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Curved vortex surfaces in four-dimensional superfluids. I. Unequal-frequency double rotations
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The study of superfluid quantum vortices has long been an important area of research, with previous work
naturally focusing on two-dimensional and three-dimensional systems, where rotation stabilizes point vortices
and line vortices respectively. Interestingly, this physics generalizes for a hypothetical four-dimensional (4D)
superfluid to include vortex planes, which can have a much richer phenomenology. In this paper we study the
possibility of skewed and curved vortex planes, which have no direct analog in lower dimensions. By analytically
and numerically studying the 4D Gross-Pitaevskii equation, we show that such vortex surfaces can be stabilized
and favored by double rotation with unequal rotation frequencies. Our work raises open questions for further
research into the physics of these vortex surfaces and suggests interesting future extensions to tilted vortex
surfaces under equal-frequency double rotation and to more realistic 4D models.
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I. INTRODUCTION

Quantum vortices are topological excitations that play an
important role in the physics of superfluids [1–9]. Such vor-
tices are characterized by the quantized circulation of the
superfluid around a local density depletion, which is called
the vortex core. As is well studied, in a two-dimensional
(2D) superfluid, the vortex core corresponds effectively to a
zero-dimensional point, while for a 3D superfluid, the core
extends into a one-dimensional line or ring. As vortices are
excitations, they are associated with an energy cost, but can
be stabilized by either rotating the superfluid [3,4] or equiva-
lently by engineering artificial magnetic fields [10–13].

Recently, we began in Ref. [14] to investigate the possible
phenomenology of vortex structures in a 4D superfluid, by
studying a 4D generalization of the Gross-Pitaevskii equa-
tion (GPE) including rotation [1]. Interestingly, the extension
to four dimensions considerably enriches the possible vortex
structures as there are fundamental differences between rota-
tions (or equivalently magnetic fields) in different numbers
of spatial dimensions. As we will review further below, in
two and three dimensions, all rotations are simple rotations
that can be characterized by a single rotation plane and ro-
tation frequency, while in four dimensions, generic rotations
are double rotations, meaning that two completely orthogonal
planes of rotation, and hence two rotation frequencies, can be
identified. In Ref. [14] we explored how the simplest case of
a double rotation with equal frequencies can stabilize a new
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type of vortex structure in which the vortex core consists of
two rigid orthogonal planes intersecting at a point, with no
direct analog in lower dimensions.

In this paper we go further to explore what happens as the
two rotation frequencies in a 4D system are made unequal.
As we will show, this can lead to 4D vortex structures with
cores composed of skewed nonorthogonal surfaces which
curve to avoid the expected intersection point. We will present
both analytical and numerical calculations based on the 4D
generalized GPE under rotation and we will develop and nu-
merically test a theory to explain the skewed vortex planes
in terms of a simplified competition between the rotational
energy and the hydrodynamic vortex-vortex interaction terms.
For unequal-frequency double rotations, we find skewed vor-
tex surfaces that can be lower in energy than a pair of rigid
orthogonal vortex planes [14] for our system sizes and pa-
rameters. This lays the groundwork for a follow-on work in
Ref. [15], which applies a similar analysis to the case of
equal-frequency double rotation.

Looking further ahead, we note that we are studying a
minimal 4D mathematical model, which is motivated as a
natural extension of the standard GPE description of 2D and
3D superfluids. In the future, it will also be very interesting to
explore if similar structures can be found in more experimen-
tally realistic models, connecting with recent theoretical and
experimental advances in probing higher-dimensional physics
[16–30], e.g., based on techniques such as synthetic dimen-
sions [18,31–55], using which a 4D atomic quantum Hall
system has recently been experimentally realized [56]. More
generally, the rich phenomenology of curved vortex surfaces
that we have begun to explore raises the possibility of finding
other exotic topological excitations, such as closed vortex
surfaces. Some of our results also suggest that vortices can
lose some of their individual character in four dimensions, as
the curved surfaces that we have found do not easily decom-
pose into two separate but intersecting vortex states, unlike in
Ref. [14]. This opens interesting questions, for example, about
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what would happen at even higher rotation frequencies, where
we may expect the number of vortices to become large.

In this paper we begin in Sec. II by reviewing the basic
physics of quantum vortices in 2D and 3D superfluids. Then in
Sec. III we discuss in more detail the different possible types
of rotations in four spatial dimensions, including simple, dou-
ble, and isoclinic rotations. As part of this section, we discuss
the rotation planes of isoclinic rotations in detail, as this will
be useful for later sections of the paper. In Sec. IV we briefly
review the 4D GPE and the physics of completely orthogonal
4D vortex planes, which were studied in 4D doubly rotating
superfluids with equal rotation frequencies in Ref. [14]. We
also introduce the numerical methods to be used throughout
this work. In Sec. V we derive the hydrodynamic energy of a
pair of nonorthogonal skewed 4D vortex planes that intersect
at a point. As we then develop in Sec. VI, our hydrodynamic
theory predicts that, in a doubly rotating 4D superfluid with
two unequal rotation frequencies, a pair of rigid vortex planes
will become skewed so as to start aligning with the higher
frequency and with each other. Our numerical results verify
this predicted skewness at large distances, but also show that
the vortex surfaces curve near the origin to avoid the intersec-
tion point. In Sec. VII we summarize our results and discuss
possible future extensions.

II. REVIEW OF SUPERFLUID VORTICES

In this section we briefly review the basic properties of
quantized vortices in 2D and 3D superfluids. We begin by
introducing the GPE and reviewing how this leads to the
structure of a 2D superfluid vortex, before discussing the
energy of such a state within a finite system. We then briefly
discuss systems with multiple 2D vortices, before reviewing
some aspects of vortex physics in 3D superfluids. This will lay
the groundwork for the discussion of 4D vortices in Sec. IV
onward.

A. Structure of a 2D superfluid vortex

We consider a system of weakly interacting bosons in the
absence of an external potential as can be described by the
time-independent Gross-Pitaevskii equation [1]

− h̄2

2m
∇2ψ + g|ψ |2ψ = μψ, (1)

where ψ is the complex order parameter, m is the mass of the
particle, g is the interaction strength, and μ is the chemical
potential. Note that a harmonic trapping potential is also often
included in the GPE, as this is present in many ultracold gas
experiments [1–8]; however, for simplicity we will neglect
all such effects and restrict our discussion to infinite systems
and finite systems with hard-wall boundary conditions, as
specified below.

From the order parameter, it is possible to directly define
the superfluid density, phase, and velocity fields as ρ = |ψ |2,
S = argψ , and v = h̄

m ∇S, respectively [1]. Importantly, the
form of the velocity field implies that the circulation of the
superfluid around any closed loop C has to be quantized with

the circulation being given by∮
C

v · dr = h̄

m

∮
C

∇S · dr, (2)

where the integral on the right-hand side gives the change in
the superfluid phase around the loop C. This would be zero if
S is single valued, but since S is a phase and its value is only
defined modulo 2π , the superfluid circulation is quantized
generally as [1–4,9] ∮

C
v · dr = 2πk

h̄

m
, (3)

where k is an integer called the winding number. Note that
continuous deformations of the loop C within the superfluid
will not change the integer winding number, since v varies
continuously so long as ψ is nonzero. This means that k ∈ Z
is a topological invariant, which will be equal to zero when-
ever C can be continuously contracted to a point. Hence, a
simply connected superfluid, i.e., one in which all loops are
contractible, cannot circulate.

