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Quantum vortex stability in draining fluid flows
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Quantum vortices with more than a single circulation quantum are usually unstable and decay into clusters of
smaller vortices. One way to prevent the decay is to place the vortex at the center of a convergent (draining)
fluid flow, which tends to force vortices together. It is found that while the primary splitting instability is
suppressed in this way (and completely quenched for strong enough flows) a secondary instability can emerge in
circular trapping geometries. This behavior is related to an instability of rotating black holes when superradiantly
amplified waves are confined inside a reflective cavity. The end state of the secondary instability is dramatic,
manifesting as a shock wave that propagates round the circular wall and nucleates many more vortices.
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I. INTRODUCTION

Quantum vortices are topological defects in the order
parameter �(x, t ) describing a quantum fluid, e.g., Bose-
Einstein condensates (BECs), polariton fluids, superfluid 4He,
and photon superfluids. Their dynamics is of widespread
interest due to their role in various important phenomena,
including superfluid turbulence [1], topological phase tran-
sitions [2], and superconductivity [3]. The circulation of a
quantum vortex is �κ , that is, � units of circulation quan-
tum κ = h/M, with h Planck’s constant and M the mass
of (bosonic) particles in the fluid. The integer � counts the
number of times the phase arg(�) winds around the defect
in the order parameter. The most basic quantum vortex has
|�| = 1 and is called a singly quantized vortex (SQV), whereas
a vortex with |�| > 1 is called a multiply quantized vortex
(MQV).

Since the energy of a vortex scales with �2, MQVs tend
to split into clusters of SQVs as a result of an energetic
instability. Hence, any mechanism that provides a reservoir to
dissipate energy (e.g., coupling to a thermal bath) will cause
an MQV to decay [4]. Furthermore, even in ideal conservative
systems, vortices can couple to sound waves (phonons) in
the fluid to produce a dynamical instability [5,6]. Because
of this, many studies of quantum vortices typically employ
configurations of SQVs.

There are however certain conditions under which MQVs
do not decay. For example, energetic favorability of MQVs
is found in rotating condensates with anharmonic (quartic)
traps [7] or pinning potentials [8]. Furthermore, the dynamical
splitting instability can be suppressed in finite-size systems
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which possess a discrete phonon spectrum [9]. Another sta-
bilization mechanism involves filling the vortex core with a
second condensate such that there is an energy barrier associ-
ated with splitting the MQV [10,11]. A well-known property
of vortices (which follows from Kelvin’s circulation theo-
rem [12]) is that they tend to move under the influence of the
local fluid velocity. Hence, a natural stabilizing mechanism
involves placing an MQV at the focal point of a convergent
fluid flow, e.g., by draining fluid from the system in a small
region in the center. If the drain is strong enough, one would
expect the convergence of the fluid to override the tendency
of the MQV to split, rendering the vortex stable against frag-
mentation.

Convergent fluid flows in superfluid 4He were realized
in [13–15] and the flow was reported to contain O(104) vortex
quanta. Motivated by these experiments, Ref. [16] simulated
the evolution of vortex filaments around the drain at nonzero
temperature, unveiling a formation mechanism for the vortex
bundle above the drain. Three-dimensional simulations based
on a Gross-Pitaevskii model containing a low number of vor-
tices were performed in [17], which showed the convergent
flow tends to focus vortices over the drain hole, twisting them
into a bundle that funnels the flow into the drain below. More
recently, a novel method of surface wave spectroscopy was
used to constrain the core size of a macroscopic draining
vortex containing O(104) vortex quanta [18].

Multiply quantized vortex stability has also been demon-
strated in exciton-polariton condensates, systems with inher-
ent particle losses due to the finite lifetime of the polariton
quasiparticles [19]. Simulations in [20] showed that a ring-
shaped laser beam induces particle fluxes toward the center,
capable of stabilizing the MQV situated there. Furthermore,
wave-vector-dependent losses can induce a convergent flow
centered on each vortex, leading to an attractive force between
that causes vortices to merge [21]. Stability of an � = 15
vortex was recently demonstrated in the experimental setup
of [22], although in that case the fluid velocity is forced by the
pump laser and the convergent flow is weak since the polariton
decay is not restricted to a central region.
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In atomic BECs, convergent flows can be realized using an
electron beam to ionize particles and deplete the condensate in
a localized region. Numerical simulations in [23] showed that
an � = 2 vortex can be stabilized by strong localized dissipa-
tion and that the vortex splits once dissipation is switched off.
Giant vortex aggregates were reported in a rotating condensate
in which a focused laser beam was used to remove atoms on
the rotation axis [24]. These vortex aggregates were attributed
to the combined effect of the Coriolis force and the radial
influx of atoms.

In light of these results, one may expect that MQVs are
unambiguously stabilized under a strong enough convergent
flow. The purpose of this work is to demonstrate that this is
not necessarily the case. It is shown that even when the pri-
mary splitting instability is quenched, secondary instabilities
capable of driving the system far from equilibrium can arise.
These secondary instabilities are related to the black hole
bomb instability of Press and Teukolsky [25]. A rotating black
hole is surrounded by an ergoregion, where fluctuations in a
certain frequency range possess negative energies. Incoming
radiation can scatter into these negative-energy states, caus-
ing the escaping fraction of radiation to become amplified.
This process is called rotational superradiance [26]. The black
hole bomb proposal involves encircling the system with a
reflective mirror that scatters amplified radiation back into the
black hole where it is further amplified, leading to a runaway
process. A quantum vortex, which from the perspective of
low-frequency sound waves can be viewed as an analogue
rotating space-time [27], also possesses an ergosphere in-
side its core. Indeed, the MQV splitting instability can be
viewed as a negative-energy bound state inside the ergosphere,
which couples to sound waves outside the vortex to release
energy [9,28,29]. Dissipation inside the vortex core leads
to damping of this negative-energy mode, akin the classical
formulation of black hole superradiance where the negative
energy is absorbed by the horizon [30]. We will show that,
when the vortex is located at the centered of a circularly
symmetric trapping potential, superradiantly amplified sound
can trigger the black hole bomb instability.

The structure of this paper is as follows. In Secs. II and III
we describe the stationary draining vortex profiles of a quan-
tum fluid. In Sec. IV we analyze the eigenmodes of the system
for some illustrative parameters, demonstrating the effect of
the convergent flow on stability. Section V provides an inter-
pretation of the instabilities using a WKB approximation of
the resonance formula for unstable eigenmodes. In Sec. VI nu-
merical simulations of the fully nonlinear equations of motion
are described, revealing the dramatic effect of the secondary
instability on the late-time dynamics. Section VII concludes
with a summary and implications of the results are discussed.

