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Curved vortex surfaces in four-dimensional superfluids. II. Equal-frequency double rotations
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As is well known, two-dimensional and three-dimensional superfluids under rotation can support topological
excitations such as quantized point vortices and line vortices, respectively. Recently, we have studied how, in a
hypothetical four-dimensional (4D) superfluid, such excitations can be generalized to vortex planes and surfaces.
In this paper we continue our analysis of skewed and curved vortex surfaces based on the 4D Gross-Pitaevskii
equation and show that certain types of such states can be stabilized by equal-frequency double rotations for
suitable parameters. This work extends the rich phenomenology of vortex surfaces in four dimensions and raises
interesting questions about vortex reconnections and the competition between various vortex structures which
have no direct analog in lower dimensions.
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I. INTRODUCTION

Quantum vortices are topological excitations of a super-
fluid that are characterized by a quantized circulation around
the vortex core, where the superfluid density vanishes [1–9].
In two dimensions, this vortex core can be thought of as an
effectively zero-dimensional point, while in three dimensions,
the core becomes a one-dimensional line. In a hypothetical
four-dimensional (4D) superfluid, such a core can then extend
into a two-dimensional plane or surface, which can have a
much more varied phenomenology [10,11].

As vortices are excitations, they are associated with an
energy cost, which can be offset, for example, through rotation
of the superfluid [3,4] or equivalently by applying artificial
magnetic fields [12–15]. Interestingly, in two and three di-
mensions, all rotations are simple rotations, which have a
single rotation frequency and rotation plane. Conversely, in
four dimensions, the generic type of rotation is a double
rotation, which has two rotation frequencies and (at least)
two orthogonal rotation planes. This leads to vortex struc-
tures with no direct analog in lower dimensions, as we have
previously begun to explore in Refs. [10,11], by studying a
4D generalization of the Gross-Pitaevskii equation (GPE) [1].
In particular, we found that equal-frequency double rotation
can stabilize a vortex core consisting of two rigid orthogonal
planes intersecting at a point [10], while unequal-frequency
double rotation can lead to the formation of unusual skewed
and curved vortex surfaces [11].
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In this paper we combine these research directions to ask
if skewed and curved vortex surfaces can also be favored
by equal-frequency double rotation. Our hypothesis is that
a 4D superfluid may be able to gain hydrodynamic vortex-
vortex interaction energy by having tilted (antialigning) vortex
planes, albeit at the cost of increased rotational energy. To
test this hypothesis, we develop a simplified analytical the-
ory building on Ref. [11]. Numerically, we find that such
skewed (and curved) structures can be comparable to or even
slightly lower in energy than rigid orthogonal vortex planes
[10] for our system parameters. We also note qualitative sim-
ilarities between the curvature of these vortex surfaces in
four dimensions and the reconnection of vortex lines in three
dimensions, raising interesting questions for further research.
In the future, it will be very interesting to extend our analysis
to more experimentally realistic models for probing higher-
dimensional physics [16–30], e.g., using approaches such as
synthetic dimensions [18,31–55], which were used recently
to experimentally realize an atomic 4D quantum Hall system
[56].

We begin in Sec. II by reviewing the different types of ro-
tations that occur in different numbers of spatial dimensions,
before, in Sec. III, briefly summarizing the basic physics of
quantum vortices in 2D, 3D, and 4D superfluids, as described
by the GPE. In Sec. IV we discuss vortex-vortex reconnection
physics in both three and four dimensions. In Sec. V we con-
sider equal-frequency double rotations and ask whether this
scenario can favor antialigning skewed vortex surfaces either
analytically and/or numerically. In Sec. VI we summarize our
results and briefly discuss possible future extensions to this
work.

II. ROTATIONS IN DIFFERENT DIMENSIONS

Before discussing the physics of quantum vortices in su-
perfluids, we begin by briefly reviewing the different types of
rotation that occur in 2D, 3D, and 4D systems. For further
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mathematical details, we refer readers to Ref. [11] and refer-
ences therein.

In 2D and 3D systems, all rotations are simple, mean-
ing that the rotation is fully described by a single rotation
angle and the corresponding rotation plane. For example,
when represented as a matrix, a rotation of 2D space can be
expressed as (

cos α − sin α

sin α cos α

)
, (1)

where α ∈ (−π, π ] is the angle of rotation and where we have
defined the origin as the fixed point of the rotation about which
all other points are angularly displaced on the rotation plane.
Similarly, in three dimensions, rotations can be expressed in
the form ⎛

⎝cos α − sin α 0
sin α cos α 0

0 0 1

⎞
⎠ (2)

via a suitable choice of basis, with α again being the rotation
angle, and the x-y plane chosen as the rotation plane. The z
axis is then the axis of rotation, meaning that it is both the
line of points which remain invariant under the rotation and
the center about which the system rotates. From the above
form, it is clear that all 3D rotations can be viewed as simple
extensions of 2D rotations, in which a third direction is left
unchanged.

Just as 2D rotations can be extended into 3D rotations,
so can the above simple rotations be extended into four di-
mensions. Expressed as a matrix, this type of rotation can be
written (for a suitable basis choice) as⎛

⎜⎜⎝
cos α − sin α 0 0
sin α cos α 0 0

0 0 1 0
0 0 0 1

⎞
⎟⎟⎠, (3)

which again has a single rotation angle α and a single rotation
plane, i.e., the x-y plane. However, now instead of the rotation
being centered around a point as in two dimensions or an axis
as in three dimensions, it is centered around a fixed plane (here
the z-w plane), which is entirely orthogonal to the rotation
plane.

In contrast to two and three dimensions, the generic type
of rotation in four dimensions is the so-called double rotation,
which is characterized by a single fixed point and two orthog-
onal rotation planes, each with their own rotation angle. When
represented as a matrix, a suitable basis choice can bring any
double rotation into the form

M(α, β ) =

⎛
⎜⎜⎝

cos α − sin α 0 0
sin α cos α 0 0

0 0 cos β − sin β

0 0 sin β cos β

⎞
⎟⎟⎠, (4)

which corresponds to having a rotation angle α ∈ (−π, π ] in
the x-y plane and a rotation angle β ∈ (−π, π ] in the z-w
plane. As a result, any point on the x-y or z-w plane will
remain on that plane but be rotated around the origin by
an angle α or β, respectively. Simple rotations can also be
recovered as a special case of double rotations, if either α or
β vanishes.

Another very important special class of double rotations
are the so-called isoclinic rotations, in which both rotation
angles are equal up to a sign, e.g., M(α, β ) with β = ±α.
These rotations can be classified as being either right handed
or left handed, depending on the relative senses of rotation
in the two planes; for example, M(α, α) is a left isoclinic
rotation of the x-y and z-w planes, while M(α,−α) is a right
isoclinic rotation of the same planes. It is also known that
all left isoclinic rotations commute with all right isoclinic
ones, with any rotation of 4D space being decomposable as a
product of a left and a right isoclinic rotation [57]. Another
unusual feature of isoclinic rotations is that they have an
infinite number of rotation planes such that any completely
orthogonal pair of them can be used as a basis to define a
particular isoclinic rotation. This is in contrast to a generic
double rotation, i.e., M(α, β ), with α �= β �= 0, π , which has
only two unique rotation planes. Interestingly, it is possible
to transform between the different rotation planes of a given
left (right) isoclinic rotation by applying a suitable right (left)
isoclinic rotation to the 4D system [11,57].

As we will explain later in Sec. V, we will be particu-
larly interested in coordinate systems related by generic left
isoclinic rotations. To do so, we will work in double polar
coordinates (r1, θ1, r2, θ2) defined by

(x, y, z,w) = (r1 cos θ1, r1 sin θ1, r2 cos θ2, r2 sin θ2).

To transform between the different coordinate systems, it is
easiest to work in a complex representation where the position
vector is given by (x+iy, z − iw)T = (r1, eiθ1 )T . In this case,
the general left isoclinic rotation going from unprimed to
primed coordinate systems can then be shown to be [11](

r′
1eiθ ′

1

r′
2e−iθ ′

2

)
=

(
cos η eiϕ sin η

−e−iϕ sin η cos η

)(
r1eiθ1

r2e−iθ2

)
, (5)

which depends only on two parameters η ∈ [0, π/2] and ϕ ∈
[0, 2π ) and where all redundant parameters have already been
removed. Physically, the parameter η denotes the tilt angle
between the planes r1 = 0 and r′

1 = 0, while ϕ represents the
direction of this tilt.

III. REVIEW OF SUPERFLUID VORTICES

Having summarized the main features of rotations in dif-
ferent numbers of spatial dimensions, we now briefly review
how these rotations can stabilize different types of quantized
superfluid vortices in 2D, 3D, and 4D systems. Through-
out, we will be considering a system of weakly interacting
bosons as described by the time-independent Gross-Pitaevskii
equation [1]

− h̄2

2m
∇2ψ + g|ψ |2ψ = μψ, (6)

where m is the particle mass, g is the strength of interactions,
μ is the chemical potential, and we have assumed there is
no external trapping potential. Here ψ is the complex order
parameter, which is a function of all spatial dimensions in the
system and from which we can define the superfluid density
as ρ = |ψ |2, the superfluid phase as S = argψ , and the super-
fluid velocity as v = h̄

m ∇S [1]. Crucially, it is straightforward
to show that this form of the velocity field implies that the
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superfluid circulation must be quantized and hence that a
simply connected superfluid cannot rotate as a rigid body but
instead forms quantized vortices [1–8].

