s = t1/3q. (17)

The LBE for the scaled momentum distribution,(
2

3
+ s

3

d

ds

)
g(s) =

∫ ∞

s
dσ (σ 2 − s2)K

(
s
σ

)
g(σ )

− 5392

11 025
s3g(s), (18)

involves the complete elliptic integral of the first kind,

K (k) =
∫ π

2

0

dθ√
1 − k2 sin2 θ

. (19)

As in three dimensions, we set to unity the amplitude in the
gain term on the right-hand side of Eq. (18). The amplitude
in the loss term was determined numerically in Ref. [12] and
found to be ≈0.45. The precise value appearing in Eq. (18) is
found from the identity∫ 1

0
dk k(1 − k2)K (k) = 5392

11 025
. (20)

Indeed, ∫ ∞

0
ds s

∫ ∞

s
dσ (σ 2 − s2)K

(
s
σ

)
g(σ )

=
∫ ∞

0
dσ g(σ )

∫ σ

0
ds s(σ 2 − s2)K

(
s
σ

)

=
∫ ∞

0
dσ σ 4g(σ )

∫ 1

0
dk k(1 − k2)K (k)

= 5392

11 025

∫ ∞

0
dσ σ 4g(σ ) (21)

ensures that the normalization requirement

2π

∫ ∞

0
ds sg(s) = 1 (22)

is satisfied.
We have not succeeded in solving Eq. (18). Differentiat-

ing (18) does not recast it into a differential equation. Some
asymptotic behaviors of the scaled distribution g(s) can be
established without solving (18). The asymptotic behavior in
the large momentum limit,

g ∼ s−2 exp
[− 5392

11 025 s3
]

(23)

for s → ∞, can be extracted from (18) using the WKB ap-
proach.

Near the origin

g(s) = g(0) − 9
64 s2 + · · · . (24)

Note that g(0) is unknown, while two first derivatives of g(s)
at the origin are known. The expansion (24) resembles the
expansion (16) in three dimensions. The scaled distribution is
maximal at the origin both in d = 2 and d = 3. The derivation
of the expansion (24) of the scaled distribution is relegated to
Appendix A.

IV. DISCUSSION

The evolution of the momentum q is independent of the po-
sition r of the impurity, so the momentum distribution F (q, t )
satisfies a closed equation. The impurity momentum affects
the impurity position, so the position distribution �(r, t ) does
not satisfy a closed equation. Thus one should determine
the joint position-momentum distribution �(r, q, t ) from
which one then extracts the position distribution: �(r, t ) =∫

dq �(r, q, t ). Heuristic arguments [12] imply that the
length of the last step is typically comparable with total
displacement. Therefore, the typical distance traveled by the
impurity scales according to qt ∼ t d/(d+1). Computing the
position and the joint position-momentum distributions of
the impurity in a zero-temperature Fermi gas is challenging.

The necessity of computing the joint distribution even if
one is seeking the position distribution is a rather common
phenomenon. For instance, it arose [52] for the massless im-
purity [53] in a monoatomic classical gas at equilibrium at
temperature T > 0. If the massless impurity interacts with
host atoms via repulsive r−λ potential, the speed distribution
approaches a scaling form

F (v, t ) ∼ τ−d/
e−|v|
/τ , 
 = 1 + 2(d − 1)

λ
. (25)

In the hard-sphere gas (λ = ∞), the speed distribution is
exponential, τ−d e−|v|/τ , with τ ∼ ρad−1t

√
T/m where m is

the mass, ρ the density, and a the radii of the host atoms. On
average, the speed of the massless impurity increases since
it more frequently collides with approaching than receding
atoms. The massless impurity in an equilibrium classical gas
provides a realization of the Fermi acceleration phenomenon
[54]. It would be amusing if the massless Fermi polaron in a
zero-temperature Fermi gas exhibited the Fermi acceleration.

Historically, driven impurities gave birth to the entire sub-
ject: Lorentz proposed [45] his model as an idealized classical
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description for electron transport, so in addition to colli-
sions with immobile scatters the impurity is accelerated by
an electric field. A constant (on average) drift velocity was
originally anticipated [45], yet the lack of dissipation leads to
the unbounded growth of the velocity of the massless Lorentz
polaron in the Lorentz gas with immobile scatters [55,56]. In
the quantum case, intriguing behaviors of the driven impurity
with nonvanishing mass have been predicted in one dimension
[29–31]. The behavior of the driven impurity in the three-
dimensional Fermi gas is probably more robust than in one
dimension.

The perturbation of the host atoms by impurity is usually
ignored if we are chiefly interested in the behavior of the im-
purity. One can certainly do this if the impurity is massless. In
the general case, the back reaction on the impurity is asymp-
totically negligible in d � 2 dimensions because (i) only a
finite amount of energy can be transferred to the host atoms
in the infinite system, (ii) the perturbation of the host atoms
is local and decaying with time, and (iii) repeated collisions
are rare when d � 2. One exception in the classical realm
occurs when the host atoms are at zero temperature [57]. If
host atoms are fermions at zero temperature, the back reaction
can still be ignored [12].