II. SETUP

For concreteness, we consider a tightly confined atomic
BEC with quasi-two-dimensional (quasi-2D) dynamics in the
x = (x, y) plane. In the mean-field approximation, the system
is governed by the Gross-Pitaevskii equation (GPE)

ih̄∂t� =
(

− h̄2∇2

2M
+ V (x) − i�(x) + g|�|2 − μ

)
�, (1)

where � is the order parameter, M is the mass of the particles
(which are bosons), μ is the chemical potential, g is the 2D
interaction parameter, V (x) is a trapping potential, and �(x)
is a dissipation term. In the context of the BEC, localized dis-
sipation can be achieved by illuminated the condensate with
an ionizing beam [31]. The GPE applies equally to polariton
condensates [22] and photon superfluids [32] and can even be
considered as a phenomenological model of superfluid 4He on
small scales [33]. We consider traps with a hard circular wall
located r = rB. Specifically, we use the function

V = V0

1 + (V0 − 1)ea(rB−r)
, (2)

where V0 is the height of the trap and a is a smoothing param-
eter. Unless specified otherwise, we mostly use V0 = a = 5
and rB = 25 in the dimensionless units defined below in (9).
In the Madelung representation, � = √

neiM�/h̄, where n(x) is
the particle number density and �(x) a phase whose gradient
gives the velocity field v = ∇�. The GPE then separates into
a Bernoulli equation

∂t� + 1

2
v2 + gn + V (x) − μ

M
= h̄2

2M2

∇2√n√
n

, (3)

where the term on the right-hand side is the quantum pressure
modification and a continuity equation

∂t n + ∇ · (nv) = −2�(x)n. (4)

From (4) it is apparent that the function � acts a sink for the
density. We consider a dissipation function localized at the
center of the trap of the form

� = �0
1 + tanh[κ (r0 − r)]

2
, (5)

where �0 > 0 is the strength of dissipation, r0 is the radius of
region where particles are lost, and κ is a smoothing parameter
which we set equal to 2 in the units of (9). When �0 = 0, the
GPE conserves the total number of particles in the condensate
N = ∫

d2x n. For finite �0, N decreases according to

∂t N = −2
∫

d2x �n. (6)

Particles then flow inward to replenish the depleted conden-
sate inside the dissipation region, establishing a convergent
fluid flow. This is the quantum analogue of the classical drain-
ing bathtub flow that forms over a physical fluid outlet [34,35]
and the dissipation region can be viewed at the analogue
of the drain hole. In order to establish a stationary state in
the simulations of the following sections, particles will be
resupplied near the edge of the trap to hold N fixed.

III. VORTICES

We search for stationary states containing vortices at the
center of the trap. The condensate phase and velocity field are

� = h̄

M
[�θ + 	(r)], v = h̄

M

(
�

r
êθ + ∂r	êr

)
, (7)

where v has the profile of a draining vortex. The radial part of
the phase 	(r) is an unknown function that must be solved
for. Note that our assumption of a circular trap with the
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draining vortex located at the centered implies the stationary
background state described by (n, v) is a function of r only.

We start by considering the nondraining case when �0 = 0
and vr ≡ er · v = 0. In that case, the stationary solutions are
the typical quantum vortices, whose velocity field is fully
determined by the constraint of an irrotational fluid flow and
the density n is the only function one has to solve for. The size
of the vortex core is set by the healing length

ξ0 = h̄/
√

Mμ0, (8)

where μ0 = μ(�0 = 0). We can then simplify the calculation
by defining the dimensionless quantities

x
ξ0

→ x,
μ0t

h̄
→ t,

μ

μ0
→ μ,

gn

μ0
→ n,

M�

h̄
→ �. (9)

In these units, the chemical potential for the nondraining
vortex is unity by definition. In equilibrium, the density is
determined by the equation

1

2
∇2

r z +
(

1 − �2

2r2
− V (r)

)
z = z3, (10)

where z = √
n and ∇2

r = 1
r ∂rr∂r .

The presence of a radial component of v complicates the
flow pattern. To simplify the expressions, we work with the
dimensionless quantities defined in (9). In equilibrium, Eq. (4)
implies ∂r (rnvr ) = −2r�n, which is solved by

vr (r) = − 2
∫ r

0 dr′r′�(r′)n(r′)
n(r)r

=
{

−D/r, r � r0

−�0r/(� + 1), r � r0,
(11)

where D = 2
∫

dr r�n/μ is the drain constant and the integral
is performed over the region where �(r) has support. Hence,
approaching the center from the boundary, the radial velocity
magnitude increases as the fluid converges on the dissipation
region. Inside the dissipation region, particles are lost and
mass conservation causes a decrease in the radial velocity
magnitude, with vr vanishing at the very center. Using these
properties of vr , Eq. (3) implies the following asymptotics for
the density:

n(r) =
{

μ − (�2 + D2)/2r2, r � r0

r2�[A + Br2 + O(r4)], r � r0,

B = A(Aδ�0 − μ)/(� + 1). (12)

Here the value of A can only be determined from the full solu-
tion and δ�0 is the Kronecker delta function. For � = 0, A > 0
since it is the value of the density at r = 0. It will turn out that
A < μ so that B < 0, i.e., n has negative curvature at r = 0.
This implies that the density is a nonmonotonic function of r.
When � 	= 0, A is also positive since it determines the rate at
which the density rises from zero at the vortex center.

To search for equilibrium states when �0 	= 0, we apply the
following prescription. Starting from the nondraining solu-
tion, we switch on a finite value of �0 so that the density in the

FIG. 1. Stationary draining flow profiles for r0 = 5: (a) density
n and (b) radial velocity magnitude |vr | for three illustrative values
of �0, and the variation of (c) the chemical potential μ, (d) the drain
rate D, and (e) the horizon radii rh with �0.

region r < r0 begins to deplete. We then resupply the depleted
particles near the edge of the trap. The over density near rB

will cause the condensate to flow inward toward the center,
establishing a convergent radial flow. The fixed particle num-
ber N is accommodated by a shift in the chemical potential.
The details of this procedure are described in Appendix A 1.

In Fig. 1 we display some examples of the density and
radial velocity profiles when there is no vortex present. The
density exhibits a depression moving toward the center fol-
lowed by a sudden rise at the very center. This is the behavior
anticipated in (12). The magnitude of the radial velocity dis-
plays the properties anticipated in (11), although the behavior
in the intermediate region can be intricate due to the non-
monotonic nature of the density. As expected, the chemical
potential adjusts as we increase �0 but keep N fixed. The
general increase in μ results from vr lowering the density in
the dissipation region, thereby pushing atoms into the bulk and
raising the asymptotic density level. However, the variation
of D(�0) reveals a curious feature that beyond a certain �0,
stronger dissipation can weaken radial flow, i.e., the more one
tries to drain the fluid, the less one manages to achieve it.
This is related to the macroscopic Zeno effect studied in [23],
although in their case, the drain rate monotonically decreases
at large �0 since the chemical potential is fixed. We also
display the locations rh satisfying (n − v2

r )|r=rh = 0. In the
region where n is close to its asymptotic value, this represents
the location where radial flow exceeds the sound speed

√
n,

i.e., the acoustic horizon [36]. Note that, since vr decreases
toward the origin, the horizon necessarily comes as a black
hole–white hole horizon pair.

In Fig. 2 we illustrate the effect of placing a vortex (in
this case one with � = 2) in the center of the dissipation
region. Since the density drops to zero on the vortex axis,
there are fewer particles present in the dissipation region to be
damped; hence the radial velocity is smaller when compared
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FIG. 2. (a) Density and (b) radial velocity profiles when there is
an � = 2 located at r = 0. The legend gives the dissipation function
parameters in the format (r0, �0). The radial velocities are much
weaker than the � = 0 case since the vortex reduces the density in
the dissipation region. Also shown is the dependence of (c) μ, (d) D,
and (e) rh on the dissipation strength for two different values of r0.
Decreasing the size of the dissipation region weakens the draining
flow.

with the � = 0 case. The black lines represent r0 = 5 (same as
Fig. 1) whereas the red lines are for r0 = 2, illustrating that the
draining flow is weaker when the dissipation region is smaller
as one would expect.