If a simply connected superfluid is rotated, it therefore
cannot behave as a rigid body but will instead form internal
holes, called vortices, where the density goes to zero and
around which the phase winds by a quantized amount [1–8].
In two dimensions, the structure of a rotationally symmetric
vortex is described by

ψ (r, θ ) = |ψ (r)|eikθ , (4)

where (r, θ ) are 2D polar coordinates centered on the vortex
core. The winding number k corresponds to the topological
charge of the vortex and is conventionally taken to be positive
for vortices and negative for antivortices. From the above
Ansatz, the vortex velocity field is then [1]

v = h̄

m
∇(kθ ) = h̄

mr
kθ̂, (5)

where θ̂ is the unit vector pointing in the θ direction. As
required by Eq. (3), this velocity field falls off as 1/r and
reverses direction when the sign of the winding number k is
flipped. The angular momentum of the vortex in Eq. (4) is also
quantized as

L = r × mv = h̄kẑ (6)

with respect to the axis through the center of the vortex core,
with ẑ the unit vector pointing out of the 2D plane, in the
z direction. More generally, in a system with axial symme-
try, the angular momentum is quantized only for an on-axis
vortex [2].

To complete this description of the vortex state [Eq. (4)],
the density profile can be obtained numerically by solving the
GPE [Eq. (1)]. When so doing, it is common to define the
uniform background density as n and then rescale ψ → √

nψ

and r → ξr, where ξ is the healing length, which satisfies
h̄2/mξ 2 = gn = μ and physically is the distance over which ρ

typically varies. (Note that often a factor of 1
2 is included in the

definition of ξ [1].) Under these rescalings, Eq. (1) becomes
dimensionless as

− 1
2∇2ψ + |ψ |2ψ = ψ, (7)
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which is then solved numerically [1,2] to obtain a dimension-
less real-valued density-profile function fk (r) = |ψ |. While
the obtained fk (r) has no closed form, it can be shown that
it asymptotically vanishes towards the vortex core as fk (r) =
O(r|k|) when r → 0 and asymptotically returns to the profile
of a homogeneous superfluid as fk (r) = 1 − O(r−2) when
r → ∞ [4], with a crossover between these two behaviors
around the healing length.

B. Energy of a 2D superfluid vortex

Within a hydrodynamic description [1,2,9], the energy of a
2D vortex in the absence of an external potential is made up
of a kinetic contribution

Ekin[ψ] = h̄2

2m

∫
(∇√

ρ )2d2r + m

2

∫
ρv2d2r (8)

and an interparticle interaction contribution

Eint[ψ] = 1

2
g
∫

ρ2d2r, (9)

where the integrals are carried out over the area of the 2D
system, which we consider to be circular with radius R and
hard-wall boundary conditions. Both of the above contri-
butions can be estimated analytically by assuming that the
density is zero within the vortex core, which we take to be
circular with a radius of our healing length ξ , and constant
otherwise across the system. (Note that other definitions for
the size of the vortex core can be used [1,9]; however, the
following argument is only approximate and such changes
do not significantly affect the relative scaling and importance
of the different energy terms.) For such a simple, so-called
hollow-core, model for a vortex, the total energy difference
�E between the homogeneous and the vortex state is straight-
forward to calculate. First, in the hydrodynamic kinetic energy
[Eq. (8)] introduced above, the first (quantum pressure) term
vanishes so that the extra kinetic energy due to a vortex is
given simply by [1]

�Ekin = m

2

∫
ρv2d2r � k2πn

h̄2

m
ln

(
R

ξ

)
, (10)

where n is the constant density within the system outside
of the vortex core. Similarly, the interaction energy, i.e.,
the energy needed to make a hole in the superfluid, can be
calculated as

�Eint � 1
2 gn2ξ 2π. (11)

The latter can clearly be neglected for a large system with
R � ξ , meaning that the total hydrodynamic energetic cost of
a vortex can be approximated as [9]

Eh ≈ �Ekin � k2πn
h̄2

m
ln

(
R

ξ

)
. (12)

A more accurate estimate of the energy cost relative to the
uniform state can be found using the dimensionless numer-
ical density-profile function fk (r) in the vortex-state Ansatz
[Eq. (4)]. Using the grand canonical energy at fixed chemical
potential μ takes care of corrections to the background den-
sity n from the core depletion. Then, using that μ= h̄2/mξ 2

and n = N/πR2 in the uniform system, where N is the to-
tal number of bosons, we may write this numerical vortex
energy as

Ek (R) = k2μN

(
ξ

R

)2

ln

(
2.07

R

ξ

)
, (13)

which importantly is the same functional form as the simple
hydrodynamic estimate [Eq. (12)], up to the numerical prefac-
tor within the logarithm. (Note that if the healing length had
instead been defined including a factor of 1

2 as h̄2/2mξ 2 =
gn = μ, then this numerical prefactor becomes 1.46 [1].)

Vortices can be energetically stabilized by rotation (or
equivalently an artificial magnetic field) [3,4]. In a rotating
reference frame, the GPE [Eq. (1)] becomes(

− h̄2

2m
∇2 + g|ψ |2 − � · L̂

)
ψ = μψ, (14)

where L̂ = −ih̄r × ∇ is the (3D) angular momentum operator
and � is the rotation frequency vector [1]. In two dimensions,
we can assume that � = �ẑ, and hence the energy reduction
from rotation is given by �Erot = �〈L̂z〉. As discussed above,
vortices carry a finite amount of angular momentum and so
are favored by rotation.

To leading order, we can assume the superfluid has a con-
stant density and neglect the depletion of the core so that the
energy reduction from rotation can be calculated as [1]

�Erot = �〈L̂z〉 � �h̄kπnR2. (15)

(This approximation cannot be applied to the calculation of
the hydrodynamic energy of a single vortex [Eq. (10)] as the
1/r2 dependence of the integrand gives a singular contribution
from the area around r = 0.) As can be seen, this term reduces
the energy of a state containing a vortex for which the circu-
lation is aligned with the rotation and raises the energy of a
state (with opposite k) that is antialigned with the rotation. For
a vortex to be energetically stabilized, the reduction in energy
must be greater than or equal to the cost of making a vortex
within the same approximations, e.g., Eq. (12). This leads to
an estimate of the critical frequency of [1]

�2D
c � k

h̄

mR2
ln

(
R

ξ

)
, (16)

i.e., this is the minimal rotation frequency needed to stabilize
a vortex with winding number k. Using the energy for the
numerical vortex profile [Eq. (13)] leads to a more accurate
calculation for this frequency as

�2D
c = k

h̄

mR2
ln

(
2.07

R

ξ

)
. (17)

Note also that this critical frequency will depend on any
external potentials that are present and so will be different,
e.g., with a harmonic trap [2]. However, in this paper we focus
on untrapped systems with hard-wall boundary conditions, as
mentioned above.

C. Multiple vortices in a 2D superfluid

As can be seen from Eq. (17), the critical rotation fre-
quency is proportional to the winding number k, meaning
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that higher frequencies are required to stabilize vortices with
higher winding numbers. However, by comparing the hy-
drodynamic energy with the rotation energy, it can be seen
that, even at higher frequencies, it will always be ener-
getically unfavorable (in the absence of additional external
potentials) to produce a multiply charged vortex, i.e., with
|k| > 1, as compared to multiple singly charged vortices (with
|k| = 1) [9].