A. Superfluid vortices in two and three dimensions

In two dimensions, a superfluid vortex consists of a point-
like vortex core where the density goes to zero and around
which the superfluid phase winds by a quantized amount
[1–4]. Mathematically, a rotationally symmetric 2D vortex in
the x-y plane can be described by

ψ (r, θ ) = |ψ (r)|eikθ , (7)

where the vortex core lies at the origin r = 0. Using dimen-
sionless units, we can define the density profile as |ψ (r)| =
fk (r), which is a real-valued function that vanishes towards
the vortex core and which can be obtained by solving the
(dimensionless) 2D GPE numerically. The topological integer
k in Eq. (7) corresponds to the quantized phase winding of the
superfluid around the vortex core, meaning that the superfluid
velocity is then given by [1]

v = h̄

m
∇(kθ ) = h̄

mr
kθ̂, (8)

where θ̂ is the unit vector pointing in the θ direction.
Energetically, vortices can be introduced by rotating the

system (or equivalently by engineering an artificial magnetic
field) [3,4]. In a rotating reference frame, the GPE [Eq. (6)]
becomes (

− h̄2

2m
∇2 + g|ψ |2 − � · L̂

)
ψ = μψ, (9)

where � is the vector of rotation frequencies and L̂ = −ih̄r ×
∇ is the (3D) angular momentum operator [1]. For a rotating
2D system, � = 
ẑ, corresponding to 2D simple rotation, i.e.,
Eq. (1) with α = 
t . As a result, the energy of the system
is reduced by �Erot = 
〈L̂z〉, where 〈L̂z〉 is the expectation
value of the angular momentum operator L̂z with respect to the
order parameter. As vortices carry a finite amount of angular
momentum, rotation can therefore energetically stabilize a
vortex, provided this energy reduction outweighs the energy
costs [1,2]. This occurs above a critical frequency 
2D

c , which,
for a superfluid in a disk of radius R with hard-wall boundary
conditions (and no additional external potentials), can be esti-
mated as


2D
c = k

h̄

mR2
ln

(
2.07

R

ξ

)
, (10)

where ξ is the healing length, which satisfies h̄2/mξ 2 = gn =
μ, with n the uniform background superfluid density. (Note
that often a factor of 1

2 is included in the definition of ξ [1].)
This shows that as the rotation frequency is increased from
zero, the ground state will first change from a state with no
vortices to a state with a single vortex with k = 1 [2].

At even higher frequencies, a straightforward analysis of
the various energy contributions predicts that it is always
energetically unfavorable (without additional potentials) to
create a multiply charged vortex with |k| > 1 rather than

multiple singly charged vortices with |k| = 1 [1]. As the ro-
tation frequency increases, the ground state therefore changes
from a state with a single k = 1 vortex to a state with two
k = 1 vortices and so on. Considering multiple vortices in
a system, it can then be shown that vortices with winding
numbers of the same sign will interact repulsively, while those
with opposite sign, i.e., a vortex and antivortex pair, will
interact attractively [2].

We can straightforwardly generalize the above description
to vortices in a 3D superfluid [1,2,9]. In this case, a superfluid
vortex consists of a vortex core, which can be approximated
as an extended 1D line. This core must either begin and end
on the surface of the system, in which case they are referred to
as vortex lines or vortex filaments, or else form a closed loop
within the 3D superfluid, in which case they are called vortex
rings [9,58–63]. For the purposes of this paper, we focus on
vortex lines as we are studying the lowest-energy structures
that can be stabilized by rotation; however, it would be very
interesting in the future to also consider how vortex rings
can be generalized to higher dimensions. Mathematically, a
cylindrically symmetric vortex line in three dimensions can
be described [9], e.g., by

ψ (r, θ, z) = |ψ (r, z)|eikθ , (11)

in cylindrical polar coordinates (r, θ, z), where the rotation
axis lies in the z direction. Without additional potentials,
the density profile in dimensionless units is then given by
|ψ (r, z)| = fk (r), which is independent of z and where fk (r)
is the real-valued function found by numerically solving the
2D (dimensionless) GPE. As a result, in this simplest case, a
3D vortex line has the same velocity field and the same critical
frequency (in a cylindrical system) as a 2D vortex [9].

B. Superfluid vortices in four dimensions

We now briefly review the different types of vortex struc-
tures that we previously identified as low-energy states under
rotation [Eq. (6)] in Refs. [10,11]. Throughout, we focus on
the 4D GPE as it is both the most natural and simple model
in which to study how superfluid vortex structures would be
affected by extra dimensions and it is also plausible as a math-
ematical description of low-temperature interacting bosons
moving in a hypothetical universe of four spatial dimensions
[10,64–66]. However, as discussed in Ref. [11] and briefly in
Sec. VI, it will be interesting and important in the future to
generalize these results to a more realistic experimental model
that is based, e.g., on adding one or more synthetic dimensions
to ultracold atoms [17,31–41,55,56].

Before proceeding, it is important to note that the rotating
frame GPE [Eq. (9)] depends on the angular momentum oper-
ator, which in two and three dimensions can be represented as
a vector. However, in four dimensions there are six Cartesian
coordinate planes, meaning that the rotation group SO(4)
of four-dimensional space has six generators that physically
describe angular momentum. Hence, the angular momentum
operator in four dimensions is a 4 × 4 antisymmetric tensor,
with components L̂γ δ , which correspond to the angular mo-
mentum in the γ -δ plane, with γ , δ ∈ {x, y, z,w}. Using this
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notation, the 4D GPE then takes the form⎛
⎝− h̄2

2m
∇2 + g|ψ |2 −

∑
γ δ


γδL̂γ δ

⎞
⎠ψ = μψ, (12)

where 
γδ is the rotation frequency for the γ -δ plane. In the
following, we focus on two possibilities. The first is that of
simple rotation in four dimensions, which is characterized by
a single rotation frequency, e.g., 
xy ≡ 
 �= 0. This can be
understood as a usual 2D or 3D rotation extended into a fourth
dimension and corresponds to taking α = 
t in Eq. (3). The
second, and our main focus in this work, is that of 4D double
rotation, where the rotating-frame GPE can be written as(

− h̄2

2m
∇2 + g|ψ |2 − 
1L̂1 − 
2L̂2

)
ψ = μψ, (13)

where 
 j is the rotation frequency and L̂ j is the angular mo-
mentum operator in planes j = 1, 2. In this paper we choose
plane 1 to be the x-y plane, i.e., 
1 ≡ 
xy and L̂1 ≡ L̂xy, and
plane 2 to be the z-w plane, i.e., 
2 ≡ 
zw and L̂2 ≡ L̂zw.
This corresponds to taking α = 
1t and β = 
2t in Eq. (4).
(Note that this scenario is closely related to certain types of
4D quantum Hall models in which magnetic fields in two
completely orthogonal planes are used to generate a nontrivial
second Chern number [17–20,67].)

1. Single vortex plane

Just as a 3D vortex line is an extension of a 2D vortex point,
so can we consider a rigid 4D vortex plane, in which the vortex
core has become extended to cover an entire 2D plane within
the superfluid [10]. In dimensionless units, the corresponding
order parameter can be described, e.g., by

ψ (r1, θ1, r2, θ2) = fk (r1)eikθ1 , (14)

where (r1, θ1, r2, θ2) are the double polar coordinates intro-
duced previously. Without additional potentials, the density
profile fk (r) is again the radial function found numerically
from the 2D GPE, and so the vortex core spans the entire z-w
plane. Physically, this is the most natural extension of vortices
from two and three dimensions into four dimensions, as the
extra dimension w plays no role in either the rotation or the
form of the order parameter. It can therefore also be expected
that such a vortex plane can be energetically stabilized by a
4D simple rotation, e.g., as described above with 
xy �= 0 and
all other rotation frequencies being equal to zero, as has been
verified numerically in Ref. [10].

We can also consider a single rigid vortex plane under 4D
double rotation [cf. Eq. (13)]. First of all, in the limit that
one of the two rotation frequencies is very small, the scenario
remains close to that of simple rotation, and we expect that
a single vortex plane will be energetically favored (provided
the other rotation frequency is sufficiently big) [10]. More
generally, it can be shown that the vortex plane will tilt so
as to fully align with whichever plane has the higher rotation
frequency, so as to fully benefit from the energy reduction due
to rotation [11]. However, if the two rotation frequencies both
become large enough, then a single vortex plane is unlikely to
be the ground state over a significant frequency range, as other

more favored structures, based on pairs of vortex planes, can
emerge, as we now review [10,11].

2. Pair of orthogonal vortex planes

Under double rotation, the 4D GPE [Eq. (13)] depends on
two commuting operators L̂1 and L̂2, suggesting that we look
for simultaneous eigenstates of both angular momentum oper-
ators. Physically, this suggests the possibility of having vortex
structures composed of a pair of completely orthogonal vortex
planes that intersect at the origin. Such a structure can be
described, e.g., by the following ansatz for the dimensionless
order parameter [10]:

ψ (r1, θ1, r2, θ2) = fk1,k2 (r1, r2)eik1θ1+ik2θ2 . (15)

Here k1 and k2 are the integer winding numbers in the
two rotation planes, and the structure is hence characterized
by Z × Z topological invariants. The real-valued function
fk1,k2 (r1, r1) denotes the 4D superfluid density profile, which
we assume only depends on the radial coordinate in each
rotation plane. The form of this function can be found by
solving the (dimensionless) GPE numerically; doing so shows
that the resulting function is close to a product of 2D vor-
tex profiles, i.e., fk1,k2 (r1, r1) ≈ fk1 (r1) fk2 (r2), although this
approximation breaks down, due to the intrinsic nonlinearity
of the GPE, near the origin where the vortex planes intersect
[10]. From Eq. (15) it can also be straightforwardly seen that
the associated superfluid velocity field is given by [10]

v = v1 + v2 = h̄

m

(
k1

r1
θ̂1 + k2

r2
θ̂2

)
, (16)

corresponding to a superposition of the velocity field of a 2D
vortex in each rotation plane [cf. Eq. (8)].