IV. EIGENMODES

To find out whether the stationary profiles obtained above
are stable, we analyze their perturbations. The perturbed order
parameter may be written

� = ei�

⎛
⎝√

n +
∑
m�0

(ueimθ + v∗e−imθ )

⎞
⎠, (13)

where u = u(r, t ; m) and v = v(r, t ; m) are the radial eigen-
functions. Under this decomposition, the linearized equa-
tions may be written as

i∂t

(
u
v

)
=

[
D+ − i�̃ n

−n −D− − i�̃

](
u
v

)
,

D± = −1

2
∇2

r + (� ± m)2

2r2
+ v2

r

2
∓ ivr∂r + 2n + V − μ,

�̃ = � + ∇ · v/2. (14)

This implies

∂tN = −2
∫

d2x �ρn, (15)

where N = ∫
d2x ρn is the norm and ρn = |u|2 − |v|2 is the

norm density, i.e., the norm is not conserved in the presence of
a dissipative mechanism. Unlike the preceding section where

we resupplied N near rB, we do not replenish the dissipated
mode norm since our reinjection strategy in Sec. VI will
assume all lost particles are resupplied to the axisymmetric
background solution. Notice that the norm density (and hence
the norm) can be either positive or negative.

In the stationary state, the operator on the right-hand side
of (14) is t independent and the equation is separable. Writing
(u, v)T = a(t )(ũ, ṽ)T, we find

ω

(
ũ
ṽ

)
=

[
D+ − i�̃ n

−n −D− − i�̃

](
ũ
ṽ

)
(16)

and i∂t a = ωa, which is solved by a(t ) = a(0)e−iωt , where
ω = ωr + iωi ∈ C. The equation for the norm in (15) implies
the modulus of a behaves like

|a(t )| = |a(0)|eωit , ωi = − 1

N

∫
d2x �ρn, (17)

where ωi is a spatial averaging of the dissipation function
weighted by the norm density. For uniform dissipation, we
find ωi = −� and all modes are damped irrespective of the
sign of their norm. When � varies in space, the sign of ωi

depends on the sign of the norm density in the dissipation
region. In that case, both growing (i.e., unstable) and decaying
modes can exist.

Note that the naive expectation that the dissipation function
should damp positive-energy modes and enhance negative-
energy ones [where H = Re(ω)N is the mode energy] is not
satisfied here. Unlike damping found in stochastic formula-
tions of the GPE [37], the dissipative term in (1) decreases the
particle number rather than the energy, which is the statement
of (6). The important thing for modes is whether ρn in the
dissipation region has the opposite sign to N , as expressed
by (17).

To solve (16) for the eigenvalues ω and radial eigenfunc-
tions (ũ, ṽ)T, we diagonalize the matrix in square brackets
using standard numerical algorithms (see Appendix A 2).
Figure 3 shows the eigenvalues ω obtained in this way for
the � = 2 vortex. Figures 3(a) and 3(c) show the trajectories
of the eigenvalues through the complex plane as �0 is varied,
for m = 1 [Fig. 3(a)] and m = 2 [Fig. 3(c)]. We also show the
effect of varying the size of dissipation region by displaying
results for r0 = 2 (red lines) and r0 = 5 (black lines). As �0

increases, most modes in the spectrum tend to migrate down
into the lower half plane where Im(ω) < 0. However, certain
modes can acquire a small positive imaginary part when the
dissipation is turned on, with more unstable modes arising
for smaller dissipation regions. This is further exemplified
by Figs. 3(b) and 3(d), which display the variation of the
eigenvalues Im(ω) > 0 with �0. The mode with Im(ω) > 0
at �0 = 0 is the MQV splitting instability, which stabilizes
as the dissipation is increased. However, other modes in the
spectrum can be unstable for �0 	= 0, with the m = 1 modes
displaying the largest tendency for instability.

V. WKB METHOD

There are three key features of the spectra in Fig. 3 that
require explanation: (i) the quenching of the MQV splitting in-
stability and (ii) the existence of secondary instabilities which
are (iii) fewer in number for larger r0. To explain this behavior,
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FIG. 3. (a) and (c) Eigenvalue trajectories through the complex plane as �0 is varied. The trajectories start at the solid dots (�0 = 0) and
end on crosses (�0 = 0.5). We show results for m = 1, 2 and r0 = 2, 5. The inset in (a) shows in detail the trajectories of the modes inside the
gray rectangle. Note the nonuniform spacing on the vertical axis. Also shown are unstable modes for (b) r0 = 2 and (d) r0 = 5. The conventions
for the line style and color correspond to those in (a) and (c). For most modes in the spectrum (including the MQV instability) the localized
dissipation tends to make the mode decay. However, certain modes attain a positive imaginary part when �0 > 0, representing a new class of
unstable modes. Fewer secondary instabilities are found for larger r0.

we apply the WKB method of [29], the application of which
to our problem is detailed in Appendix B. The basis of the
approximation is to write fluctuations as a superposition of
ingoing and outgoing plane waves with a radial wave number
p which varies with r due to the inhomogeneous flow field.
Schematically, these two modes of wave motion oscillate as

exp

(
i
∫

(p± + i�∂ω p±)dr + imθ − iωt

)
, (18)

where p± are the two solutions to local dispersion relation,
which asymptotically looks like the standard Bogoliubov one,
i.e., (ω − v · k)2 = nk2 + k4/4, with k = |k|. Note that this
gets modified inside the vortex core (see Appendix B for de-
tails). Throughout the analysis, ω is treated as a real quantity
and the imaginary part obtained at the end of the procedure
as a next-to-leading-order correction once the boundary con-
ditions have been imposed.

The term in the exponent of (18) proportional to � de-
scribes the decay of the wave amplitude in the direction of
propagation. The exp(i

∫
p±dr) has different behavior in three

separate regions: two propagating regions where � = ω − v ·
k is positive and negative, respectively, and a zone separating
the two where the wave tunnels. These regions are depicted
in Fig. 4. Since ρn ∝ � in the WKB approximation, a mode
with a given ω and m has a positive (negative) norm density
when it is in the green (pink) area. Since the energy density
is proportional to Re(ω)ρn, a frequency that crosses from the
green to the pink region undergoes superradiant amplification
(see [28,29] for details on this point).

We can derive a resonance condition for modes which
satisfy the boundary conditions. For those ω which cross the
tunneling region in Fig. 4, it is given by

4 cot S01 cot(S2B + π/4) = e−2I12 , (19)

where we have defined

2Sab =
∫ rb

ra

(1 + i�∂ω )(p+ − p−)dr,

I12 =
∫ r2

r1

|Im(p+)|dr. (20)

FIG. 4. The WKB modes in (18) can exhibit three different be-
haviors: propagating with positive ρn (green region), propagating
with negative ρn (red region), or tunneling (gray region). These
regions are delineated by the turning points r0,1,2. The curves shown
are for the parameters �0 = 0.05, r0 = 5, � = 2, and (a) m = 1 and
(b) m = 2. Note that for m = �, the inner turning point is r0 = 0 by
convention.
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The derivation of this formula is given in Appendix B. The
S integrals can be split into real and imaginary parts Sab =
Sr

ab + iSi
ab, where these two terms are the phase integral from

rb to ra then back again and the total damping accumulated
along the trajectory, respectively. When the frequency needed
to solve this condition has a small imaginary part, we make
the replacement Sr

ab → Sr
ab + iωi∂ωSr

ab, while Si
ab is evaluated

for ωr since �0 is assumed small. The I integral is evaluated in
a region where p± are complex-conjugate pairs, and the effect
of damping is ignored in computing it since its contribution
to (19) is already exponentially small.