The above argument also suggests that a pair of similarly
charged 2D vortices will interact repulsively, as it is energeti-
cally unfavorable to bring them together and merge them into
a single vortex with a higher winding number. Indeed, it can
be shown that, in a sufficiently large system, the interaction
energy between a pair of well-separated vortices, with charges
k1 and k2, respectively, can be approximated as [2]

�Epair ∝ k1k2 ln

(
R

�r

)
, (18)

where �r is the distance between the two vortex cores. As
can be seen, this is attractive for oppositely charged vortices,
i.e., a vortex and antivortex pair, but repulsive for vortices
with the same sign. In an infinite system, a pair of vortices
can therefore continually lower their energy by moving apart,
while a vortex and antivortex pair can lower their energy
by coming together and annihilating. Note that Eq. (18) is
derived under the approximation that the density is constant
everywhere in the system, i.e., ignoring the density depletion
at the vortex core. Consequently, the calculated vortex-vortex
interaction energy [Eq. (18)] is only valid for separations
�r � ξ , and attempting to take the limit �r → 0 gives a
logarithmic divergence. In reality, when a pair of vortices
with winding numbers k1,2 come together, they combine into
a vortex with winding number k1 + k2. One can still obtain
this correct result from Eq. (10) if we consider the vortices
to be combined once their separation is similar to the healing
length �r ∼ ξ . This is consistent with the constant density
approximation, as the latter amounts to ignoring variations on
the scale of ξ or below (except in the presence of a trap).

As the rotation frequency increases therefore above the
critical frequency [Eq. (17)], it will be energetically favor-
able to have more and more singly charged vortices in the
system. The effectively repulsive interactions between these
vortices then mean that, at high enough rotation frequencies,
the lowest-energy state in the rotating frame exhibits a uni-
form array of vortices, known as an Abrikosov lattice [2,57].

D. Vortices in 3D superfluids

The above discussion can be straightforwardly generalized
to describe vortices in a 3D superfluid [1,2,9]. In three dimen-
sions, a vortex core can be approximated as an extended 1D
line, which must either begin and end on the surface of the
system or else form a closed loop within the superfluid. The
former structures are often referred to as vortex lines or vortex
filaments, while the latter are typically called vortex rings
[9,58–63]. As our paper is concerned with the lowest-energy
vortex structures to be stabilized by rotation, we hereafter fo-
cus on vortex lines, although it would also be very interesting
to study the analog of vortex rings in higher dimensions.

In the simplest case, a cylindrically symmetric vortex line
in three dimensions can be described [9], e.g., by

ψ (r, θ, z) = |ψ (r, z)|eikθ , (19)

in cylindrical polar coordinates (r, θ, z), where we have as-
sumed that the rotation axis lies along the z direction and that
the rotation is sufficiently strong so as to align and straighten
the vortex core. In the absence of an additional potential, the
vortex structure is then invariant along the z direction and the
dimensionless density profile is given by the radial function
found numerically from the 2D GPE. Consequently, a 3D
vortex line has the same velocity field as a 2D vortex [Eq. (5)],
as well as the same critical frequency (in a cylindrical system)
[9]. The latter point can be easily appreciated by noting that,
in this case, the 2D calculation for the hydrodynamic energy
follows through identically up to an overall multiplicative
factor in both Eqs. (12) and (15), to represent the height of
the system [9].

Similarly, when the rotation frequency becomes much
higher than the critical frequency, many vortices enter the
3D system and should eventually form a vortex lattice anal-
ogous to that in two dimensions, except with the vortex cores
extended as straight lines along the rotation axis [8,9]. It is
also worth noting that, unlike in two dimensions, the shape
and orientation of a 3D vortex line can depend, for example,
on the choice of rotation axis as well on the geometry and
boundary conditions of the system [59]. For example, in three
dimensions there can be a competition between aligning the
vortex core with the rotation axis in order to capitalize on
energy reduction from rotation and minimizing the length
of the vortex core in the superfluid so as to minimize the
interparticle interaction energy.

Another new phenomenon that emerges in three dimen-
sions is the reconnection of vortex lines [64]; when two vortex
lines are made to intersect in three dimensions, they will
generically reconnect and move apart so as to remove the
intersection point. Note that there are some special cases of
metastable stationary states in three dimensions with inter-
secting vortex lines [65]. As we will review later in Sec. IV,
a key difference between 3D and 4D superfluids is that, in
the latter case there can be an intersection point between
two vortex planes in a stationary state which is energetically
stabilized by double rotation [14]. However, as we will go on
to explore in Sec. V onward, we can also find stationary states
with curved vortex surfaces, in which the vortex core curves
spatially in order to avoid the intersection point. Analogies
between these surfaces and reconnections in four dimensions
will be further explored in Ref. [15].

III. ROTATIONS IN FOUR DIMENSIONS

In order to further lay the groundwork for our discussion of
4D vortex structures in Sec. IV, we now review the different
types of rotations that are possible with four spatial dimen-
sions, comparing these with 2D and 3D systems. We begin
by introducing the concepts of simple, double, and isoclinic
rotations, before discussing the possible rotation planes of
4D isoclinic rotations in more mathematical detail. As we
will see, this will be relevant when considering the effects of
rotation in a generalized 4D GPE in later parts of this paper.
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A. Simple, double, and isoclinic rotations

In two dimensions, rotations are completely specified by
their center and rotation angle. The center is the one fixed
point of the rotation, while all other points are angularly
displaced about the center by the rotation angle. Represented
as a matrix, any rotation of 2D space will be given as(

cos α − sin α

sin α cos α

)
, (20)

where α ∈ (−π, π ] is the angle of rotation and we are defin-
ing the origin as the center of rotation, as we will throughout
this paper.

Similarly, rotations in three dimensions are commonly de-
scribed in terms of their axis and angle of rotation. The axis
is both the line of points fixed by the rotation and the center
about which the rotation occurs. One can equally define ro-
tations in three dimensions by their plane of rotation, which
is orthogonal to the axis of rotation. All rotations in three
dimensions are just 2D rotations of their plane of rotation,
with the third direction left unchanged. This is obvious from
the matrix representation of a 3D rotation, which can always
be brought into the form⎛

⎝cos α − sin α 0
sin α cos α 0

0 0 1

⎞
⎠ (21)

via a suitable choice of basis. The rotation plane is left invari-
ant by the rotation but not pointwise invariant, unlike the axis.
This means that points on the rotation plane remain on it after
the rotation, but are rotated about the rotation axis.

Just as we can extend 2D rotations into a third direction to
define 3D rotations, we may generate rotations of 4D space
by extending 3D rotations into a fourth direction. In the 3D
case this gave us every possible rotation, up to a change of
basis. However, in four dimensions we can only generate a
proper subset of rotations by extending our 3D definitions
in this way. Members of this subset are commonly termed
simple rotations, since they reduce to the familiar three- and
two-dimensional cases. Simple rotations have a single rotation
plane just as in the 3D case, but are centered around a plane
of fixed points as opposed to an axis. This fixed plane is com-
pletely orthogonal to the rotation plane, by which we mean
that every vector in one plane is orthogonal to every vector in
the other. In a matrix representation, any simple rotation of 4D
space can take the following form in a suitable basis:⎛

⎜⎜⎝
cos α − sin α 0 0
sin α cos α 0 0

0 0 1 0
0 0 0 1

⎞
⎟⎟⎠. (22)

Note that in four dimensions, there are six Cartesian co-
ordinate planes, meaning that the rotation group SO(4) of
four-dimensional space has six generators, physically describ-
ing angular momentum. For this reason, the representation of
these generators (and hence of angular momentum) as spatial
vectors does not work in four dimensions, as it does in three
dimensions.