Interestingly, a pair of orthogonal vortex planes is fa-
vored over a single rigid plane [Eq. (14)] by sufficiently
strong equal-frequency double rotation, i.e., 
1 = 
2 = 
,
as we showed numerically in Refs. [10,11]. This is because,
although a pair of planes has a higher intrinsic (e.g., hydrody-
namic) energy cost than a single plane, such a structure can
benefit from a much greater energy reduction under equal-
frequency rotation due to having angular momentum in both
rotation planes simultaneously [cf. Eq. (13)]. Similar to in
two and three dimensions, it is also possible to estimate a
critical frequency above which the simplest pair of orthogonal
vortex planes (e.g., with |k1,2| = 1) becomes lower in energy
than the uniform state with no vortices. For a superfluid in a
4D hypersphere (or 4D ball) geometry, which has hard-wall
boundaries at r2

1 + r2
2 = R2, with R the hyperspherical radius,

this critical velocity is approximately given by [11]


c ≈ 2
h̄

mR2
ln

(
2.07

R

ξ

)
. (17)

This will be used in the following to report frequencies in
units of 
c. (Note that Ref. [10] worked in units of 
2D

c
[Eq. (10)], but these are simply related as 
c = 2
2D

c .) It
should also be noted that if the rotation frequencies become
high enough compared to 
c, then we expect that it will
become energetically favorable to introduce many vortices
or more complicated vortex structures; however, this goes
beyond the scope of our present work.
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Finally, while the above ansatz for the orthogonal vortex
plane [Eq. (15)] picks out the x-y and z-w planes prefer-
entially, equal-frequency double rotations are examples of
isoclinic rotations (cf. Sec. II) and hence have an infinite num-
ber of rotation planes [11,57]. This means that a different but
equally suitable ansatz could have been defined with respect
to any orthogonal pair of these planes, provided the boundary
conditions respect this symmetry, e.g., as is the case for the 4D
ball geometry. In practice, numerical calculations are carried
out on a discretized Cartesian grid and for an initial state that
breaks the isoclinic symmetry (see Appendix A), meaning that
this degeneracy is not typically reflected in numerical results.

3. Pair of nonorthogonal vortex planes

In this paper we want to explore whether equal-frequency
double rotations can stabilize a different type of vortex struc-
ture that is composed of a pair of nonorthogonal vortex planes.
This is inspired by work in Ref. [11], where we showed that a
suitably skewed pair of rigid vortex planes could have lower
energy than an orthogonal pair of planes, under unequal-
frequency double rotation. In preparation, we therefore now
briefly introduce this type of vortex structure.

Following Ref. [11], an example ansatz for the dimension-
less order parameter of a pair of nonorthogonal rigid vortex
planes is given by

ψ = r|k1|
1 r′

2
|k2|ei(k1θ1+k2θ

′
2 )g

(
r2

1 , r′2
2

)
= (x + σ1iy)|k1|(z′ + σ2iw′)|k2|g(x2 + y2, z′2 + w′2), (18)

where the primed coordinate system is tilted with respect to
the unprimed coordinate system, as related by a general dou-
ble rotation. Physically, this ansatz describes a pair of vortex
planes along x = y = 0 and z′ = w′ = 0 respectively, which
intersect at the origin. Here k1,2 are the winding numbers of
the two vortices and σ j = sgn(k j ). The function g is given by
g(r2

1 , r′2
2 ) = const × fk1,k2 (r1, r′

2)/r|k1|
1 r′

2
|k2|, where fk1,k2 is the

dimensionless profile from Eq. (15) [11].
Through an appropriate choice of basis, the relationship

between the primed and unprimed coordinates can be taken
without loss of generality as [11]

z′ = sin α1x + cos α1z, w′ = sin α2y + cos α2w, (19)

with α1,2 ∈ [0, π/2). (Note that a pair of orthogonal vortex
planes, as discussed in the previous section, would correspond
to taking α1 = α2 = 0.) Given again a spherically symmetric
4D superfluid of radius R such that r2

1 + r2
2 = r′2

1 + r′2
2 � R,

we will assume that the velocity fields induced by each vortex
have the simple forms

v1 = k1
h̄

m

θ̂1

r1
, v′

2 = k2
h̄

m

θ̂
′
2

r′
2

. (20)

Note that, in general, these velocity fields are not orthogonal
to each other and therefore there can be a nonzero hydro-
dynamic vortex-vortex interaction between the two planes
[11]. We discuss the form of this hydrodynamic interaction in
more detail in Sec. V. However, to make a simple argument,
we can recall that, as mentioned above, 2D vortices with
winding numbers of the same sign, and hence velocity fields
circulating in the same sense, will interact repulsively. Then,

intuitively in four dimensions, if the second vortex plane is
tilted such that its velocity field begins to align (antialign)
with that of the first vortex plane, we can expect there to
be an energetic cost (benefit) due to the effectively repulsive
(attractive) interaction between the pair of planes [11].

As an example, we can consider the special case in which
the double rotation between the primed and unprimed co-
ordinates is isoclinic. This means that α2 = να1, with ν =
±1 denoting if the rotation is left (−) or right (+) iso-
clinic, respectively. If we then define η ≡ α1 for simplicity,
we see that the primed coordinates [Eq. (19)] can now be
expressed as

z′ + iw′ = c(z + iw) + s(x + νiy), (21)

where we have applied the shorthand c = cos η and s = sin η.
In this case, the ansatz for nonorthogonal intersecting vortex
planes becomes [11]

ψ = (x + σ1iy)|k1|[c(z + σ2iw) + s(x + νσ2iy)]|k2|g, (22)

where the arguments of g have been suppressed for brevity.
Then if ν = σ1σ2, we have x + σ1iy = x + νσ2iy, and the
planes are skewed so as to begin to perfectly align, while
if ν = −σ1σ2, they antialign. This in turn suggests that ν =
sgn(k1k2) gives rise to a repulsive interaction between the
planes, while ν = −sgn(k1k2) will lead to an attractive inter-
action [11].

In Ref. [11] we found that such a pair of nonorthogonal
vortex planes could be lower in energy than the corresponding
orthogonal configuration for unequal-frequency double rota-
tion. This result can be understood intuitively by noting that,
for nonorthogonal planes, there is a competition between the
rotational energy [cf. Eq. (12)] and the interaction energy. In
particular, as one of the rotation frequencies is larger than the
other, e.g., 
1 > 
2, the system can benefit energetically by
tilting the vortex planes so that they have increased angular
momentum in the rotation plane with the higher frequency;
however, this means that the vortex planes have also tilted
towards each other in an aligning sense and hence will interact
repulsively. Balancing these two energetic considerations led
us to predict optimal tilt angles for the two planes, which
was found to be in good agreement with numerics [11]. In
this paper we carry out analogous analytical and numerical
calculations for the case of equal-frequency double rotation.

IV. VORTEX RECONNECTION

Before proceeding, it is interesting to note that the tilted
nonorthogonal vortex planes found numerically in Ref. [11]
exhibited an avoided crossing near the origin, i.e., instead
of an intersection at the origin as in the ansatz [Eq. (18)]
or as found numerically for orthogonal vortex planes [10].
As we show in Sec. V, we numerically observe a similar
avoided-crossing phenomenon also for equal-frequency dou-
ble rotation. Moreover, the shape of these curved surfaces is
reminiscent of the shape of 3D vortex lines shortly after a
reconnection event; this motivates us to first review briefly
how reconnections can be approximated analytically in 3D
superfluids [68] before presenting how this theory can be
extended to four dimensions. This will serve as a comparison
for numerical results in Sec. V.
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A. Reconnections in three dimensions

In three dimensions, it is well known that when two vortex
lines are made to intersect, they will dynamically reconnect
and move apart so as to remove the intersection point [69].
This process plays an important role, e.g., in quantum turbu-
lence [70] and has been studied in detail theoretically [68,71–
77] and in various superfluid experiments [58,78–80].