Before delving into the novel features of the spectrum
when �0 > 0, we first we show how (19) encodes the physics
of the basic MQV splitting instability in the case �0 = 0. This
condition describes two types of eigenmode in the system.
The phonon frequencies (i.e., modes which exist outside the
vortex) are exponentially close to the zeros of cot(S2B + π/4).
Similarly, excitations of the vortex core have frequencies close
to the zeros of cot S01. However, when the zeros of the two
cotangent functions are close, the exponential on the right-
hand side of (19) leads to a coupling between the two types of
eigenmode. Let cot S01(ωv ) = 0 and cot[S2B(ωp) + π/4] = 0.
In that case, we expand (19) around the zeros,

(ω − ωp)(ω − ωv ) + ε|Tω̄|2/TpTv � 0, (21)

where |Tω̄| � e−I12(ω̄) is the modulus of the transmission co-
efficient across the tunneling zone evaluated at the central
frequency ω̄ = (ωp + ωv )/2, ε = sgn(S′

01S′
2B) with the prime

denoting an ω derivative, and Tp = 2|S′
2B| and Tv = 2|S′

01| are
the crossing times for phonons and vortex modes. In our case,
ε = +1 for ω > 0 (which superradiate) and ε = −1 for ω < 0
(which do not superradiate). The eigenfrequencies are then
approximately given by

ω � ω̄ ±
√

�ω2 − εγ 2. (22)

Hence, for nonsuperradiant states there is an avoided cross-
ing, whereas for superradiant states we obtain a complex-
conjugate pair (one of which is unstable) when the mode
coupling γ = |Tω̄|/√TpTv is larger than the frequency split-
ting �ω = (ωp − ωv )/2. This coupling of the negative-energy
vortex mode to a positive-energy phonon is precisely the
reason for the dynamical splitting instability, as the MQV
radiates energy into sound when it splits [see [28,29] for a
comparison between the exact spectrum and the predictions
of (19)].

For the discussion of �0 	= 0, let us rewrite (19) in the two
equivalent forms

X + e2iS01 + ie2iS2B (1 + Xe2iS01 ) = 0, (23)

1 + iXe2iS2B + e−2iS01 (X + ie2iS2B ) = 0, (24)

where we have defined

X = 1 + e−2I12/4

1 − e−2I12/4
, (25)

which is the modulus of the reflection coefficient for superra-
diant modes and the inverse of the same for nonsuperradiant
modes. The condition (23) is amenable to studying the MQV
splitting instability when the propagation time between the
vortex and rB is sufficiently large that |e2iS2B | � 1 (e.g., for

low frequencies the relevant condition is rB � 1/ωi). Note
that for this exponential to be small, we must have an un-
stable mode with ωi > 0, which only occurs for ωr > 0. If
we assume ωr � ωi, the oscillation frequency is determined
to leading order by cos Sr

01(ωr ) = 0, describing a mode in the
vortex core, and the growth rate by

ωi = log X − 2
∣∣Si

01

∣∣
Tv

. (26)

The first term shows that these modes are unstable due to
superradiance, since X > 1 and therefore the logarithm con-
tributes positively. The second term results from dissipation
and acts to reduce the amplitude of the instability, which
is consistent with Fig. 3. Physically this makes sense since
the dissipation acts in the region where the mode exists,
and from (15) we expect dissipation to deplete the norm
density (or by proxy the amplitude) rather than the energy.
Therefore, in this case, superradiance tries to make the mode
grow whereas dissipation tries to stop it from growing. This
explains the first feature of Fig. 3 identified at the beginning
of this section.

To understand the origin of the secondary instabilities,
we study the second condition (24). Consider ωr > 0 modes
in the limit where dissipation is sufficiently strong that
|e−2iS01 | � 1. To satisfy this condition, the vortex core should
be large enough that the mode propagating inside it has
enough time to be damped significantly, which is achieved
in practice for large �. For a small growth rate, the leading-
order condition for the oscillation frequency is cos[Sr

2B(ωr ) +
π/4] = 0 describing phonons trapped outside the vortex. The
growth rate is given at leading order by

ωi = log X − 2
∣∣Si

2B

∣∣
Tp

, (27)

where the logarithmic term again contributes positively due
to superradiance. When dissipation is confined to the re-
gion where the mode propagates in the vortex core, Si

2B = 0
and phonons become unstable, explaining the second finding
of Fig. 3. Physically, the negative-energy part of the mode
responsible for superradiant amplification gets damped out
inside the dissipation region and (to leading order) the part
of the wave which reflects back can be neglected. This is the
same mechanism as the black hole bomb instability, where
superradiant modes outside the black hole are confined by an
external mirror and the horizon provides a perfectly absorbing
inner boundary. When there is dissipation in the green region
of Fig. 4, Si

2B becomes nonzero and acts to weaken the insta-
bility, completely quenching it for large enough values. This
explains the third finding of Fig. 3 that secondary instabil-
ities are suppressed for large dissipation regions. Note that,
although we have considered here two specific limits (first
large rB then large �), we expect the same qualitative features
to emerge in the spectrum for general rB and �.

VI. NUMERICAL SIMULATIONS

In this section we explore the predictions of Fig. 3 by
simulating the full nonlinear equation in (1), demonstrating
the effect of the convergent flow on a pair of initially separate
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FIG. 5. Intensity plots of n(x, y) from three different simulations, which differ by the dissipation strength and the initial vortex locations.
We used r0 = 5 and rB = 25 and the x and y limits for each panel are [−rB, rB]. (a1)–(a4) Low �0 simulation. The insets (r ∈ [0, rB] on the
horizontal axis and a.u. on the vertical axis) show the spatial profile of the largest Fourier mode in a time Fourier transform of nm=2 between
the times indicated in the main panels. The measured waveforms (black lines) are in good agreement with the eigenmode (red dashed lines) of
the recombination mode at early times and the splitting mode at late times. (b1) and (b2) For higher dissipation, the vortices do not separate at
late times. (c1)–(c4) For an asymmetric initial condition, the inspiral can trigger a secondary instability in the m = 1 mode. The inset compares
the measured waveform with the corresponding m = 1 eigenmode. (d1)–(d3) Shape of the unstable mode near the boundary in the angular
direction. At late times, the wave becomes sharply peaked, triggering a short-wavelength instability at the leading edge. (b3) and (b4) Total
energy and the most highly occupied m components near the center of the trap as functions of t .

vortices. We take as our initial condition a stationary flow
with �0 	= 0 but no vortex. We then imprint a pair of SQVs
(both rotating counterclockwise) near the edge of the trapping
potential. Particles lost due to dissipation are replenished at
the edge of the trap such that N is conserved. Details of the
procedure are described in Appendix A 3 and convergence
checks are presented in Appendix A 6. Figure 5 shows the
results of three such simulations.

In Figs. 5(a1)–5(a4) the amount of dissipation is small
and we start with the vortices located symmetrically about
the center at (x, y) = (12.7, 12.7) and the antipodal point.
The vortices quickly spiral into the middle and, once they
are separated by around three healing lengths, the motion is
well described by the conjugate mode to the MQV splitting
instability, which describes vortex recombination. Between
Figs. 5(a2) and 5(a3) we Fourier transform nm=2 over the
interval t = [317.2, 410] and plot the ω component with the

largest amplitude (black curve), which agrees well with the
recombination mode predicted from (16) (red dashed line).
The frequency is computed by performing a quadratic inter-
polation around the peak value of the Fourier transform at
r = 1.4 (where the amplitude of the spatial waveform exhibits
a maximum). The growth rate is found by performing a lin-
ear regression on log |nm=2(t, r = 1.4)| over the same time
interval. We obtain a measured eigenfrequency 0.40(3) −
0.0206(4)i,1 which we compare against 0.439 − 0.0293i from
Fig. 3. The agreement is acceptable given that at this stage,

1For the measured eigenfrequencies, the error in the real part is
half the frequency resolution, while the error in the imaginary part
is quoted from the 95% confidence bounds. The predicted values are
quoted to three significant figures.
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the system is in a highly nonequilibrium situation. Indeed,
since N is fixed, the value of μ will shift to accommodate the
nonzero occupation of various excited states, leading to dif-
ferences with the spectrum of Fig. 2 which was computed in
equilibrium. After a long time, the vortices separate by a small
amount since the dissipation is not sufficient to quench the
MQV splitting instability. The measured eigenfrequency of
the splitting mode (obtained using the same method as above
over the interval t ∈ [1000, 1400]) is 0.44(1) + 0.00150(3)i,
whereas the predicted value is 0.440 + 0.00365i. The poor
agreement in the imaginary part can be attributed to the
effects of N conservation and nonlinearities for high mode
amplitudes. We check this by performing a simulation starting
from equilibrium with a small initial amplitude in the splitting
mode, finding that, once the mode grows large enough, the
growth rate drops to around the measured value above. The
black curves in Figs. 5(b3) and 5(b4) are the total energy
H , which is a slowly increasing function at late times, and
the m = 2 mode amplitude which, after an initial transient,
decreases and then increases exponentially, as expected from
the discussion above.