Moreover, generic elements of SO(4) are so-called double
rotations. These new types of rotations occur simultaneously

through two completely orthogonal planes of rotation, e.g.,
the x-y and z-w planes, each with their own rotation angle.
Represented as a matrix, any double rotation can be brought
into the form

M(α, β ) =

⎛
⎜⎜⎝

cos α − sin α 0 0
sin α cos α 0 0

0 0 cos β − sin β

0 0 sin β cos β

⎞
⎟⎟⎠, (23)

by a suitable change of basis. This matrix form makes it clear
that a double rotation can be thought of as two simultaneous
simple rotations: in this case a rotation of angle α ∈ (−π, π ]
in the x-y plane and one of angle β ∈ (−π, π ] in the z-w
plane. This means that any point on the x-y or z-w plane will
remain on it but be rotated around the origin by an angle α or
β, respectively. Points not on either rotation plane are rotated
by an angle whose magnitude is strictly between |α| and |β|
[66], assuming that |α| < |β|. Consequently, the origin is the
only fixed point, as long as neither rotation angle is zero. If
either angle vanishes, we recover simple rotations as a special
case of double rotations.

Besides simple rotations there is another very important
special class of double rotations, called isoclinic rotations,
which will play an important role in the rest of this paper.
These are the double rotations where both rotation angles are
equal up to a sign, such as M(α, α) and M(α,−α). They come
in two types known as right handed and left handed based on
the relative senses of rotation in the two planes. For example,
M(α, α) is a left isoclinic rotation of the x-y and z-w planes,
while M(α,−α) is a right isoclinic rotation of these planes.
All left isoclinic rotations commute with all right isoclinic
ones, and any rotation of 4D space can be decomposed into a
product of a left isoclinic rotation and a right isoclinic rotation
[66]. However, this is not unique, as M = MLMR can also be
written as M = (−ML )(−MR), where ML and MR denote left
and right isoclinic rotations, respectively.

B. Rotation planes of an isoclinic rotation

In later sections of this paper, we will find it useful to
take advantage of various mathematical properties of isoclinic
rotations in our analysis of vortices in 4D superfluids. For that
reason, we will now discuss these special types of rotations
in greater detail, focusing in particular on how to identify the
rotation planes of left and right isoclinic rotations respectively.

Recall that a general double rotation will rotate a vec-
tor through an angle with magnitude between |α| and |β|.
However, for an isoclinic rotation α = ±β, so every vector is
displaced by the same given rotation angle, meaning that there
is an infinite number of rotation planes. Each of these rotation
planes can be described as the span of an arbitrary vector v and
its image under the rotation, i.e., either MLv or MRv, which
means that every point in R4 lies on one of these rotation
planes [66]. However, this does not imply that every possible
2D plane is a rotation plane (except for very special cases, as
mentioned below), nor does it mean that these rotation planes
are unique; any completely orthogonal pair of them can be
used as a basis to define the particular isoclinic rotation. For
example, from Eq. (23) we can see that two of the rotation
planes of M(α, α) are given, e.g., by the x-y and z-w rotation
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planes, although these are not the only rotation planes, as we
will see below. This is in contrast to generic double rotations,
i.e., M(α, β ), with α �= β �= 0, π , which have only two unique
rotation planes, as discussed above.

Our aim is now to mathematically identify the rotation
planes of a given left isoclinic rotation, which we define as
ML ≡ M(α, α), i.e., we chose our basis such that this partic-
ular rotation has the form given in Eq. (23) with α=β. As
we will see, an easy way to find the corresponding rotation
planes is then to use the complex representation C2 to repre-
sent R4 such that the Cartesian position vector (x, y, z,w)T is
represented by (x + iy, z + iw)T . Note that the natural inner
product in C2, given in Cartesian coordinates by(

x + iy
z + iw

)†(
x′ + iy′
z′ + iw′

)
= xx′ + yy′ + zz′ + ww′

+ i(xy′ − yx′ + zw′ − wz′), (24)

contains the inner product in R4 as its real part. This means
that any unitary matrix acting on C2 will be equivalent to
some orthogonal matrix acting on R4. However, the converse
is not necessarily true as unitary matrices preserve both the
real and imaginary parts of the complex inner product, while
orthogonal transformations need only preserve the real in-
ner product. Nevertheless, we can say that if an orthogonal
transformation of R4, such as a 4D rotation, is represented
by a matrix in the complex representation, then that complex
matrix is automatically unitary. To see this, note that the norm
on C2 agrees with the norm on R4, that is,

(
x + iy
z + iw

)†(
x + iy
z + iw

)
=

⎛
⎜⎜⎝

x
y
z
w

⎞
⎟⎟⎠

T ⎛
⎜⎜⎝

x
y
z
w

⎞
⎟⎟⎠. (25)

As any orthogonal transformation will preserve the R4 norm,
so its C2 representation will preserve the corresponding com-
plex norm, meaning that if that representation is a complex
matrix it must therefore be a unitary matrix.

Returning to the particular case of double rotations, we see
that in the complex representation, Eq. (23) becomes

M(α, β ) =
(

eiα 0
0 eiβ

)
, (26)

which is indeed unitary. It is also clear that the desired left
isoclinic rotation ML can simply be represented in C2 as
eiα times the identity. We will now use this to show how
to construct and parametrize the rotation planes of this left
isoclinic rotation using this complex representation, before
also discussing the case of right isoclinic rotations. Note
that, in the following, rather than Cartesian coordinates, we
primarily use double polar coordinates (r1, θ1, r2, θ2), which
are defined by r1eiθ1 ≡ x + iy and r2eiθ2 ≡ z + iw such that
the complex position vector becomes (r1eiθ1 , r2eiθ2 )T in the
complex representation.

In general, a 2D plane in R4 can be defined as the set of
solutions to a pair of simultaneous linear equations, e.g., x = 0
together with y = 0 defines the z-w plane passing through
the origin. In contrast, in the complex representation we can
define a plane using a single equation which is linear in

r1,2eiθ1,2 and their complex conjugates. In other words, given
four complex numbers (a1, a2, b1, b2), the equation

a1r1eiθ1 + a2r2eiθ2 + b1r1e−iθ1 + b2r2e−iθ2 = 0 (27)

defines a plane passing through the origin, and any such plane
can be defined (not uniquely) in this way. (For example,
the above z-w plane can now be defined simply either as
r1eiθ1 = 0 or equivalently as r1e−iθ1 = 0.) To get back to the
real representation we then just take the real and imaginary
parts of the complex equation. Note that we included the
complex conjugates r1,2e−iθ1,2 in Eq. (27) so that the complex
equation can have the same number of parameters as the two
real equations.

As the rotation planes of ML are invariant under ML, to
find these rotation planes we must find the equations of the
form (27) that are also invariant in this way. The action of
the left isoclinic rotation ML is given by θ1,2 → θ1,2 + α as
introduced above, so that the image of Eq. (27) under ML is
given by

eiα (a1r1eiθ1 + a2r2eiθ2 ) + e−iα (b1r1e−iθ1 + b2r2e−iθ2 ) = 0.

(28)

For this to reproduce Eq. (27), we require that, in general,
either a1,2 = 0 or b1,2 = 0. Note that for the special angles
of α = 0, π , we recover Eq. (27) irrespective of the values of
(a1, a2, b1, b2), meaning that every single plane is a rotation
plane of ML for these cases. However, these special cases
are trivial as they physically correspond to no rotation or to
flipping the direction of all axes simultaneously, respectively.
Focusing therefore on the general case, we identify two pos-
sibilities: Either

a1r1eiθ1 + a2r2eiθ2 = 0 (29)

or

b1r1e−iθ1 + b2r2e−iθ2 = 0. (30)

However, we can map the latter equation onto the former by
taking the complex conjugate of both sides and identifying
b∗

1 = a1 and b∗
2 = a2. Therefore, both cases are the same and

so the rotation planes of ML are given by the solutions to the
equation a1r1eiθ1 + a2r2eiθ2 = 0, for arbitrary complex num-
bers a1,2.