At very short times before or after the moment of recon-
nection, Nazarenko and West showed in a seminal paper that
it is possible to analytically approximate the wave-function
solution close to the reconnection point, by assuming that
nonlinear effects are small [68]. This assumption is justified
by noting that the wave function is spatially continuous and
vanishes at the vortex cores, meaning that the particle density
is low near the reconnection point. To a first approxima-
tion, the reconnection evolution can then be described by the
(dimensionless) 3D linearized time-dependent GPE, i.e., the
Schrödinger equation

− 1
2∇2ψ = iψ̇, (23)

close to the intersection point (at r = 0). If the wave function
at the moment of intersection (t = t0) is defined by ψ = ψ0,
then after a short time interval �t = t − t0, the state evolution
can be approximated as

ψ = ψ0 + i
�t

2
∇2ψ0. (24)

At t = t0, a reasonable ansatz for the wave-function near the
intersection point is given by [68]

ψ0 = z + i(az + bx2 − cy2), (25)

where a, b, c are some positive constants, corresponding to a
state containing two straight vortex cores (defined by ψ0 = 0)
that intersect at the origin. According to Eq. (24), such a state
will evolve dynamically to [68]

ψ = z − (b − c)�t + i(az + bx2 − cy2). (26)

For times both before (�t < 0) and after (�t > 0) the mo-
ment of reconnection, this solution describes two unconnected
hyperbolas, corresponding physically to two separated and
curving vortex filaments. Interestingly, even such a simple
linear approach reproduces many of the observed properties
of vortex reconnections found in numerical simulations, such
as that the vortex lines locally approach each other in an an-
tiparallel configuration [68,76]. However, as this method does
not describe the behavior far from the vortex cores, the linear
approach cannot predict effects such as the far-field emission
of sound waves by the reconnection event; to overcome such
limitations, the linear solution can be substituted back into
the GPE including nonlinear terms in order to find successive
nonlinear corrections and hence to analytically calculate a
fully nonlinear analytical solution within a finite volume and
finite evolution time [68].

B. Reconnections in four dimensions

Here we show that nonorthogonal vortex planes in four
dimensions generically do not form a stationary state. In
particular, we show that an initial state containing two
nonorthogonal singly charged vortex planes that intersect at

a point will undergo reconnection. As we will see, in contrast
to reconnections of extended vortex lines in three dimensions
[68], the vortex core remains a single connected object at all
times during this four-dimensional reconnection. (We note
that a single connected core can arise in evolved states of
the 3D GPE when considering self-intersection and reconnec-
tion of vortex loops [81] or of a pair of linked vortex loops
[76,77,82].)

To proceed, we follow the same analysis as that described
above; close to a vortex core the density is small, so for short
times we may describe the evolution of a vortex core with the
linearized dimensionless GPE [Eq. (23)] now in four dimen-
sions. We will take our ansatz for nonorthogonal vortex planes
[Eq. (18)] as an initial state, with |k1| = |k2| = 1, assuming an
idealized case of an infinite condensate that is homogeneous
away from the vortex core. Looking at the immediate vicinity
of the intersection point between the planes such that r1 and r′

2
are both small (compared to ξ ), we can approximate the func-
tion g in Eq. (18) to leading order as g(0, 0). Any constants can
then be divided out of the linear evolution [Eq. (23)], so in the
immediate vicinity of either vortex core we can approximate
the state as

ψ0 = (x + iy)(z′ + σ iw′), (27)

where we have assumed σ1 = 1 without loss of generality,
and σ = σ2 then denotes the relative sign of k1k2 and hence
the relative orientation of the two planes. Substituting the
equation for z′ and w′ [Eq. (19)] into our initial condition gives

ψ0 = sin α1x2 − σ sin α2y2 + (cross terms), (28)

where we have suppressed the cross terms since they will
not contribute in what follows. If we let this initial state
undergo the Schrodinger evolution of Eq. (23), then after a
short time �t the evolved state is given by Eq. (24) as in
three dimensions. The Laplacian of the initial state contains
only contributions from the first two terms in Eq. (28) and is
given by

∇2ψ0 = 2(sin α1 − σ sin α2) (29)

such that the evolved state is given by

ψ = (x + iy)(z′ + σ iw′) + i�t (sin α1 − σ sin α2). (30)

Note that at the point of reconnection �t = 0, the vortex core
is given by two nonorthogonal planes intersecting at a point.
Interestingly, this is also true at all times if the two planes are
related by an isoclinic rotation such that α1 = να2, provided
ν = σ . In this case the linearized equation [Eq. (24)] predicts
no dynamics and hence no reconnection. This corresponds to
a right isoclinic rotation for ν = σ = 1 and a left handed one
for ν = σ = −1. In both of these cases, however, we can use
the definition of the primed coordinates [Eq. (21)] to see that,
when ν = σ ,

z′ + σ iw′ = c(z + σ iw) + s(x + iy) (31)

such that the planes are skewed in a purely aligning sense,
meaning that their interaction is repulsive [11]. This raises
the possibility that such nonorthogonal purely aligning planes
could form a stationary state; however, we expect that this is
not true for the full nonlinear dynamics that applies at larger
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distances from the core. This is because the double rotation
relating the primed and unprimed coordinates affects the func-
tion g in Eq. (18) even given the form we have assumed for it.
It would be interesting in future work to test this hypothesis
by applying the nonlinear analytics used for the reconnection
of vortex lines in three dimensions [68] to these planes in
four dimensions. Regardless, we can speculate that for purely
aligning skewed planes to reconnect in the same way as the
general skewed planes, the core would have to first twist near
the intersection point so that, in the immediate vicinity of this
point, the core forms two planes that are skewed with some
antialignment component (α1 �= σα2). This is reminiscent of
the case in three dimensions, where it is well known that vor-
tex lines are always antialigning very close to the reconnection
point [68].

To get an idea of what the reconnected core structure looks
like, consider a simpler state given by

ψ⊥ = (x + iy)(z + iw) − a − ib, (32)

which describes a pair of completely orthogonal planes per-
turbed by a complex constant, in the same way that Eq. (30)
describes a pair of nonorthogonal planes perturbed by the last
term which is a constant for a given value of �t . Note that
the equation of the core, ψ⊥ = 0, has the form of the equa-
tion of a hyperbola, but with complex numbers instead of real
numbers. This is algebraically reminiscent of reconnections
in three dimensions, but there are some crucial differences.
For example, this equation now describes a single connected
surface rather than two disconnected curves. The advantage of
Eq. (32) over Eq. (30) is that it allows us to focus on the effect
of the perturbation without the complication of the skewed
planes and the time dependence of the state. The location
of any vortex cores is given by the set of zeros of the order
parameter, which in this simpler case are all the points which
satisfy

xz − yw = a, xw + yz = b. (33)

Solving these equations for z = z(x, y) and w = w(x, y)
gives us

z = ax + by

x2 + y2
, w = bx − ay

x2 + y2
, (34)

which can be plotted as a surface in 3 + 1 dimensions, where
the extra w dimension is given by color. This is shown in
Fig. 1(a) for a = 0.1 and b = 0. This figure shows that there is
no longer an intersection at the origin, although the structure
around this point is difficult to make out. We can get a clearer
view by performing a double rotation and looking at this
object from a different perspective. In particular, rotating our
coordinates according to⎛

⎜⎜⎝
x
y
z
w

⎞
⎟⎟⎠ → 1√

2

⎛
⎜⎜⎝

1 0 1 0
0 1 0 1

−1 0 1 0
0 −1 0 1

⎞
⎟⎟⎠

⎛
⎜⎜⎝

x
y
z
w

⎞
⎟⎟⎠ (35)

allows us to visualize both planes at the same time. This
transforms Eq. (32) into

ψ⊥ = 1
2 (z + iw)2 − 1

2 (x + iy)2 − a − ib (36)

FIG. 1. Perturbed orthogonal vortex planes given by the zeros
of Eq. (32), with a = 0.1 and b = 0. All quantities here are di-
mensionless. (a) Vortex core in the original basis, plotted using the
height [z(x, y)] and color [w(x, y)] functions given in Eqs. (34). The
intersection point has become an avoided crossing, and the vortex
core approaches each of the original planes as the distance from the
origin increases. (b) Same state after a rotation of the coordinates
given by Eq. (35), with z(x, y) and w(x, y) now defined by Eqs. (38).

and Eqs. (33) into

−x2 + y2 + z2 − w2 = 2a, −xy + zw = b, (37)

which can again be solved for z(x, y) and w(x, y), giving

z2 = [A(x, y)2 + B(x, y)2]
1
2 + A(x, y),

(38)
w2 = [A(x, y)2 + B(x, y)2]

1
2 − A(x, y),

where A(x, y) = a + (x2 − y2)/2 and B(x, y) = b + xy. These
(now two-branched) solutions are plotted, for a = 0.1 and
b = 0, in Fig. 1(b), giving a clearer view of the core structure
near the origin. Again, we see that the intersection point has
been replaced by a kind of avoided crossing reminiscent of the
reconnection of intersecting vortex lines in three dimensions,
but where the vortex core remains a single connected 2D
region. Recall that the perturbed orthogonal state [Eq. (32)]
is a simplification of the perturbed skewed state undergoing
linear dynamical reconnection [Eq. (34)]. To visualize this
nonorthogonal reconnecting state for small angles α1,2, we
can take the picture in Fig. 1 and tilt the asymptotic plane
z = w = 0 into z′ = w′ = 0, with the region around the origin
remaining essentially the same but expanding linearly with
time.