In Figs. 5(b1) and 5(b2) we show results of a simulation
prepared with the vortices at the same locations but a larger
value of �0. The two SQVs combine much quicker in this
case and residual fluctuations dissipate away, in keeping with
the fact that the spectrum contains no unstable modes for
m = 1, 2. The energy [blue curve in Fig. 5(b3)] decreases
very slowly at late times while |nm=2| decreases exponentially,
exhibiting a beating effect due to the superposition of two de-
caying co- and counterrotating modes. These results support
the idea that a dense quantum vortex cluster can be prevented
from splitting by a sufficiently strong dissipation mechanism.

In Fig. 5(c) we pick a configuration where the strongest
unstable mode in the spectrum is one of the secondary in-
stabilities with m = 1. Two SQVs are placed asymmetrically
around the center at (x, y) = (12.7, 12.7) and (11.5,−10.2)
to promote the excitation of this mode when they spiral
into the middle and combine. Between Figs. 5(c2) and 5(c3)
we display the m = 1 component of the density (which
is the maximum of the time Fourier transform over the
interval t ∈ [500, 800]) and find good agreement with the
predicted waveform. The measured eigenfrequency of this
mode is 0.083(11) + 0.00068(1)i while, the predicted value
is 0.0767 + 0.00236i. The real part of the frequency agrees
within the estimated error. The discrepancy in the imaginary
part is again attributed to the large amplitude during the
measurement window (see Appendix A 4 for a discussion
of this point). Measurement of Im(ω) at earlier times where
the amplitude is smaller is complicated by the presence of
a decaying counterrotating mode, which causes the beating
effect in the (red) m = 1 curve in Fig. 5(b4). Figure 5(b3)
shows that there is a drastic increase in the total energy, which
is due to the damping of the negative-energy part of the wave
in the dissipation region. Figures 5(d1)–5(d3) illustrate the
shape of the growing m = 1 mode in the θ direction near the
edge of the trap. At late times, the wavefront becomes sharply
peaked, which can be attributed to the nonlinear excitation of
the m = 2 wave [also shown in Fig. 5(b4)], which has roughly
twice the frequency of the m = 1 component. In Fig. 5(d3)
a short-wavelength instability (a shock wave) appears at the

leading edge of the overdense region and propagates around
the trap wall. The observed self-steepening dynamics fol-
lowed by the appearance of a shock wave is similar to that
studied in the 1D setup of [38].

Further development of this state is depicted in detail in
Fig. 6. We show the density [Fig. 6(a)], the velocity field
[Fig. 6(b)], and the angular profile of the density near rB

[Fig. 6(c)] at four different instants of time. Eventually, the
angular shock wave becomes large enough that additional
vortices nucleate at the trap wall, before being dragged into
the center by the draining flow, which is most apparent from
Fig. 6(a). The vector maps in Fig. 6(b) represent the velocity
field (with the arrows scaled with respect to the largest one in
the plot). We highlight regions where vr > 0.06 (vθ > 0.45)
in magenta (yellow). The overlapping regions appear as red.
We find that the radial velocity is directed outward in front
of the m = 1 wave. This supplies additional particles to the
leading edge of the overdense region resulting in a sharp peak
that continues to grow. The angular velocity of the condensate
is largest in the overdense region and decreases suddenly at
the leading edge, in a manner consistent with known shock
wave formation mechanisms [38]. By the end of the simu-
lation, the mass of vortices in the center was precessing in
the counterclockwise direction while more SQVs continued
to nucleate from the trap edge.

We briefly comment on the robustness of these results. For
the data presented in Figs. 5(c), 5(d), and 6, the trap height
was increased to V0 = 103 to ensure the shock wave near the
trap edge was not a consequence of the mirror image conden-
sates arising from the periodic boundary conditions. Results
qualitatively similar to those performed with V0 = 5 were
observed. The same is also true when an asymmetric perturba-
tion was added to the trapping potential V (see Appendix A 5).
As a further check that the shock wave was not a consequence
of the numerical resolution, we checked the effect of (first)
doubling the space outside the 2rB × 2rB condensate zone
while keeping the same number of grid points and (second)
changing the number of grid points to Nx = 256 (i.e., half the
spatial resolution) and the time step to �t = 10−2. The shock
wave was found to form in both cases, with minor difference
expected due to the change in the precise seeding conditions at
different resolutions. We comment further on the convergence
of the numerical algorithm in Appendix A 6.

One may also wonder whether the dynamics depends on
the particle resupply strategy. For the shock wave simulation,
we checked the effect of keeping the number of particles
resupplied at the boundary fixed at its initial equilibrium
value. In this way, the total N was not conserved during the
simulation (increasing or decreasing at different times) since
the drain rate varies depending on where the vortices are
relative to the central dissipation region. However, the m = 1
instability was still observed to trigger a shock wave in this
case. Changing N changes the background density and radial
flow configuration; hence the properties of the m = 1 unsta-
ble mode (the frequency and growth rate) can be expected
to change. However, Fig. 3 illustrates that the instability is
present over a range of background parameters (in that case
�0), so provided the system does not enter a stability window,
one would expect the same unstable behavior to arise in the
case where N varies during the evolution.
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FIG. 6. (a1)–(a4) Continuation of Fig. 5(c4) with the color axis increased to clearly show the overdense region. (b1)–(b4) Vector map of
the velocity field at the same times, with regions where vr > 0.06 (vθ > 0.45) highlighted in magenta (yellow). In (c1)–(c4) we see a shock
wave being generated at the leading edge of the m = 1 wave, eventually propagating all the way round the trap edge. Once the shock wave
reaches large enough amplitudes, corotating vortices (a3) nucleate near the boundary and (a4) move into the center to form a giant vortex mass.

VII. DISCUSSION

Multiply quantized vortices are generally expected to de-
cay into clusters of singly quantized vortices. A natural
mechanism purported to enhance the stability of MQVs in-
volves a dissipation mechanism which induces a convergent
(draining) flow in the system [18,20,21,23]. We have demon-
strated that, in circularly symmetric trapping geometries
(realizable experimentally [39,40]) stability is not guaranteed,
challenging the perspective that a convergent fluid flow has a
stabilizing influence on MQVs.

We considered a particle dissipation term used to model
losses in Bose gases illuminated with a laser or elec-
tron beam [23,24,31], polariton condensates [19,20,22], and
nonlinear optical condensates (the so-called photon super-
fluids) [32,41]. The model also captures phenomenological
aspects of superfluid 4He flows in the thin-film regime, with
the density acting as a proxy for the height field and the
dissipation representing loss of fluid from the plane, e.g., due
to a physical outlet.