In later sections of this paper, we will want to sometimes
work in a coordinate system defined in relation to an arbitrary
completely orthogonal pair of these rotation planes (which we
denote by P1 and P2), in the same way that the coordinates
(r1, θ1, r2, θ2) are defined in relation to the x-y and z-w planes.
We therefore now go through how such a coordinate system
can be defined. To begin, let Pj be given by the solutions to

a j1r1eiθ1 + a j2r2eiθ2 = 0 (31)

for j = 1, 2 and let our coordinate system defined with re-
spect to these planes be given by (r′

1, θ
′
1, r′

2, θ
′
2). Note that the

coefficients a jk are not all independent: Once the plane P1

is chosen, P2 is already fixed as the orthogonal complement
of P1. For now we will not consider this constraint, but we
will effectively derive it later by comparing the primed and
unprimed coordinate systems.
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We now proceed to define the primed coordinates. Recall-
ing that the x-y and z-w planes are defined by r2eiθ2 = 0 and
r1eiθ1 = 0, respectively, we see that in our new coordinate
system the planes P1,2 should be given by r′

1,2eiθ ′
1,2 = 0, re-

spectively. Given Eq. (31), a simple way to achieve this is to
define our coordinates as(

r′
1eiθ ′

1

r′
2eiθ ′

2

)
=

(
a11 a12

a21 a22

)(
r1eiθ1

r2eiθ2

)
. (32)

Let us now determine the way in which the coefficients ajk

are constrained. This can be done by noting that the unprimed
coordinates are an orthonormal system; for this to also be true
of the primed coordinates, we must have that the total distance
from the origin is preserved, that is,

r′2
1 + r′2

2 = r2
1 + r2

2 . (33)

This condition is equivalent to requiring that the coefficients
a jk furnish a unitary 2 × 2 [U(2)] matrix such that a22 =
eiϕa∗

11, a21 = −eiϕa∗
12, and |a11|2 + |a12|2 = 1. This can be

satisfied with the parametrization(
a11 a12

a21 a22

)
=

(
eiϕ1 cos η −e−iϕ2 sin η

eiϕ2 sin η e−iϕ1 cos η

)
eiϕ3 , (34)

with ϕ1,2,3 ∈ [0, 2π ) and η ∈ [0, π/2). However, the U(1)
factor eiϕ3 is redundant since this represents a left isoclinic
rotation of the planes, just like the original rotation ML but
with a different angle. Since such a rotation leaves all the
rotation planes invariant we may discard it, and we are left
with(

r′
1eiθ ′

1

r′
2eiθ ′

2

)
=

(
eiϕ1 cos η −e−iϕ2 sin η

eiϕ2 sin η e−iϕ1 cos η

)(
r1eiθ1

r2eiθ2

)
. (35)

The above matrix is the general expression for a member of
U(2)/U(1) = SU(2), i.e., a special unitary 2 × 2 matrix. We
can interpret this family of matrices as the group of right
isoclinic rotations [67]. To see this note that Eq. (34) is an
expression in the complex representation for rotations that
commute with the given left isoclinic rotation ML. (To see this,
note that these are complex linear transformations and so they
commute with i, while ML in the complex representation is
simply multiplication by eiα .) However, it is also well known
that all left isoclinic rotations commute with all right isoclinic
rotations [66], whereas two isoclinic rotations of the same
sense (or two generic double rotations) will only commute if
they share the same rotation planes, as introduced above. In
going from Eq. (34) to Eq. (35) we have factored out those
left isoclinic rotations which commute with ML, as they take
the same form as ML in the chosen basis and so have the
same rotation planes. The matrix in Eq. (35) therefore is a
representation of the right isoclinic rotations, as these are the
remaining rotation matrices that commute with ML.

We can also further simplify Eq. (35) by factoring out
the subgroup of right isoclinic rotations which take the form
MR ≡ M(α,−α) in our chosen basis. Letting ϕ2 = ϕ1 + ϕ,
with ϕ ∈ [0, 2π ), we obtain(

cos η −e−iϕ sin η

eiϕ sin η cos η

)(
eiϕ1 0
0 e−iϕ1

)
, (36)

where the second matrix can be recognized as MR [cf.
Eq. (26)]. Since the diagonal factor MR just corresponds to
initial rotations within the x-y and z-w planes, it is redundant
in describing the coordinate transformation [Eq. (35)] from
these planes to the arbitrary rotation planes Pj of ML. We
can therefore discard it such that our final expression for the
general transformation is(

r′
1eiθ ′

1

r′
2eiθ ′

2

)
=

(
cos η −e−iϕ sin η

eiϕ sin η cos η

)(
r1eiθ1

r2eiθ2

)
, (37)

where η ∈ [0, π/2] and ϕ ∈ [0, 2π ). This is now the general
form for a coordinate transformation from a fixed pair of ro-
tation planes, e.g., the x-y and z-w planes, to all other rotation
planes of ML, with all redundant parameters removed.

Interestingly, it is clear from Eq. (37) that ϕ is undefined
when η = 0, because the off-diagonal elements vanish. More-
over, a careful analysis shows that this also occurs at the other
endpoint η = π/2, as here the diagonal elements vanish and
so we can eliminate ϕ as(

0 −e−iϕ sin η

eiϕ sin η 0

)
=

(
0 − sin η

sin η 0

)(
eiϕ 0
0 e−iϕ

)
.

This means that when η = 0 or π/2 every value of ϕ ∈
[0, 2π ) gives the same completely orthogonal pair of rotation
planes. In other words, ϕ and η parametrize a 2-sphere S2,
with the north and south poles given by η = 0 and π/2,
respectively. Effectively, in going from Eq. (35) to Eq. (37),
we have just taken the quotient SU(2)/U(1) = S3/S1 = S2,
which is the celebrated Hopf fibration [67]. We can therefore
say that the space of all rotation planes of any given left
isoclinic rotation ML is topologically equivalent to a 2-sphere
(S2). For example, the orbits of the two points x = ±1 and
y = z = w = 0 under this set of transformations are(

cos η −e−iϕ sin η

eiϕ sin η cos η

)(±1
0

)
=

( ± cos η

±eiϕ sin η

)
, (38)

i.e., x = ± cos η, y = 0, z = ± cos ϕ sin η, and w =
± sin ϕ sin η, which are the north and south hemispheres
of the 2-sphere given by x2 + z2 + w2 = 1 and y = 0.