If the impurity is much more massive than the host atoms,
its influence on the host gas is profound. In the classical hard-
sphere gas, an infinitely heavy particle moving with constant
velocity V generates an infinitely strong bow shock if the host
spheres are initially at rest. In the quantum case, the sonic
speed is finite in the gas of fermions even at zero temperature,
c ∼ h̄ρ1/d/m. Thus, when an infinitely heavy impurity moves
in this host gas in d � 2 dimensions, a hypersonic bow shock
[58,59] is formed only when the Mach number M = V

c 
 1.
More subtle behaviors are expected in one dimension [28].

APPENDIX A: DERIVATION OF (24)

Specializing (18) to s = 0 one gets

g(0) = 3π

4

∫ ∞

0
dσ σ 2g(σ ). (A1)

The integral on the right-hand side, the second moment of the
scaled distribution, is unknown. One can try to determine it by
multiplying Eq. (18) by s2 and integrating. This allows one to
express the second moment via the fifth moment:∫ ∞

0
ds s2g(s) = 21 248

33 075

∫ ∞

0
ds s5g(s). (A2)

The calculation of the double integral is similar to the calcu-
lation (21) and uses the identity

∫ 1

0
dk k2(1 − k2)K (k) = 5456

19 845
, (A3)

similar to (20). One can continue and express the fifth moment
via the eighth, etc. The asymptotic behavior of high moments
can be extracted with the help of the asymptotic (23), perhaps
allowing to connect g(0) with the amplitude in (23). This
amplitude is unknown and hence omitted in Eq. (23).

Summarizing, we do not know g(0). Surprisingly, one can
compute two first derivatives at the origin: g′(0) = 0 and

g′′(0) = − 9
32 . Differentiating (18) we obtain

g′ + s
3 g′′ = − 3

8 s + O(s2). (A4)

In deriving (A4) we used the normalization condition (22) and
identities

K (0) = π

2
, lim

k→0
k−1 dK (k)

dk
= π

4
. (A5)

The announced expansion (24) follows from (A4).

APPENDIX B: HIGH DIMENSIONS

Generally in d � 2 dimensions, the momentum distribu-
tion approaches a scaling form

F (q, t ) = t
d

d+1 g(s), s = t
1

d+1 q, (B1)

and the scaled momentum distribution obeys(
d

d + 1
+ s

d + 1

d

ds

)
g(s) =

∫ ∞

s
dσ hd (σ, s)g(σ )

−Cd sd+1g(s). (B2)

We already know h2 and h3. Functions hd can be com-
puted also for d > 3. These functions are homogeneous,
viz., hd (σ, s) = σ d Hd (k) with k = s/σ . The normalization
requirement gives Cd = ∫ 1

0 dk kd−1Hd (k).
Applying the WKB approach to (B2) yields

g ∼ s−d exp[−Cd sd+1] (B3)

for s 
 1. This asymptotic is valid for all d � 2.
Solving (B2) is challenging. The physically relevant three-

dimensional situation is the most tractable. Simplifications
also occur in other odd dimensions. Recall that h3 is a
polynomial, while h2 is a transcendental function. The same
distinction between odd and even d generally holds [12]. The
five-dimensional case is the simplest after d = 3. The scaled
momentum distribution satisfies(

5

6
+ s

6

d

ds

)
g(s) =

∫ ∞

s
dσ σ

(
σ 4 − 63

55
σ 2s2 + 8

55
s4

)
g(σ )

− 26

495
s6g(s). (B4)

Differentiating (B4) eliminates the integral at the cost of in-
troducing two auxiliary functions: G given by (6) and H =∫ ∞

s dσ σ 3g(σ ). Massaging the outcome and using H ′ = s2G′,
one arrives at a closed linear ordinary differential equation for
the auxiliary function G(s):

0 = 1152s5G + (1980 − 912s6)G′ + 36s(13s6 − 55)G′′

+ s2(495 + 52s6)G′′′ + 165s3G′′′′. (B5)

The general solution of Eq. (B5) remaining finite at the origin
is a combination of hypergeometric functions 2F2 with four
indices:

G(s) = C0 F
[− 1

4 − ω,− 1
4 + ω; 1

3 , 2
3 ; − 26

495 s6
]

+C1s2 F
[

1
12 − ω, 1

12 + ω; 2
3 , 4

3 ; − 26
495 s6

]
+C2s4 F

[
5

12 − ω, 5
12 + ω; 4

3 , 5
3 ; − 26

495 s6
]
. (B6)
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We display all indices and write F instead of 2F2; we also
shortly write ω = i

12

√
11
13 . Recall that in three dimension, G(s)

and g(s) are a combination of standard confluent hypergeo-
metric functions 1F1 [see (8) and (11)].

Fixing the amplitudes C0,C1,C2 in the solution (B6) could
be cumbersome. The scaled momentum distribution must
vanish when s → ∞, so we have again the boundary condi-

tion (12). The normalization requirement

8π2

3

∫ ∞

0
ds s4g(s) = 8π2

∫ ∞

0
ds s2G(s) = 1 (B7)

gives another constraint.
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