The observed tendencies of our system are a consequence
of the dissipation reducing the particle number rather than
the total energy which, when combined with an amplification
mechanism, can result in secondary instabilities. Our WKB
method revealed that the relevant factor is where the confined
mode exists relative to the localized dissipation region. Since
the MQV splitting instability is confined to the vortex core,
where dissipation acts, it can be quenched. When superradiant
phonon modes are confined outside the dissipation region, the
negative energy transmitted into the vortex core is absorbed

while the mode occupation outside the vortex increases. How-
ever, if the dissipation region extends outside the vortex core,
the occupation of phonon modes can similarly be reduced.
We then demonstrated that secondary instabilities can have
drastic implications for the late-time dynamics of the systems,
growing so large as to generate a shock wave at the edge of the
condensate which seeds the nucleation of many vortices near
the trap wall.

Observation of these features is within current experimen-
tal capabilities of existing platforms implementing atomic
BECs. For example, in [42] a 2D planar geometry containing
vortices was realized in a 87Rb condensate with a lifetime
of 28 s. In this system, the healing length is on the order of
1 µm and the natural timescale is τ = ξ/c ∼ 1 ms, where c
is the sound speed. If dissipative losses are induced with an
electron beam (see, e.g., [23,31]), our results suggest that the
secondary instability would begin on a timescale of 102–103τ ,
well within the condensate lifetime.

For polariton condensates, stability of an MQV with 15 cir-
culation quanta was found in [22]. In that case, dissipation was
uniform throughout the system; hence superradiant phonons
are dissipated as well as the MQV splitting mode. The system
size and phonon decay length were approximately 70 and
approximately 8 healing lengths, respectively, explaining the
absence of secondary instabilities. In our dimensionless units,
their dissipative parameter is � ∼ 0.1, for which the WKB
treatment of Sec. V seems reasonable. Hence, our methods
could be applied to provide insight into properties of superra-
diance in these systems.
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Finally, since Gross-Pitaevskii based models are a useful
phenomenological tool for studying the microscopic dynam-
ics of quantum liquids [1], our results may help elucidate the
behavior of superfluid vortex experiments. In superfluid 4He,
the core of a macroscopic vortex cluster is either a depression
in the liquid’s surface over the drain hole (which provides the
effective dissipation) or a fully formed throat which plunges
through it [15,18]. Studies of the problem in three dimensions
reveal the formation of a complex tangle of vortex lines over
the drain [16,17]. A detailed understanding of the simpler 2D
problem may help identify the key mechanisms at play and
may be of further use in studying the effectively 2D dynamics
of waves on the superfluid interface.
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APPENDIX A: NUMERICAL METHODS

1. Stationary profiles

First, we describe our numerical technique to find the sta-
tionary draining vortex profiles. We exploit the symmetry of
the desired solution by factoring out the vortex winding ei�θ

so that the equation to solve is a function of r only. Using the
units of (9), we write (1) in the form

i∂t z =
(

−∂2
r

2
− ∂r

2r
+ �2

2r2
+ V − i� + |z|2

)
z, (A1)

where z(r) = √
n(r)ei	(r)−iμt . The radial grid is r j ∈

[�r, rB + d], where j = 1, . . . , Nr , with Nr = 256, and d =
5. For the radial derivatives, we use five-point finite-difference
stencils accurate to O(�r4), where �r is the radial grid step
size. The behavior in (12) implies that correct boundary condi-
tions at r = 0 are Neumann for � = 0 and Dirichlet for � 	= 0.
The boundary condition at the edge of the grid is arbitrary
since it is applied deep in the region where z goes to zero under
the potential barrier. We choose it to be a Dirichlet boundary
condition.

Due to the dissipation in the center, any excitations of the
ground state decay away. An implicit assumption here is that
there are no unstable modes with m = 0, which turns out to be
true (at least for the scenarios we are interested in). Therefore,
starting from an arbitrary initial state, we should eventually
arrive at a z corresponding to the ground state provided we
evolve (A1) for long enough. The evolution is enacted using
a fourth-order Runge-Kutta algorithm. Here �t = 2 × 10−3 is
taken for the time step, satisfying �t < �r2/2, which ensures
stability. This means that going to higher spatial resolution is

challenging since decreasing the spatial grid step size by a fac-
tor of 2 would increase the simulation time for the stationary
states by a factor of 8, while the 2D simulations described in
Appendix A 3 would take 16 times longer. After each time
step, we compute the number of particles �N lost due to
dissipation. These particles are then resupplied at the edge of
the trap before the next time step according to the prescription

z
√

1 + �Nβ(r)/|z|2 → z,

β = β0

⎧⎪⎨
⎪⎩

r − r1, r1 < r � r2

1, r2 < r � r3

rB − r, r3 < r � rB,

(A2)

where r1 = rB − 4, r2 = rB − 3, r3 = rB − 1, and β0 is a nor-
malization such that 2π

∫
dr rβ = 1. This ensures that the

total number of particles is conserved throughout the simu-
lation.

We estimate the chemical potential at each time step tk
using μk = −Im[log(zk/zk−1)]/�t , which gives a function
over the r grid. The evolution is continued until the maximum
value of μk − μk−1 in the region r < rB is below 5 × 10−6.
At this point there will still be residual fluctuations in z. Since
these are decaying, we evolve for a further 2000 (104) time
steps for �0 > 0.05 (�0 � 0.05) and take the value of |z| as
its average during this time. The phase is measured at each
point r j and fit with the function 	 j − μ jt . The first term in
this fit gives the phase function in (7) from which obtain vr

by enacting a ∂r stencil incorporating the Neumann boundary
condition at the origin. The second term gives the chemical
potential as a function of r. We observe that this is constant to
a high precision and take its average over the region r < rB.

To generate the solutions in Figs. 1 and 2, we start by
calculating the nondraining solution with � 	= 0 using an
imaginary-time prescription (see, e.g., Appendix A of [28]).
This is the solution for �0 = 0. We then use this as our initial
condition for the largest value of �0 simulated (which is 0.5).
This is done since the strong dissipation here will quickly
damp the solution to the desired equilibrium state. We then
generate the solutions for all �0 in descending order, each time
taking the result from the previous computation as the initial
condition.

2. Eigenmodes

To solve (16) for the eigenmodes, we use the same radial
grid r j and finite-difference stencils defined in the preceding
section. We choose a Dirichlet boundary condition for the
edge of r grid, although the results are insensitive to this
choice in the frequency range probed. The boundary condi-
tion at r = 0 is more delicate. By expanding (u, v) around
r = 0 and inserting into (16), we deduce that the leading-order
behavior is u ∼ r|m+�| and v ∼ r|m−�|. Hence, we apply a
Dirichlet boundary condition whenever the exponent is differ-
ent from zero. Since the next term in the series is multiplied by
an extra factor of r2, we apply a Neumann boundary condition
for a zero exponent. Equation (16) is then solved using a
standard matrix diagonalization routine (we apply MATLAB’s
eig function).
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3. Nonlinear dynamics in two dimensions

For the simulations in Sec. VI of the full equation (1), we
take as our initial condition a stationary solution with �0 	= 0
and no vortex, say, �0, and interpolate this onto a Cartesian
(x, y) grid. We take x j ∈ [−(rB + d ), rB + d] (and similarly
for y j), where j = 1, . . . , Nx, with Nx = 2Nr = 512, so that
the resolution is comparable to our radial code. A pair of
SQVs is then imprinted. For this process, we first calculate the
nondraining SQV density profile which asymptotes to unity,
say, n1(r), and then extend the solution to a high value of
r using the expected asymptotic behavior. This solution is
recentered to the vortex coordinates (xν, yν ) and the initial
condition becomes