Now that we have finished this derivation, we will conclude
this section with a few observations. First, there is a much
quicker way of deriving Eq. (34), that the transformations
from a fixed pair of rotation planes of ML to all other rotation
planes are represented in C2 by the unitary group, based on the
following argument. Let the rotation which takes one rotation
plane of ML into another be given by U . The fact that ML

acts on all its rotation planes in the same way means that ML

should be invariant under a change of basis by the rotation U .
In other words, we have the equation U −1MLU = ML, which
means that ML and U commute. In the complex (C2) repre-
sentation ML is simply eiα multiplied by the 2 × 2 identity
matrix [cf. Eq. (26)], and so in this representation, U must
commute with i. The most general way for U to satisfy this is
if U is simply a complex matrix. However, we know that U
is also a rotation, and we derived earlier that if a 4D rotation
(or more generally an orthogonal transformation) in the C2

representation is given by a matrix, then that matrix is unitary.
Second, note that all of the arguments of this sec-

tion can also be applied to a given right isoclinic rotation
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MR ≡M(α,−α), provided we use a different complex repre-
sentation of R4 where the position vector is given by (x +
iy, z − iw)T = (r1eiθ1 , r2e−iθ2 )T . Transformations between ro-
tation planes of MR, which form the left isoclinic subgroup
of SO(4), then take the same form as Eq. (35), but with eiθ2

and eiθ ′
2 replaced by their complex conjugates. Then the left

isoclinic rotations of the form ML ≡ M(α, α) can be factored
out, just as rotations of the form of MR could be factored out
of Eq. (35). Thus we can obtain an expression equivalent to
Eq. (37) for the general coordinate transformation from a fixed
pair of rotation planes of MR to all other rotation planes, with
all redundant parameters removed. It is explicitly given by(

r′
1eiθ ′

1

r′
2e−iθ ′

2

)
=

(
cos η −e−iϕ sin η

eiϕ sin η cos η

)(
r1eiθ1

r2e−iθ2

)
. (39)

Again this equation is identical to Eq. (37) except that the
second element of each of the position vectors is replaced by
its complex conjugate.

Finally, consider a fluid undergoing constant rigid rotation
associated with a left isoclinic rotation in time, i.e., taking
ML(t ) ≡ M(α(t ), α(t )) with α(t ) = ωt , where ω is a constant
frequency. Such a system can be described using any com-
pletely orthogonal pair of the rotation planes of ML(t ); to
see this, we define one such pair by r jeiθ j = 0 and another
by r′

je
iθ ′

j = 0, with j = 1, 2, where the primed and unprimed
coordinates are related by Eq. (37). Then we take the R4

gradient of Eq. (37) as(
∇[r′

1eiθ ′
1 ]

∇[r′
2eiθ ′

2 ]

)
=

(
cos η −e−iϕ sin η

eiϕ sin η cos η

)(∇[r1eiθ1 ]
∇[r2eiθ2 ]

)
(40)

and then take the complex inner product of this equation with
Eq. (37) to obtain(

r′
1eiθ ′

1

r′
2eiθ ′

2

)†(∇[r′
1eiθ ′

1 ]

∇[r′
2eiθ ′

2 ]

)
=

(
r1eiθ1

r2eiθ2

)†(∇[r1eiθ1 ]
∇[r2eiθ2 ]

)
. (41)

Expanding the inner product and evaluating the gradient, we
end up with a complex equation with a real part given by

r′
1r̂′

1 + r′
2r̂′

2 = r1r̂1 + r2r̂2 (42)

and an imaginary part given by

r′
1θ̂

′
1 + r′

2θ̂
′
2 = r1θ̂1 + r2θ̂2, (43)

where the circumflex above symbols indicates the unit vectors
in those directions. Equation (42) shows that the R4 position
vector takes the same form in both bases, as expected. Equa-
tion (43) is less trivial and can be physically interpreted as
equating two velocity fields; once Eq. (43) is multiplied by
the frequency ω, the RHS is a velocity field describing rigid
left isoclinic rotation through the unprimed planes, while the
LHS describes the same thing through the primed planes. That
these two are equal shows that either pair can be used to
describe such a rigidly rotating fluid, and therefore the fluid
exhibits symmetry with respect to all right isoclinic rotations.

However, as mentioned above, a superfluid does not behave
as a rigid body under rotation, but instead forms quantized
vortices [1]. Indeed, for all the 4D superfluid vortex states that
we study in the remainder of this paper, the 4D velocity field

is significantly different from that of rigid rotation [Eq. (43)].
Instead, for these states, the SU(2) symmetry, associated with
the set of equivalent rotation planes, is naturally broken. This
leads to degeneracies between states that are oriented with
respect to the different rotation planes of an isoclinic double
rotation. We will see this, first of all, in the next section where
we review the case of orthogonal 4D vortex planes, which we
previously studied in Ref. [14].

IV. ORTHOGONAL VORTEX PLANES
IN 4D SUPERFLUIDS

So far, we have reviewed the well-known physics of vor-
tices in two and three dimensions and introduced the different
types of rotation that become possible in 4D systems. We
now combine these ideas in order to discuss some of the
vortex structures that can emerge in a 4D superfluid under
double rotation. In this section we focus in particular on the
case of orthogonal vortex planes, which we described earlier
in Ref. [14]. After briefly reviewing the main findings of
this previous work, we proceed to rederive the hydrodynamic
energy of two completely orthogonal vortex planes within a
hyperspherical system and to introduce our numerical meth-
ods, illustrating these by presenting numerical results that
complement those already published. The intention of this
section is to establish a basis of comparison for when we
extend our discussion to nonorthogonal 4D vortex planes in
Sec. V.

A. Structure of 4D orthogonal vortex planes

As in Sec. II, we want to consider a superfluid described by
the GPE without external potentials, but now with atoms free
to move in four spatial dimensions. In the absence of rotation,
a generalized 4D GPE can be written in the same form as in
lower dimensions [Eq. (1)], namely [14],

− h̄2

2m
∇2ψ + g|ψ |2ψ = μψ, (44)

except now with ∇2 corresponding to the 4D Laplacian. This
serves as a minimal model in which to explore 4D vor-
tex physics and is a plausible mathematical description of
low-temperature interacting bosons in a hypothetical universe
with four spatial dimensions [14,68–70]. In the future, it will
also be interesting to consider a more tailored model mov-
ing towards a realistic 4D experiment, based, for example,
on adding one or more synthetic dimensions to an ultracold
bosonic gas [17,31–41,55,56]. However, the form of such a
model will depend strongly on the details of the particular
experimental implementation chosen and will likely include
other effects such as lattices, unusual interaction terms, and
asymmetries between real and synthetic dimensions. These
more experimental models therefore go beyond our present
work, but raise interesting opportunities for future research as
discussed briefly in Sec. VII.

While the above 4D GPE is identical to that in lower
dimensions, in the rotating frame [cf. Eq. (14)], we have to
be more careful as the angular momentum operator can no
longer be treated as a vector as discussed in Sec. III. Instead,
in four dimensions, the angular momentum operator is a 4 × 4
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antisymmetric tensor, with components L̂γ δ that correspond
to the angular momentum in the γ -δ plane (with γ , δ ∈
{x, y, z,w}). The general form of the rotating-frame GPE then
takes the form⎛

⎝− h̄2

2m
∇2 + g|ψ |2 −

∑
γ δ

�γδL̂γ δ

⎞
⎠ψ = μψ, (45)

where �γδ is the rotation frequency associated with the γ -δ
plane and the sum runs over the six different Cartesian planes
in four dimensions.

As can be seen from Eq. (45), the simplest situation is when
there is only one plane with a nonzero rotation frequency, e.g.,
�xy ≡ � �= 0. This corresponds to the case of simple rotation,
which can be understood as a usual three-dimensional rotation
extended into four dimensions [cf. Eq. (22)]. As we previously
showed in Ref. [14], this sort of rotation can stabilize a single
vortex plane, where the dimensionless order parameter can be
described by

ψ = fk (r1)eikθ1 , (46)

where (r1, θ1) are plane polar coordinates in the plane of
rotation, e.g., x-y, and fk (r) is independent of the coordinates
not involved in rotation, e.g., z and w, such that the radial
function is the same as that found numerically from the 2D
GPE (cf. Sec. II). In this case, the vortex core is a single
plane (defined, e.g., by x = 0 and y = 0), as was also verified
numerically in Ref. [14]. Physically, this can be understood as
the natural extension of point vortices from two dimensions
and line vortices from three dimensions into four dimensions,
as the extra dimension plays no role.