If we rewrite the perturbed orthogonal state [Eq. (32)] in
double polar coordinates, we obtain

ψ⊥ = r1r2ei(θ1+θ2 ) − γ eiβ, (39)

where γ eiβ = a + ib. Note that in these variables the equa-
tions for the core surface become

θ1 + θ2 = β, r1r2 = γ . (40)

These expressions are very simple and give an immediate
interpretation of γ and β, but are not as conducive to plotting
and visualization as Eqs. (34) and (38). However, we can
use Eq. (40) to find an expression of the minimum distance
between the origin and the perturbed orthogonal core. Recall
that this distance was zero for the unperturbed orthogonal state
(both vortex planes passed through the origin), so this gives
us a measure of the perturbation which we will use later nu-
merically. Using r2

1 + r2
2 = r2, we can define r1 = r sin u and

r2 = r cos u, with u ∈ [0, π/2]. Then, substituting this into
Eq. (40), we obtain r2 = 2γ / sin 2u such that the minimum
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FIG. 2. (a) Density and (b) phase of the perturbed orthogonal
state [Eq. (39)] as a function of r1r2 and θ1 + θ2 as given by Eqs. (42)
and (43), respectively, for γ = 0.2 and β = π . All quantities here are
dimensionless. Note that the zeros of the density and corresponding
branch points in the phase occur at r1r2 = γ and θ1 + θ2 = ±β.
The phase winds with θ1 and θ2 when r1r2 > γ , while it is roughly
constant for r1r2 < γ .

value of r occurs at u = π/4 and is given by

rmin =
√

2γ . (41)

Furthermore, r takes this value when r1 = r2 = √
γ .

We can also use the polar form (39) to plot the entire
density and phase profiles by noting that this state is only a
function of the variables r1r2 and θ1 + θ2. Taking the modulus
and argument of Eq. (39) gives

ρ = [
r2

1r2
2 + 2γ r1r2 cos(θ1 + θ2 − β ) + γ 2

]1/2
, (42)

tan S = r1r2 sin(θ1 + θ2 − β )

r1r2 cos(θ1 + θ2 − β ) − γ
, (43)

which are plotted in Figs. 2(a) and 2(b), respectively, for
γ = 0.2 and β = π . These plots clearly show that the core,
visible as dark spots in Fig. 2(a) and branch points in Fig. 2(b),
occurs at the values given in Eq. (40). Above r1r2 = γ the
phase winds once as either θ1 or θ2 makes a full circle, while
below it the phase becomes approximately constant. Note that
we have truncated the y axis of this plot as we expect the
linearized approach to only be meaningful within about a
healing length of the core structure, where the healing length
is given by ξ = 1 in these dimensionless units. For the same
reason, we only consider values of γ < 1; as we can identify
γ ∝ �t , this is similar to the assumption that the evolution
only describes short times. To make this analogy clearer, we
note that the skewed reconnecting state [Eq. (30)] at a fixed
time step �t has the same density and phase profiles as in
Eqs. (42) and (43), respectively, but with r2 and θ2 replaced by
r′

2 and θ ′
2 and with γ = �t (sin α1 − σ sin α2) and β = −π/2.

In this simplified linear description, the perturbation gov-
erning the avoided crossing grows linearly with time for short
times; it would be very interesting in future work to extend this
to the nonlinear regime using methods analogous to those of
Nazarenko and West [68], in order to discover the fate of these
reconnected planes at later times. In particular, the question
arises whether these curved vortex core structures can ever
form a stationary state. As we will see later, our numerical
results show vortex core structures that are qualitatively simi-
lar to the skewed avoided-crossing states we have considered
here. However, these numerical vortex cores come from fi-
nal states of the imaginary-time evolution method, which are
numerical stationary states; also, these states have avoided-

crossing regions spanning several healing lengths, and so we
do not expect these to be described by the linearized GPE
[Eq. (23)].

Additionally, in this section we have assumed an infinite
condensate, while our numerics use a hard-wall boundary.
Once this boundary condition is imposed, the off-axis nature
of the avoided crossing introduces unavoidable image effects.
This can be seen by evaluating the current of the reconnect-
ing skewed state [Eq. (30)], given by Im(ψ∗∇ψ ) = ρv, and
seeing that there is a radial component of the velocity at the
boundary. Physically, we require that the radial velocity at
the boundary vanishes; otherwise the condensate would be
expanding and the state would not be stationary. In fact, the
2D equivalent of Eq. (32), that is, ψ = x + iy − a − ib, is
precisely an off-axis point vortex located at the coordinates
(a, b) rather than the origin and is well known not to satisfy
this boundary condition for the velocity field [83]. This con-
dition is then usually enforced analytically with the method of
images, but this is not straightforward given the complicated
curved geometry of the vortex core. For this reason, analysis
of these image effects is beyond the scope of this paper.

Bearing these caveats in mind, in the next section we
develop a theory of superfluids doubly rotating with equal
frequencies using intersecting nonorthogonal vortex planes
as an ansatz for the ground state. Numerically, we then ob-
serve stationary states with approximately the structure of this
ansatz but with avoided crossings instead of intersections rem-
iniscent of the reconnection physics that we have discussed in
this section.

V. EQUAL-FREQUENCY DOUBLE ROTATIONS

In Ref. [10] we considered the case of a superfluid under-
going constant left isoclinic rotation in time, given by 
xy =

zw ≡ 
 in the laboratory (x, y, z,w) frame. We showed how
this type of equal-frequency double rotation could energeti-
cally stabilize a configuration of two completely orthogonal
vortex planes that intersect at a point, as reviewed in Sec. III B.
Here we consider this case again, but with a more generalized
ansatz that includes the possibility of those vortex planes
tilting away from the rotation planes and towards each other,
in an antialigning sense, in order to benefit from attractive
interaction energy at the expense of increased rotational en-
ergy [11]. We use both analytics and numerics to investigate
whether such a state can be energetically preferred to an
orthogonal one.

A. Analytics for a pair of tilted vortex planes under
equal-frequency double rotation

We begin by discussing an ansatz for a pair of vortex
planes that are each tilted away from the planes of rotation,
before using this ansatz to analytically compare the rotational
and vortex-vortex interaction energies associated with such a
structure. From this energetic balance, we analyze whether
such a pair of tilted planes is expected to be favored as com-
pared to a pair of orthogonal planes under equal-frequency
double rotation. Finally, in Sec. V B we present and discuss
corresponding numerical results.
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1. Ansatz for a pair of tilted antialigning planes

We can write down a general ansatz for a pair of tilted
vortex planes in the form

ψ = n1/2eiθ́1 eiθ̀2 , (44)

where the acute (ŕ) and grave (r̀) coordinate systems are each
defined with respect to one of the tilted vortex planes, as
will be specified in greater detail below. Here we have also
assumed that we can ignore the density depletion around the
vortex core and have instead approximated the density as a
constant n = N/V , where N is the number of particles and
V is the total volume. This assumption simplifies the energy
calculations in the following section and should be suitable
for a large enough system size.

We also note that the ansatz in Eq. (44) assumes that the
vortex planes are flat and intersect at the origin. In particular,
this means we are not going to consider the conclusion from
Sec. IV that, in general, intersecting nonorthogonal vortex
planes do not form a stationary state but will instead recon-
nect. This reconnection was found to cause the vortex surfaces
to move outward near their intersection such that they no
longer intersect but instead form a single smoothly curved
surface. This displacement of the cores will affect the velocity
field directly, by moving the center of the circulating flow,
and (if there is a hard-wall boundary) indirectly, by intro-
ducing image effects which we are as yet unable to model.
Note, however, that the reconnected vortex cores (see Fig. 1)
approach the original vortex planes for large values of r1 or
r2. Therefore, if the typical size of the reconnection is small
compared to the radius of the system, we may neglect these
effects as they are only appreciable in a small region around
the origin.

To proceed, we would like to specify how the acute (ŕ) and
grave (r̀) coordinate systems are defined. To start, we note
that, in general, we can write each in terms of the laboratory
frame as ŕ = Ḿr, and r̀ = M̀r, where Ḿ and M̀ are arbitrary
rotations. However, any element M of SO(4) can also be writ-
ten as a product of some left isoclinic rotation ML and some
right isoclinic rotation MR and that these always commute
[11]. Therefore, we define Ḿ = ḾLḾR and M̀ = M̀LM̀R. The
relationship between the two tilted coordinate systems is then
given by

ŕ = ḾM̀−1r̀ (45)

= (ḾLM̀−1
L )(ḾRM̀−1

R )r̀. (46)

In order for the hydrodynamic vortex-vortex interaction
between the two planes to be attractive, they should be an-
tialigning [11], as also mentioned above. Here this means
that the transformation between their respective coordinate
systems [and hence the entire matrix product in Eq. (46)] must
be a left isoclinic rotation (see the discussion in Ref. [11]).
Now the product of two left (right) isoclinic rotations is al-
ways a left (right) isoclinic rotation and so the first factor
in parentheses in Eq. (46) is a left isoclinic rotation while
the second factor is a right one. Therefore, for ŕ and r̀ to
be related by a left isoclinic rotation we must reduce the
second parenthetical term to the identity matrix, by setting
ḾR = M̀R ≡ MR. The definitions of each of the coordinates
then become ŕ = ḾLMRr and r̀ = M̀LMRr.