�init = �0(x, y)
∏
ν

n1(x − xν, y − yν )

× (x − xν ) + i�ν (y − yν )

|x − xν | , (A3)

where the last factor ensures the defects have the correct phase
winding. We take �ν = 1, with ν = 1, 2 and xν given in the
main text. Since the vortices merge in the center during the
simulation, we multiply �init by a factor (N/

∫
d2x|�init|2)1/2

so that the system has the same total number of particles as
our equilibrium solutions in Fig. 2 (which, we recall, have the
same N as a nondraining MQV with unit chemical potential
by construction). The time evolution is then performed using
a split-step Fourier spectral method. More specifically, given
the solution at time tk , we find � at tk+1 according to

�̃1 = e−i�t (V −i�+|�k |2 )/2�k,

�̃2 = F−1[e−i�tk2/2F (�̃1)],

�k+1 = e−i�t (V −i�+|�̃2|2 )/2�̃2, (A4)

where F and F−1 denote the 2D Fourier transform and its
inverse on the (x, y) grid, with k coordinates in Fourier space,
and we set �t = 4 × 10−3. At the end of each time step, we
resupply particles lost through dissipation at the edge of the
trap with the same prescription used to find our stationary so-
lutions in the radial simulations. In this way, the total particle
number is conserved throughout the evolution. We can think
of this as representing a scenario where a fixed number of
particles remains in circulation.

4. Mode growth

In the simulations of Fig. 5, we found discrepancies be-
tween the measured eigenfrequencies and the predicted ones,
particularly in the imaginary part. We attribute this to nonlin-
ear effects at large mode amplitudes as well as our resupply
strategy, which keeps N fixed at the expense of depleting
the background for large mode occupations. We illustrate an
example of this in Fig. 7 for the unstable m = 1 mode. We
use the same parameters as in Fig. 5(c) except this time the
initial condition is the stationary l = 2 vortex state seeded
with the (normalized) m = 1 unstable mode multiplied by an
amplitude 0.5. We measure the eigenfrequency for t � 500
and display the result in the figure. The growth rate and oscil-
lation frequency are in excellent agreement with the predicted
values at early times when the amplitude is small. At interme-
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FIG. 7. Growth of the unstable m = 1 mode (black line) with the
same parameters used for Fig. 5(c). The best fit to the absolute value
over the window t � 500 is also shown (red line). The measured
eigenfrequency (displayed in figure) is in excellent agreement with
the predicted value of 0.0767 + 0.00236i

diate times, the growth rate starts to deviate from the initial
value, with the amplitude saturating at late times. When the
eigenfrequencies are measured in Fig. 5, the wave amplitudes
are of the order 0.1, which is where the discrepancy starts in
Fig. 7. This suggests that deviations in the growth rate are
consistent with a nonlinear mechanism.

5. Asymmetric perturbations

We checked the effect of adding a small perturbation to the
trapping potential V , using the expression

V = V0

1 + (V0 − 1)ea[rB−r̃(x,y)]
,

r̃(x, y) =
√

x2 + y2/b2, (A5)

which is an elliptical trap with eccentricity e = √
1 − b2. The

initial condition for the 2D solver was obtained by first solving
for the stationary n(r) and vr (r) profiles in the symmetric case
and then separately performing an imaginary-time evolution
of the 2D solver to find the profile of a nondraining l = 2
vortex in the potential (A5). We then combine the two profiles
such that the initial condition has the symmetric draining
profile in the center and the asymmetric profile near the trap
wall. Vortices are imprinted as described in Appendix A 3 at
the locations shown in Fig. 5(c1). In Fig. 8 we display two
illustrative snapshots for e = 0.2 and 0.5, where the times are
the same as in Figs. 6(a1) and 6(a4), respectively. For e = 0.2,
we observe the both the shock wave triggered by the m = 1
instability and the subsequent vortex nucleation, although the
vortex distribution is different from the symmetric case due
to the elliptical trap deformation. For e = 0.5, a clear m = 1
instability can be seen, although in this case, no shock wave
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FIG. 8. Illustrative snapshots of the m = 1 instability’s evolution
in an elliptical trap with eccentricity e. For small e (left column), the
shock wave is triggered and vortices still nucleate at the trap wall.
Larger e (right column) appear stable against shock wave formation
during the simulation time of t = 2400.

was triggered and no vortices nucleated at the edge of the trap
during the simulation, which continued until t = 2400.

Importantly, this demonstrates that the shock wave phe-
nomenon is not reliant on having a perfectly symmetric trap.
Intuitively, we can expect that under a small asymmetric de-
formation of the reflective trap wall, the different m modes
will couple to each other with a strength determined by the
size of the trap deformation. Provided the energy leakage into
a stable m mode is not sufficient to counteract the energy
gain in the unstable mode, one would expect the shock-wave
phenomenon to persist.

6. Convergence tests

Reliability of the numerical algorithm is demonstrated by
checking for convergence of the unstable eigenmode fre-
quency. The simulation parameters are the same as those
used for Fig. 7 including the initial condition, except this
time the resolution is varied. The m = 1 component of the
density is Fourier transformed over the window t ∈ [0, 500]
when the growing mode is still in the regime of the linear
theory. The oscillation frequency Re(ω) is measured by in-
terpolating the peak in the Fourier transform with a quadratic
function.

The results are displayed in Fig. 9. We show the effects
of varying the time step �t (with N = 256 fixed) and the
number of radial grid points N (for �t = 4 × 10−3). We use
the prescription Nx = 2N in the 2D solver and the value of �t
is used in both the stationary state (radial) solver and the full
2D solver. We find only a small variation in Re(ω) within the
range of �t and N probed. Furthermore, the variation follows
the expected behavior, illustrated by the red curves, that is,
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FIG. 9. Variation of the eigenfrequency measured in Fig. 7 with
(a) �t and (b) N . Results of the 2D simulations are shown as black
crosses and the trend is shown as a red curve. The data are consistent
with a linear dependence on �t and a quadratic dependence on �x,
converging to a constant value as both these quantities go to zero.

linear in �t and quadratic in �x ∼ 1/N (due to the derivatives
∂t and ∂2

x in the GPE), converging to constant values in the
infinite-resolution limit. The spread about these curves is well
within the frequency resolution of �ω � 0.013.

APPENDIX B: WKB METHOD

In this Appendix we provide the details of the method
leading to the resonance condition (19) in the main text. First,
it is helpful to define new eigenfunctions g and f according to

∑
m�0

eimθ

(
u
v

)
=

[
g(x, t ) + i f (x, t )/2

g(x, t ) − i f (x, t )/2

]
, (B1)

which satisfy

(Dt − �̃) f + ng + 1
4Drg = 0,

(Dt − �̃)g − Dr f = 0,

Dr = −∇2 + v2 + 2(n + V − μ), (B2)

and Dt = ∂t + v · ∇ is the material derivative. In the WKB
approximation, we write[

f
g

]
=

[
A(x, t )

B(x, t )

]
eiS(x,t ). (B3)

The amplitudes are assumed to vary gradually compared to
the phase, that is, |∂A| � |A∂S| and |∂2S| � (∂S )2 (and
similarly for B) for x and t derivatives. Using the symmetry
of the system, we can write

S =
∫

p(r)dr + mθ − ωt, (B4)

where ∇S ≡ k = (p, m/r), −∂tS ≡ ω, and the decomposi-
tion into ω and m is exact since the background is independent
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of t and θ . Under these assumptions, Eq. (B2) becomes

�2 = nk̃2 + k̃4/4, � = ω − v · k, k̃2 = p2 + m̃2/r2,

m̃2 = m2 + r2v2 + 2r2(n + V − μ) (B5)

at leading order and

∂t

(
�A2

F

)
+ ∇ ·

(
vg�A2

F

)
= −2��A2

F
,

F = n + k̃2/4 (B6)

at next-to-leading order. A similar equation for the second
amplitude can be derived using B = i�A/F . In the derivation
of (B5) and (B6) we have assumed that dissipation is a weak
effect that enters at second order. Hence, the method applies
only for low �0.