In contrast, double rotations are an intrinsically 4D (or
higher) phenomenon and so can lead to much richer vortex
physics, as will be our focus in the remainder of this article.
Specifically, we will focus on the 4D GPE in a doubly rotating
frame(

− h̄2

2m
∇2 + g|ψ |2 − �1L̂1 − �2L̂2

)
ψ = μψ, (47)

where � j and L̂ j are the rotation frequency and angular mo-
mentum operator, respectively, in plane j. For example, we
could choose plane 1 as the x-y plane, i.e., �1 ≡ �xy and
L̂1 ≡ L̂xy = −ih̄(x∂y − y∂x ), and plane 2 as the z-w plane,
i.e., �2 ≡ �zw and L̂2 ≡ L̂zw = −ih̄(z∂w − w∂z ). Note that
such a setup is related to certain 4D quantum Hall models
in which a nontrivial second Chern number is generated by
applying magnetic fields in two completely orthogonal planes
[17–20,71].

To proceed, for simplicity we will henceforward adopt
double polar coordinates (r1, θ1, r2, θ2), defined by

(x, y, z,w) = (r1 cos θ1, r1 sin θ1, r2 cos θ2, r2 sin θ2),

such that L̂ j = −ih̄∂θ j . As L̂1 and L̂2 describe a double ro-
tation, they commute with each other, meaning that we are
able to look for simultaneous eigenstates of both angular
momentum operators. As we showed in Ref. [14], for suitable
equal-frequency (�1 = �2) rotations, a reasonable Ansatz for

the (dimensionless) ground state is

ψ = fk1,k2 (r1, r1)eik1θ1+ik2θ2 , (48)

where k1 and k2 are the integer winding numbers in the
respective rotation planes and fk1,k2 (r1, r1) describes the 4D
superfluid density profile, which is assumed to just be a func-
tion of the radii of the two planes. This Ansatz describes a
pair of completely orthogonal vortex planes which intersect at
the origin, with the superfluid circulating simultaneously and
independently in the two rotation planes with a velocity field
given by

v = v1 + v2 = h̄

m

(
k1

r1
θ̂1 + k2

r2
θ̂2

)
, (49)

corresponding to a superposition of 2D vortex-velocity fields
in each rotation plane [cf. Eq. (5)]. Such a vortex structure is
therefore topologically characterized by the Z × Z topologi-
cal winding numbers [14]. Note that this Ansatz preferentially
picks out the x-y and z-w planes; however, equal frequency
rotations are isoclinic and hence have an infinite number of
rotation planes, as we discussed in Sec. III B. This means that
suitable Ansätze could be defined with respect to any of these
planes and our choice is arbitrary.

The function fk1,k2 (r1, r1) in Eq. (48) can be found numer-
ically from solving the 4D GPE [Eq. (47)]. As we previously
showed [14], this function appears to be close to a product
Ansatz fk1,k2 (r1, r1) ≈ fk1 (r1) fk2 (r2), where fki (ri ) is the 2D
density profile of a vortex with winding number ki in plane
i; however, this separable approximation fails significantly
near the intersection of the vortex planes near the origin due
to the intrinsic nonlinearity of the GPE. Before presenting a
numerical example of such a vortex structure, we first discuss
the associated hydrodynamic energy and critical frequency,
in an extension of the standard textbook discussion for 2D
vortices that was presented in Sec. II.

B. Hydrodynamic energy of completely
orthogonal vortex planes

As it will be helpful in the following sections, we de-
rive here the hydrodynamic energy for a pair of completely
orthogonal vortex planes in a 4D superfluid. As discussed
in Ref. [14], we have previously studied the energy of the
orthogonal-vortex structure [Eq. (48)] in a duocylinder geom-
etry defined by hard-wall boundaries at r1 = R1 and r2 = R2,
where Rj are the radii in the j = 1, 2 planes. In this geometry,
the energy could be approximated by a decomposition as

Ek1,k2 (R1, R2) = Ek1 (R1) + Ek2 (R2), (50)

where Ekj (Rj ) is the 2D energy [Eq. (13)] associated with
having a vortex with winding number k j in a 2D disk of radius
Rj and hard-wall boundary conditions.

In this paper we focus on a 4D hypersphere (or 4D ball)
geometry, which is defined by having hard-wall boundaries at
r2

1 + r2
2 = R2, where R is the hyperspherical radius. This ge-

ometry is theoretically interesting in the following sections as
it preserves the symmetry of isoclinic rotations (cf. Sec. III)
unlike the duocylinder geometry, which has boundary condi-
tions that preferentially pick out two planes as being special.
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Nevertheless, as we now show, we can also approximate
the energy of completely orthogonal vortex planes in such a
hypersphere as a decomposition into a sum of the energies of
each individual plane, in an analogous manner to Eq. (50).
To see this, we consider the hydrodynamics of a simplified
hollow-core vortex model, similar to that used in two dimen-
sions as reviewed in Sec. II. Specifically, we consider a pair
of completely orthogonal vortex planes, which intersect at the
origin, and we approximate the density profile as zero within
one healing length of each vortex core and at the system
boundary, and equal to a constant N/V everywhere else, where
N is the particle number and V = π2R4/2 is the volume of
the 4D ball. Following Sec. II, we can again neglect contri-
butions to the hydrodynamic energy from density variations
[cf. Eq. (10)] and from interparticle interactions [cf. Eq. (11)],
leaving only

Eh ≈ m

2

∫
ρv2d4r = m

2

∫
ρ(v1 + v2)2d4r, (51)

where in the second equality we have used that the velocity
field is well described by a sum of the individual velocities
for each vortex plane [cf. Eq. (49)]. Furthermore, as v j lies in
plane j, it follows that v1 · v2 = 0, i.e., that the hydrodynamic
vortex-vortex interaction term vanishes, leaving us with

Eh = Nh̄2

2V m

∫ R

ξ

r1dr1

∫ π

−π

dθ1

∫ √
R2−r2

1

ξ

r2dr2

×
∫ π

−π

dθ2

(
k2

1

r2
1

+ k2
2

r2
2

)
, (52)

where we have used that v2 = (h̄2/m2)(k2
1/r2

1 + k2
2/r2

2 ) from
Eq. (49).

The integration region is symmetric with respect to swap-
ping r1 and r2, so each term in the integrand gives the same
result, just with a different coefficient k2

j . This means we really
only need to consider one of these terms, and with the order
of integration we have above, it is easiest to compute the
1/r2

1 term. We will also rescale r j → Rr j and evaluate the θ

integrals to give

Eh = 4Nh̄2

mR2

(
k2

1 + k2
2

) ∫ 1

ξ/R

dr1

r1

∫ √
1−r2

1

ξ/R
r2dr2 (53)

= 2Nh̄2

mR2

(
k2

1 + k2
2

) ∫ 1

ξ/R

dr1

r1

(
1 − r2

1 − ξ 2

R2

)
(54)

= 2Nh̄2

mR2

(
k2

1 + k2
2

)(
1 − ξ 2

R2

)[
ln

(
R

ξ

)
− 1

2

]
, (55)

which to leading order in ξ/R gives us

Eh = 2N
h̄2

mR2

(
k2

1 + k2
2

)
ln

(
R

ξ

)
. (56)

This corresponds to a sum like that in Eq. (50), but for the hy-
drodynamic energy in this simplified constant-density model
in a 4D hypersphere. Note that this equation is very similar
to the point vortex energy in two dimensions [Eq. (12)], ex-
cept we have k2

1 + k2
2 instead of k2, and there is a geometric

factor of 2 coming from the difference between the area of
a disk and the 4D volume of a hypersphere. Again, just as

in the 2D case, we can obtain a more accurate energy for
these orthogonal intersecting vortices by using the dimen-
sionless numerical density-profile function fk1,k2 (r1, r2) from
our Ansatz [Eq. (48)]. Using the grand canonical energy rel-
ative to the uniform state with a chemical potential given by
μ = h̄2/mξ 2, we obtain

Eh ≈ 2μN
ξ 2

R2

(
k2

1 + k2
2

)
ln

(
2.07

R

ξ

)
, (57)

numerically via a fitting procedure to the form of Eq. (56),
with the logarithmic prefactor as the fit parameter.