To proceed, we note that, as noted in Sec. II, an iso-
clinic double rotation does not have a unique pair of rotation
planes but instead an infinite set of them. Furthermore, it can
be shown that the right isoclinic rotations are precisely the
transformations between the rotation planes of a left isoclinic
rotation and vice versa [11]. This means that a spherically
symmetric 4D system subjected to constant left isoclinic ro-
tation in time, ML(t ), has symmetry with respect to all right
isoclinic rotations. In the case of a superfluid rotating in this
way, this means there is a degenerate set of orthogonal vortex
states corresponding to the set of orthogonal pairs of rotation
planes of ML(t ), as mentioned in Sec. III B. For our purposes
here, this means that we can use the symmetry with respect to
right isoclinic rotations to redefine r → M−1

R r, absorbing MR

into the definition of the laboratory frame. The acute and grave
coordinates are each then related to the laboratory frame, and
to each other by a left isoclinic rotation (ḾLM̀−1

L ). Using the
relations reviewed in Sec. II, we can then explicitly write the
definition of the tilted coordinates as(

ŕ1eiθ́1

ŕ2e−iθ́2

)
=

(
cos η1 eiϕ1 sin η1

−e−iϕ1 sin η1 cos η1

)(
r1eiθ1

r2e−iθ2

)
, (47)(

r̀1eiθ̀1

r̀2e−iθ̀2

)
=

(
cos η2 eiϕ2 sin η2

−e−iϕ2 sin η2 cos η2

)(
r1eiθ1

r2e−iθ2

)
. (48)

The location of each vortex plane is then set by ŕ1 = 0 and
r̀2 = 0, respectively. The parameters η1,2 denote the angle
between each plane and the x-y and z-w planes, respectively.
The angles ϕ1,2 in Eq. (48) then denote the direction of the
tilts; however, it can be shown that the sum ϕ1 + ϕ2 can be
chosen arbitrarily by a change of basis [11], which allows us
to set ϕ1 + ϕ2 = π . Then the difference ϕ1 − ϕ2 controls the
relative direction of the tilting of the two planes [11]; as we
want the vortices to be tilted directly towards each other, we
can set this difference to zero such that ϕ1 = 0 and ϕ2 = π .
Then we finally arrive at

ŕ1eiθ́1 = cos η1r1eiθ1 + sin η2r2e−iθ2 , (49)

r̀2eiθ̀2 = cos η2r2eiθ2 + sin η2r1e−iθ1 . (50)

We can also define the skewness between the pair of planes
as η ≡ η1 + η2; this is an angle which measures how far
from being mutually orthogonal the vortex planes are and is
chosen such that the angle between the two planes is given by
π/2 − η [11]. Note that as the vortices are indistinguishable,
the acute and grave coordinates can be chosen such that the
vortex determined by Eq. (49) is closer to the x-y plane than
that from Eq. (50), which translates to the constraint [11]

η ≡ η1 + η2 � π

2
. (51)

However, in reality this sum should be restricted to an even
smaller value because our constant-density approximation
will give an unphysical divergent vortex-vortex interaction
energy as η → π/2 and the vortex cores approach each other.
This divergence is important as we are considering attrac-
tive interaction, since it incorrectly implies the energy can
decrease without bound. With this in mind, we will now
calculate the rotational and vortex-vortex interaction energies
of this configuration.
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2. Balancing rotational and interaction energies

First, we have the rotational energy, which will be de-
creased due to the vortex planes tilting off of the manifold
of rotation planes of the condensate. This means that such a
configuration is less energetically favorable from a rotational
point of view than untilted vortex planes. The form of our
ansatz [Eq. (44)] allows us to write the rotational energy
density as

ψ∗(
xyL̂xy + 
zwL̂zw )ψ = n


(
L̂+eiθ́1

eiθ́1
+ L̂+eiθ̀2

eiθ̀2

)
, (52)

where L̂+ = L̂xy + L̂zw and where we have used that 
xy =

zw ≡ 
 for equal-frequency double rotation. We can rewrite
the terms inside the large parentheses in terms of the labora-
tory frame by substituting in Eqs. (49) and (50) and using that
L̂+ ≡ −ih̄∂θ1 − ih̄∂θ2 . For the first term this reads

L̂+ŕ1eiθ́1

ŕ1eiθ́1
= h̄

cos η1r1eiθ1 − sin η1r2e−iθ2

cos η1r1eiθ1 + sin η1r2e−iθ2
, (53)

where we have also divided through by ŕ1. By using the
product rule and rearranging, we can then see that

L̂+eiθ́1

eiθ́1
= h̄

(
1 − 2 tan η1r2e−i(θ1+θ2 )

r1 + tan η1r2e−i(θ1+θ2 )

)
− L̂+ŕ1

ŕ1
. (54)

To obtain the total rotational energy, we need to integrate
the LHS over the 4D superfluid. Following the method of
Ref. [11], this can be done using complex analysis to give∫

B4(R)
d4r

L̂+eiθ́1

eiθ́1
= h̄

π2

2
R4(1 − 2 sin2 η1) (55)

= h̄V cos 2η1, (56)

where B4(R) is 4D hyperball of radius R and V = π2R4/2
is its volume. Similarly, the other term above integrates to
h̄V cos 2η2 by symmetry. The rotational energy reduction is
then

Erot =
∫

ψ∗(
xyL̂xy + 
zwL̂zw )ψ d4r (57)

= Nh̄
(cos 2η1 + cos 2η2). (58)

Second, we need to consider the hydrodynamic kinetic
energy, which can be written as

1

2

∫
ρv2d4r = 1

2

∫
ρ
(
v2

1 + v2
2

)
d4r +

∫
ρv1 · v2d4r. (59)

Here the first term on the RHS is the individual hydrodynamic
cost of each vortex, while the second term is the vortex-vortex
interaction energy [10,11]. Note that in our ansatz [Eq. (44)]
we assumed that the density was constant (i.e., ignoring the
vortex core), in which case the first term on the RHS will
diverge. However, for the purposes of this calculation, we
are only interested in how the energy changes as the vortex
planes tilt. As this first term does not vary with the orientation
of the planes due to the boundary’s spherical symmetry, we
will ignore this term hereafter. We also note that by making a
constant density approximation, we are ignoring energy con-
tributions from quantum pressure and bosonic interactions, as
is also commonly done in 2D superfluids [1,2].

The above considerations leave us with only the vortex-
vortex interaction term, which clearly vanishes for an
orthogonal pair of vortex planes where v1 · v2 = 0. For tilted
planes, this interaction energy is generally nonvanishing and
can be derived as [11]

Evv = 4μN
ξ 2

R2
ln cos(η1 + η2), (60)

which is negative and hence attractive. It also diverges as
η ≡ η1 + η2 → π/2, corresponding to the limit that the two
vortex planes overlap, in which case the constant density
approximation will break down, as discussed above.

Now, to find the most energetically favorable state, we
can define a dimensionless energy density relative to E⊥

rot =
2Nh̄
 (corresponding physically to the rotational energy of
two orthogonal vortex planes under equal-frequency double
rotation) as

ε = R2

4ξ 2μN
(−Erot + E⊥

rot + Evv). (61)

We also introduce a dimensionless frequency ω =
R2h̄
/2ξ 2μ such that then

ε = ω[1 − 1
2 (cos 2η1 + cos 2η2)] + ln cos(η1 + η2). (62)

Taking derivatives of this energy, we find that
∂ε

∂η1
= ω sin 2η1 − tan(η1 + η2) = 0, (63)

∂ε

∂η2
= ω sin 2η2 − tan(η1 + η2) = 0. (64)

This implies that sin 2η1 = sin 2η2 such that either η1 = η2 or
η1 = π/2 − η2. However, we can rule out the latter solution as
this results in the vortices coinciding, which is a limit that our
current approximations break down in. We therefore take η1 =
η2 ≡ η/2 and proceed. Both equations above then become

ω sin η = tan η, (65)

which implies either sin η = 0 or cos η = 1/ω. The former
condition gives η = 0, the orthogonal state, while the latter
looks like a promising candidate for a skewed state that is
lower in energy, provided ω > 1. However, if we look at the
energy of this state we find ε = ω − 1 − ln ω, which is never
negative. This state is therefore always higher energy than the
orthogonal state. A more detailed analysis reveals that it is
a saddle point in the η1,2 energy landscape. Therefore, this
theory predicts that for ω > 1 the orthogonal state at η = 0
is a local minimum and there is an energy barrier for the
states to tilt away from this. For ω � 1, both the minimum
and saddle point disappear and the predicted energy decreases
monotonically with η.

In the latter case the orthogonal state would be unstable to
this form of antialigned tilting even to the limit η1 = η2 →
π/4 where the vortex planes lie on top of each other with
opposite winding. Equation (62) predicts that ε → −∞ in
this limit, but this is only because our constant density ap-
proximation for the interaction energy fails as the vortex cores
increasingly overlap. In reality, vortices that coincide in oppo-
site senses annihilate each other, so we can interpret the ω < 1
regime as suggesting that the orthogonal state is unstable
below a certain threshold frequency. Note that in units of the
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FIG. 3. Numerical antialigning nonorthogonal vortex-core stationary state for the parameters 
 = 0.75
c, �x = 0.5ξ , and R ≈ 20.6ξ .
(a) Core points in (x, y, z,w) space, with the w value represented as color. This view shows the small tilt angle clearly, but obscures the
avoided-crossing region centered around the origin as one of the planes is collapsed towards the vertical axis. (b) Same data after double
rotation given in Eq. (35) (see the axes and color bar labels for details), which shows the avoided-crossing region clearly. (c) Side-on view,
along with a by-eye estimate of the tilt angle with the lines z = −x tan(2.5◦) and z = −x/ tan(2.5◦). Note that at this frequency both this state
and the orthogonal state are higher in energy than the state with no vortices.

critical frequency 
c, the dimensionless frequency is given by
ω = ln(2.07R/ξ )
/
c, so this threshold frequency is given
in terms of the critical frequency as 
stab = 
c/ ln(2.07R/ξ ).
This will always be smaller than 
c for R > 1.32ξ , so this
stability threshold does not alter the critical frequency. Investi-
gating this predicted stability threshold is beyond the scope of
this paper but would be an interesting topic for further work.