The first line of (B5) is the dispersion relation whose so-
lutions k = k(ω, m; r) represent the local value of the wave
vector for a given ω and m. The group velocity of the wave
is then determined by vg = (∂ωk)−1; in particular, its radial
component is êr · vg = (∂ω p)−1. Equation (B6) describes how
amplitude is transported, with the term on the right-hand side
acting as a damping term. Evaluating the norm density for
a WKB mode gives ρn = �|A|2/F (where this expression is
evaluated on the real part of ω), so that (B6) describes how the
norm is transported across the system. In particular, the sign of
the norm density coincides with that of � and is transported
in the direction of vg, that is, a fluctuation with � < 0 has
negative norm density. The mode energy is defined as

H =
∫

d2x
(

1

2
|∂ru|2 + 1

2
|∂rv|2 + (� + m)2

2r2
|u|2

− ivr

2
(u∗∂ru − u∂ru∗ − v∗∂rv + v∂rv

∗),

+ (� − m)2

2r2
|v|2 + (2n + V − μ)(|u|2 + |v|2)

+ n(uv∗ + u∗v)

)
, (B7)

which we evaluate in the stationary regime with the aid of (14)
to obtain

H = ωN + i
∫

d2x �ρn. (B8)

From (17) it then follows that H = Re(ω)N , that is, a
Re(ω) > 0 wave with � < 0 (and therefore ρn < 0) has
negative-energy density.

The dispersion relation (B5) has four distinct solutions rep-
resenting the different allowed k. When �0 is small, only two
of these [which we call k± such that Re(p+) > Re(p−)] corre-
spond to propagating solutions. The other two are evanescent
everywhere and enforcing the boundary conditions sets their
amplitudes to zero. Hence, the general solution can be written
as

f =
∑
ω,m

eimθ−iωt
∑
j=±

R j (r)√
r

,

R j = α j

√
F j∂ω pj

� j
exp

(
i
∫

(pj + i�∂ω pj )dr

)
, (B9)

where α j is an adiabatically conserved integration constant
that comes from solving (B6) and superscript j implies that
the quantity is evaluated for one of the p± solutions to the
dispersion relation. The integrals in the exponent are evaluated
relative to a reference point where the phase is known. Near
rB, p+ corresponds to the outgoing mode with ∂ω p+ > 0 while
p− is ingoing with ∂ω p− < 0. Notice that the damping term in
the exponent implies that the amplitude decays in the direction
of the group velocity (∂ω pj )−1, as one would expect.

The locations where the pj change from real (propagating)
solutions to complex (evanescent) solutions are the turning
points rt p. At these points p+

t p = p−
t p and the group velocity

in the radial direction vanishes (∂ω p±
t p)−1 = 0. Intuitively, the

wave propagating in one direction comes to rest instanta-
neously before propagating back in the other direction. Hence,
the turning points are the locations where waves scatter off the
inhomogeneous background. On the other side of rt p, pj ∈ C
and the waves tunnel.

Looking at (B9), we can see that the amplitude diverges as
a consequence of the radial group velocity vanishing at rt p,
signaling the breakdown of the WKB approximation. This is
not a problem but rather a necessity. The WKB approximation
encodes only the adiabatic variation of a given solution of the
dispersion relation, i.e., the various solutions do not exchange
energy with each other. To capture scattering (the transfer of
energy between waves which travel in opposite directions) the
WKB approximation must break down at certain locations.

There is a standard procedure to fix the breakdown of (B9),
which we now describe. The full equations of motion are
expanded in the vicinity of rt p and an exact solution for the
scattering waves is obtained. The asymptotic form of this
solution is matched to the WKB modes on either side of rt p

to provide a relation between them. When waves propagate
for r < rt p and are evanescent for r > rt p, the relation is(

R+
t p

R−
t p

)
= eiπ/4

(
1 − i

2

−i 1
2

)(
R↓

t p

R↑
t p

)
, (B10)

while in the reverse scenario (evanescent for r < rt p and prop-
agating for r > rt p) we have(

R↑
t p

R↓
t p

)
= eiπ/4

(
1
2 − i

2

−i 1

)(
R+

t p

R−
t p

)
. (B11)

Here a superscript ↑ (↓) denotes a wave which grows (decays)
in the direction of increasing r.

In Fig. 4 of the main text we depict the dependence of the
various turning points r0,1,2 on ω for m = 1, 2. Between turn-
ing points, there is a region where the waves are evanescent
and tunnel across the flow. This tunneling zone separates the
region where � > 0 (ρn > 0) from that with � < 0 (ρn < 0).
We then see that Re(ω) > 0 modes can have negative-energy
densities [Re(ω)ρn < 0] inside the vortex core, provided they
are below a certain threshold (for m = � this threshold is
ω = μ). Hence, when such a wave impinges on the vortex,
it excites a state with negative energy in the core and (by
energy conservation) gets amplified upon reflection. This is
the phenomenon of rotational superradiant scattering familiar
from black hole physics [26].
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We can obtain a formula that describes the scattering of
modes that cross this tunneling zone in the following way.
First, using (B9), we define a number that shifts one of the
R j modes at rb to a smaller radius ra such that the WKB
amplitude does not diverge for ra < r < rb, that is,

F j
ab =

√√√√�
j
bF j

a ∂ω pj
a

�
j
aF j

b ∂ω pj
b

exp

(
−i

∫ rb

ra

(1 + i�∂ω )pjdr

)
,

R j
a = F j

abR j
b, (B12)

where a single subscript indicates the location where a
quantity is evaluated, e.g., R j

a = R j (ra). We then com-
bine (B10)–(B12) to define a relation between propagating
amplitudes on either side of the tunneling zone r1 < r < r2,

(
R+

1

R−
1

)
= N12

(
R+

2

R−
2

)
,

N12 = F↓
12

[
1 + f 2

12/4 i
(
1 − f 2

12/4
)

−i
(
1 − f 2

12/4
)

1 + f 2
12/4

]
, (B13)

where

f12 = exp

(
−

∫ r2

r1

Im[(1 + i�∂ω )p↓]dr

)
. (B14)

For a wide tunneling zone, f12 is assumed to be small and can
be evaluated to leading order for � = 0. These relations can
now be used to find a resonance condition for modes that cross
the tunneling zone, by transporting the solution from r0 in the
vortex core (see Fig. 4) to the outer boundary at rB,

R+
0 = F+

01F
↓
12(σ+F+

2BR+
B + iσ−F−

2BR−
B ),

R−
0 = F−

01F
↓
12(−iσ−F+

2BR+
B + σ+F−

2BR−
B ),

σ± = 1 ± f 2
12/4. (B15)

The final step is to impose the boundary conditions. In
the vortex core, regularity of the solution requires us to
have R−

0 = iR+
0 . At the outer boundary, we can assume that

the density goes to a constant value and that the velocities are
vanishingly small provided we impose a Neumann boundary
condition there, that is, R+

B = R−
B . Both of these steps are

explained in detail in [29]. Inserting these relations into (B15)
and rearranging yields the resonance condition (19). Note that
the assumption of vanishingly small vr (rB) means that square-
root factors in (B12) cancel on the boundary when computing
F+

2B/F−
2B.
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