B. Numerical results

Now we numerically test the analytical prediction that the
orthogonal state is lower in energy than any antialigning state
for ω > 1. To do so, we use the imaginary-time evolution
method (ITEM) as described in Appendix A for initial states
with a phase profile corresponding to the antialigning ansatz
[Eq. (44)] with a uniform density away from the boundary and
added noise. By symmetry we assume that η1 = η2, although
the actual value of this angle must be chosen arbitrarily, as we
have no predicted state to inform us. For the results presented
in this section we chose an initial tilt angle of η1 = η2 = 5◦.

We ran the ITEM with the parameters 
 = 0.75
c, �x =
0.5ξ , and R ≈ 20.6ξ on our initial state and then calculated
the energy and vortex core points from the final state. The
resulting vortex core is plotted in Fig. 3 and looks like a pair
of slightly skewed planes at large distances from the origin.
Figure 3(c) shows the core side-on, ignoring the y coordinates,
and shows lines plotted on top that give an estimate of the
tilt angles by eye as η1 = η2 ≈ 2.5◦ such that the state has
untilted slightly from our initial phase ansatz in a symmetric
manner. This result suggests that the theory above is not a bad
approximation: The final state that we have is close to a pair of
orthogonal planes, even closer in angle than our initial phase
profile.

Despite this, there is an avoided-crossing region near the
origin, out to radii of several healing lengths, which is qual-
itatively similar to the core structure derived in Sec. IV by
considering the linearized dynamics of intersecting vortex
planes. In particular, Fig. 3(a) shows a core geometry qual-
itatively similar to that of Fig. 1, with the avoided crossing
obscured by the fact that much of the core is collapsing toward
the vertical axis. To make the avoided crossing more visible,
we rotated the coordinates according to the same double rota-
tion [Eq. (35)] that was used to make Fig. 1(b) and plotted the

data against this new basis in Fig. 3(b). Again, the resulting
plot looks similar to the orthogonal perturbed state, except that
the avoided-crossing region is much larger than that allowed
by the linearized analysis in Sec. IV. Another caveat we must
make when drawing this analogy is that Fig. 3 shows the
vortex core of a numerical stationary state, whereas Sec. IV
dealt with dynamically evolving states.

We also investigate the frequency dependence of this
physics by using the final state above as the initial state for
another run of the ITEM with 
 = 0.80
c and then iterating
this at regular frequency intervals up to 
 = 1.5
c, outputting
the energy and vortex core for each state. Finally, this entire
loop was repeated for different values of the spatial resolution,
and hence the system radius, from �x = 0.5ξ , which gives
R ≈ 20.6ξ , down to �x = 0.25ξ , which gives R ≈ 10.3ξ , in
steps of 0.05ξ . In order to find out whether these antialigning
states are energetically favored, we also found the orthogonal
state for each of these system sizes and computed its energy
for each of these frequencies. We found that the energy is
almost always slightly lower than that of the orthogonal state,
although this energy difference is very small and possibly
dominated by numerical error. Higher-accuracy simulations
will be needed to investigate the difference between these
states. We can also estimate the size of the avoided crossing
by calculating rmin (see Ref. [11]), the minimum distance
between the vortex core and the origin. This is plotted in Fig. 4
for each of these states as a function of both 
 and �x. Here
we see that rmin > ξ such that these states lie outside the lin-
earized GPE regime considered in Sec. IV. Furthermore, we
see that, in general, the avoided crossing decreases in size with

 and increases with �x (and hence system size). The former
trend supports our intuition that the avoided crossing reduces
the angular momentum, since higher frequencies favor higher
angular momentum. The latter trend perhaps suggests that
the attractive vortex-vortex interaction is not playing a large
role in determining the avoided-crossing size, since (for fixed
particle number) the energy of this interaction decreases with
increasing system size while rmin increases.

We can also see this behavior by following the vortex core
in Fig. 3 as we increase 
 up to 1.5
c. Then we obtain a final
state with the core structure shown in Fig. 5. These plots show
clearly, in Fig. 5(b), the reduction in size of the avoided cross-
ing but they also show that this state is effectively no longer
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FIG. 4. Minimum distance rmin from the vortex core to the origin
for the states described in this section, as a function of 
 and �x,
giving a measure of the size of the avoided-crossing region. The
data are not very smooth, suggesting there are multiple energet-
ically close metastable branches being explored. There may also
be some sampling error due to the discretization of the Cartesian
grid. Nevertheless, the general trends are that rmin decreases with

 and increases with �x (and hence system size). The first trend
makes sense if the avoided crossing is reducing the state’s angular
momentum, while the second trend does not have a clear explanation.
The two outlier points at 
 = 0.75
c (with rmin < 1) are cases where
the final state has vortex cores skewed according to the initial phase
profile tilt angle of 5◦, likely due to insufficient accuracy given how
small the energy differences are.

skewed. Looking at Fig. 5(c), we have superimposed the lines
x = 0 and z = 0 and can see that these run parallel to the data
points. This means that this state is effectively the orthogonal
state with an avoided crossing [similar to Eq. (32)], which is
likely due to higher angular momentum being favored at these
higher frequencies. For a more detailed look at one of these
avoided orthogonal states, including cuts of the density and
phase profiles, at higher spatial resolution see Appendix B.

It is not clear whether both features of these states, i.e.,
the skewness of the planes and the avoided crossing, are
important in lowering the energy. For this reason we have also
performed the ITEM on initial states with a phase profile given
by that of the orthogonal states plus a perturbation around the
intersection point [as in Eq. (39) but with an unconstrained
perturbation size]. The final states of these numerical tests ex-
hibit the same skewed and avoided-crossing core structures as
before, with the same trends in these features as the frequency
and system size vary, indicating that both of these features
are important. Note that if we set the perturbation to zero in
the initial state, the final state we obtain is the intersecting
orthogonal state we previously studied [10].

Finally, we investigate the analogy between these an-
tialigning states and the linearized reconnection dynamics
of Sec. IV. To do this we have used the final state at 
 =
1.5
c and �x = 0.25ξ , which has an avoided crossing but
no discernible skewness (as in Fig. 5), so the core structure
is very similar to that of analytic perturbed orthogonal state
[Eq. (39)]. Then in Fig. 6 we have plotted all of the numerical
data points up to a radius of roughly 5ξ according to their
value of r1r2 and θ1 + θ2. These points are then colored ac-
cording to their value of

√
ρ in Fig. 6(a) and S in Fig. 6(b).

This was inspired by Fig. 2 in Sec. IV, which shows the
corresponding figure for the analytic perturbed orthogonal

state, which depended only on r1r2 and θ1 + θ2. Note that we
have also added small random noise to the x and y coordinates
of each point, to prevent points with the same value of r1r2

and θ1 + θ2 from being perfectly stacked on top of each other
and hence not visible.

In the case of the numerical data in Fig. 6, we can see
that the density and phase plots are not single valued in terms
of these variables, as there are regions with different colors
stacked on top of each other. For this reason we have plotted
the points as open circles so that they do not occlude each
other as much. This multivaluedness is not surprising, as the
numerical state is in the nonlinear GPE regime. Nevertheless,
we do find many similarities between the overall structure of
this plot and Fig. 2. First, the core (seen as dark spots in the
density and branch points in the phase) is centered around
a constant value of r1r2 = γ ξ 2 with γ ≈ 4.5 and θ1 + θ2 =
±π . This was a feature of the perturbed orthogonal state,
although the corresponding value of γ was constrained to be
small in this linearized case. Second, the phase profile appears
to be very close to a single-valued function of these variables,
with essentially the same behavior as the analytic phase profile
of the perturbed orthogonal state. In particular, we have that
for r1r2 < γ the phase is roughly constant, while for r1r2 > γ

the phase winds once as either θ1 or θ2 makes a full circle,
which is exactly what we see in Fig. 2. This suggests that
there may be a similar analytic description for these numerical
states, or at least their phase profile.

VI. CONCLUSION

In this paper we have explored stationary states of the
4D GPE under equal-frequency double rotation, showing that
these can have vortex cores formed of skew planes and curved
surfaces. This work extends previous studies in Refs. [10,11],
which focused on completely orthogonal and rigid vortex
planes and on unequal-frequency double rotation, respec-
tively. Interestingly, none of these states have a direct analog
in 2D and 3D rotating superfluid systems, showing that there
is much rich vortex physics to be explored in higher spatial
dimensions.

In more detail, in Sec. IV we used linearized GPE
dynamics to show that the intersection point between a
nonorthogonal pair of vortex planes is not stable in general,
but undergoes a form of reconnection. In contrast to the re-
connection of extended vortex lines in three dimensions, the
core of the nonorthogonal vortices in four dimensions forms
a single connected object at all times, with the intersection
point replaced by an avoided crossing that expands linearly
with a speed determined by the tilt angles. However, as we
saw later in numerics, very similar core structures can become
stable, suggesting that the GPE nonlinearity may limit the
predicted expansion at a certain size. Investigating this and
other potential causes for the stability of avoided crossings is
an interesting possible avenue for future research.

Next, in Sec. V we developed an analytic model for a su-
perfluid under isoclinic, i.e., equal-frequency, double rotation
to see whether a pair of planes skewed in an antialigning sense
could have lower energy than an orthogonal state by benefiting
from attractive vortex-vortex interactions at the expense of
rotational energy. With this analysis, we found that skewed
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FIG. 5. Same as in Fig. 3 but at a higher frequency of 
 = 1.5
c at which the vortex states are energetically favored with respect to the
no-vortex state. Compared to Fig. 3, this state shows a reduction in both the tilt angle and the size of the avoided crossing. The by-eye estimate
in (c) shows a tilt angle of approximately 0◦, that is, there is no discernible tilt. This can be intuitively understood as the higher frequency
causes the negative-rotational-energy term to have a higher weighting relative to other terms in the energy. Consequently, a higher angular
momentum is favored.

states are unlikely to be both stable and lower in energy than
the orthogonal state. In particular, above a threshold frequency

stab the orthogonal state was shown to be a local minimum,
with an energy barrier to any antialigned configuration. The

FIG. 6. (a) Density and (b) phase profiles of the state whose core
is shown in Fig. 5. We have plotted all data points, up to a distance
of roughly 5ξ from the origin, according to their value of r1r2 and
θ1 + θ2, in order to compare to the analytic orthogonal perturbed
state (Fig. 2), which showed a similar core structure. In order to
show points that are stacked below other points, we have added small
random numbers to the x and y coordinates of each point and plotted
them as open circles. This noise is sampled from a flat distribution
within the range [0, 0.025π ] in the x direction and [0,0.25] in the
y direction. While neither profile is single valued in terms of these
variables, the overall structure, particularly of the phase, is very
similar to that of Fig. 2.

frequency 
stab was found to be related to, but less than, the
critical frequency 
c such that the orthogonal state remains
stable above 
c. However, this result does have implications
for the metastability of the orthogonal state, since below

stab the vortex planes can continuously lower their energy
by tilting toward each other in an antialigning sense, until
eventually they come together and annihilate. Numerically
testing this prediction is another possible avenue of research,
but for now we focused on the region above 
stab. There we
found that states with a small antialigning skewness and a
sizable avoided crossing can be (to the numerical accuracy
we are working at) essentially degenerate with the orthogonal
intersecting state. Furthermore, the skewness in the final states
decreases with frequency and appears to vanish, while the
avoided-crossing size decreases but not to zero. This suggests
that avoided orthogonal states may be almost degenerate with
the intersecting orthogonal states even at higher frequencies,
although higher accuracy is needed to confirm or refute this.

In the future it will be important to also look beyond
the 4D GPE studied here in order to consider more real-
istic experimental models [10,11]. Interest in 4D systems
has been sparked by developments based on topological
pumping [16,19,20,84–92], synthetic dimensions [18,26,31–
35,38–44,45,47–53,55,93–117], artificial parameter spaces
[21–24,118–120], and the connectivity of classical electrical
circuits [25–29], among other approaches. In particular, in a
synthetic dimension, a set of degrees of freedom are exter-
nally coupled together and then reinterpreted as lattice sites
along an extra spatial dimension [31], which may open up
the prospect of experimentally exploring 4D superfluids in the
future. However, as discussed in Ref. [11], such experiments
will likely have various attributes, such as discrete lattices,
broken SO(4) rotational symmetry, and unusual interaction
terms, which are not present in the 4D GPE and which will
therefore require further modeling.

It will also be interesting in the further work to look for
other types of possible 4D topological structures, such as
closed vortex surfaces that generalize vortex loops (including
links and knots) [74,76,77,82,121,122], or stationary states at
even higher rotation frequencies, where it may be favorable
to have even richer curved vortex surfaces [11]. In the longer
term, our work can be extended to consider other order param-
eters, such as those of spinor condensates which are known to
host non-Abelian vortices in three dimensions [123,124], or
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FIG. 7. Same as in Fig. 5 but at a spatial step of �x = 0.25ξ , corresponding to a radius of R ≈ 10.3ξ . Again, we have an avoided crossing
but not visible skewness, with the lines x = 0 and z = 0 plotted on the figure as guides to the eye to show this. While it is not clear from
comparing this figure to Fig. 5, the avoided-crossing region is in fact smaller in this smaller system (cf. Fig. 4).

to eventually move towards the strongly interacting fractional
quantum Hall regime [125].
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APPENDIX A: NUMERICAL METHODS

In this Appendix we briefly review the numerical meth-
ods used in Sec. V. As in our earlier works [10,11], we use
the imaginary-time evolution method to find solutions of the
doubly rotating 4D GPE [Eq. (12)], where we apply second-
order finite differences in space and a first-order discretization
in time. We perform all calculations using a Cartesian grid
within a 4D hypersphere. This hypersphere has a radius set
by Ngrid ≈ 41 grid points, with hard-wall boundaries imposed
on boundary points, i.e., those points with fewer than eight
nearest neighbors. In total, this corresponds to having a total
number of grid points of approximately 1.4 × 107. For most
calculations, the spatial step size is given by �x = 0.5ξ , in
order that we consider a large system of radius R ≈ 21ξ ,
reducing the importance of boundary effects.

The expected critical frequency 
c is calculated from
Eq. (17) with R set to Ngrid�x − ξ , i.e., to approximately
account for the boundary region, we subtract one healing
length. Numerical results suggest that, for �x = 0.5ξ , a more
accurate value for the critical frequency is 0.9
c [11]; this is
likely due to both finite-size effects and approximations in the
theoretical derivation of the critical frequency.

To construct the initial states for the ITEM, we build up
the order parameter from a suitable density profile and phase
profile, adding noise (up to 20% of the background value) to
both the real and imaginary parts of ψ . In keeping with our
tilted plane ansatz in Sec. V, the initial density profile is homo-
geneous except for at the boundary where it is smoothly goes
to zero. The initial phase factor is set by the vortex configu-
ration expected at low energy for the chosen parameters. We
deem the ITEM to have converged once the relative variations
in the particle number N (calculated as the sum of |ψ |2�x4)

and chemical potential [the sum of the LHS of Eq. (12)
multiplied by ψ∗�x4/N] between iterations reaches below
10−10. We then output the order parameter and calculate the
corresponding energy [11]. We also output the coordinates of
all points making up the vortex core, where a point is deemed
to be in the core if |ψ | is less than the spatial resolution
�x/ξ and if the point is over a healing length away from the
boundary. The former criterion is motivated by the fact that the
order parameter vanishes linearly as one approaches a singly
charged vortex core [1]. We then plot the location of the vortex
core by combining a 3D scatter plot (representing the x, y, and
z coordinates) with color (representing the w coordinate).

APPENDIX B: ADDITIONAL NUMERICAL RESULTS

In this Appendix we briefly present extra numerical results
to supplement those in the main text. Figure 7 shows the core
plot for a final state with the same frequencies (
 = 1.5
c) as
in Fig. 5 but with a spatial step of �x = 0.25ξ , corresponding
to a smaller radius of R ≈ 10.3ξ . As we can see in Fig. 5(c),
this state also has no visible skewness. Also, this state exhibits
the same kind of avoided crossing as in Fig. 5 but with a
smaller value for rmin as shown in Fig. 4.

Figure 8 shows the density and phase profiles of this same
state along 2D cuts given by y = 0 and w = 0, x = y and
z = w, x = z and y = w, and x = z and y = −w. Note that
a cut given by x = y and z = w would show the same overall
structure as that in the y = 0 and w = 0 cut, but in a smaller
disk due to the cut being diagonal. These particular cuts were
chosen as they were used in the Appendix of our previous
paper [10] to visualize the orthogonal intersecting state. Com-
paring those previous plots to those in Fig. 8 gives us an idea
of how the avoided crossing affects the phase as well as the
density.

In more detail, first, the top left density plot in Fig. 8 has
gone from showing orthogonal intersecting lines of depletion
in Ref. [10] to what look like hyperbolas, while the top left
phase plot shows that the phase jumps across these lines in
the exact same way as before. Second, the top right plots
show a cut that has gone from orthogonal intersecting vortex
lines to density depletions that do not quite reach zero and
smoothly vanish near the origin. This is because the vortex
cores are curving out of the plane of the cut in this case, and
the corresponding phase jumps become smooth variations.
Third, the center left plots show a cut that was previously
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FIG. 8. Two-dimensional cuts of the density and phase profile of the state whose vortex core is shown in Fig. 7. The top and middle rows
show cuts that were previously used to visualize the orthogonal intersecting state in Ref. [10], allowing us to compare these two states. The
bottom row shows cuts that were not previously used, since, by symmetry, they gave density and phase profiles that were seen before. Now
these symmetries are broken and these cuts give useful information.

essentially a plot of a doubly charged point vortex but now
appears to be a pair of singly like-charged point vortices with
a small separation. Fourth, the center right cut was previously
in Ref. [10] a strange case where the density showed what
looked like a point vortex, but because of the cut chosen the
phase was constant. Now the perturbed version shows that this
density depletion no longer goes to zero. Finally, the bottom
row shows two more 2D cuts of this state which did not show
any new features for the intersecting orthogonal state due to
its symmetries. Since the avoided-crossing state has fewer

symmetries these plots are now interesting. The bottom left
plots correspond to a cut (x = −z and y = w) that previously
had a zero in density but no phase winding, but now show
a vortex ring, with a corresponding phase jump. The top right
shows plots that are centered on the x-y plane and hence would
have shown very low density (up to numerical accuracy) for
the orthogonal state. Now, due to the avoided crossing, we see
a region of nonzero density around the origin that reduces to
zero as the radius increases, with the corresponding phase plot
being constant.
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