This result, without the initial factor of 2, was obtained the
exact same way in our previous paper [14] for a duocylinder
geometry given by r1 � R1 and r2 � R2. In that instance,
however, the analytical calculation yielded precisely this form
since the boundary conditions in the two planes were decou-
pled, and the energy integral therefore decomposed into a
sum in the two planes. In the hyperspherical geometry, there
are less than leading-order terms that we have ignored that
do not have the same form. Therefore, we believe that the
result for a spherical geometry [Eq. (57)] is more approximate.
The energy reduction from equal-frequency double rotation
(�1 = �2 = �) can be calculated as

�Erot = �(〈L̂1〉 + 〈L̂2〉) = �Nh̄(k1 + k2), (58)

where we have used that each vortex plane independently
contributes angular momentum equal to Nh̄k j [cf. Eq. (15)].
This gives a critical frequency of

�c ≈ 2
h̄

mR2
ln

(
2.07

R

ξ

)
(59)

to stabilize an orthogonal pair of k = 1 vortex planes. Natu-
rally, we will present most of our results with frequencies in
units of �c. Note that Ref. [14] worked in units of �2D

c , the
2D critical frequency [Eq. (17)] for a k = 1 point vortex in a
disk of radius R. To convert between these unit conventions,
we may use the fact �c = 2�2D

c .

C. Numerical methods and results

In this section we briefly describe the numerical methods
which are then used to support our analytical results through-
out the rest of this paper. We then illustrate these methods with
an example of a structure with orthogonal vortex planes, so as
to complement the results previously presented in Ref. [14]
and to provide a basis for comparison with later sections of
this paper.

As in our earlier work [14], the imaginary-time evolution
method (ITEM) is used to find solutions of the 4D GPE
with double rotation [Eq. (45)]. We use second-order finite
differences in space and a first-order explicit discretization in
time. All calculations are performed on a Cartesian grid within
a 4D hypersphere of radius roughly equal to Ngrid ≈ 41 grid
points, with a hard-wall boundary condition imposed on the
boundary points (defined as the points with fewer than eight
nearest neighbors). This then corresponds to a total number of
grid points roughly equal to 1.4 × 107. The spatial step size
for most calculations is set to �x = 0.5ξ , which ensures a
large system of radius R ≈ 21ξ to reduce the importance of
boundary effects.

013325-10



CURVED VORTEX SURFACES IN FOUR-DIMENSIONAL … PHYSICAL REVIEW A 110, 013325 (2024)

FIG. 1. Vortex core of orthogonal intersecting planes in the final
state of the ITEM with parameters �xy = �zw = 1.5�c and �x =
0.2ξ , giving R ≈ 8.3ξ . Note that the coordinates we are plotting
against are rotated relative to those used in the numerics, in order
to show both planes at once.

We calculate the predicted critical frequency �c from
Eq. (59) with R set to Ngrid�x − ξ , subtracting one healing
length in order to approximately account for the boundary
region. As we will see later, our numerical results suggest
that, for �x = 0.5ξ , a more accurate value for the critical
frequency is 0.9�c. This is likely due to a combination of
finite-size effects and the fact that Eq. (57) is an approximate
result based on fitting to the function form of Eq. (56).

Our initial states are constructed in terms of a density
profile and phase profile, with a degree of noise (up to 20%
of the background value) then added to the real and imaginary
parts of ψ . The initial density profile is chosen to be homo-
geneous except at the boundary where it smoothly goes to
zero, while the initial phase factor is determined by the vortex
configuration we expect to see at low energy for the chosen
parameters. The ITEM is deemed to have converged once the
relative variations in the particle number N (calculated as the
sum of |ψ |2�x4) and chemical potential [the sum of the LHS
of Eq. (45) multiplied by ψ∗�x4/N] from one iteration to the
next reach below 10−10. Once the ITEM reaches this threshold
accuracy level we output the state and calculate the energy
[using a finite-difference version of Eqs. (8) and (9)]. We also
determine the coordinates of all points making up the vortex
core and separately output these, where we deem a point to
be in the core if it is more than one healing length from the
boundary and if the modulus of the order parameter at that
location is less than the spatial resolution �x/ξ . This latter
criterion is motivated by the fact that the order parameter goes
to zero linearly as one approaches a singly charged vortex core
[1]. In order to then plot the vortex core, we supplement a 3D
scatter plot (showing the x, y, and z coordinates) with color
(representing the w coordinate).

To illustrate this numerical method, in Fig. 1 we show
the vortex core structure obtained from the ITEM under
equal-frequency double rotation with the parameters �xy =
�zw = 1.5�c and �x = 0.2ξ , giving R ≈ 8.3ξ . Here the ini-
tial state (before adding noise) was chosen to have a density
profile that was homogeneous within the system away from
the boundaries, and a phase profile given by arctan 2(y, x) +
arctan 2(w, z), corresponding to the phase winding expected

from Eq. (48) with k1 = k2 = 1. Note that both the Carte-
sian grid and the initial phase profile numerically break the
hyperspherical symmetry and the symmetry associated with
isoclinic rotation. However, we expect the grid effects to be
small, and the phase profile simply picks out one of several
degenerate states for equal frequency rotation. As in Ref. [14],
the resulting stationary state is found to contain a vortex
core structure consisting of a pair of intersecting completely
orthogonal planes (here, corresponding to the x-y and z-w
planes). Note that in plotting Fig. 1 we have rotated our
coordinates according to⎛

⎜⎜⎝
x
y
z
w

⎞
⎟⎟⎠ → 1√

2

⎛
⎜⎜⎝

1 0 1 0
0 1 0 1

−1 0 1 0
0 −1 0 1

⎞
⎟⎟⎠

⎛
⎜⎜⎝

x
y
z
w

⎞
⎟⎟⎠ (60)

in order to better depict both planes at the same time. This
visualization of the vortex-core structure complements the
results previously presented in Ref. [14] for the phase and
density profile of the stationary state and will serve as a useful
basis for comparison to results obtained in later sections of
this paper for other parameters and initial conditions.

V. NONORTHOGONAL VORTEX PLANES

Having introduced vortex structures composed of com-
pletely orthogonal vortex planes in the preceding section, we
now consider the possibility of a pair of nonorthogonal vortex
planes in a 4D superfluid. As we will show later in this pa-
per, such nonorthogonal vortex planes are a natural candidate
for the low-energy configuration of a 4D superfluid doubly
rotating at unequal frequencies. In preparation, we therefore
derive in this section the total hydrodynamic energy of a pair
of nonorthogonal vortex planes.

As in Secs. II and IV, we neglect the contributions from
density variations and from interparticle interactions such that
the kinetic energy can be approximated as

Eh ≈ m

2

∫
ρv2d4r = m

2

∫
ρ(v1 + v2)2d4r, (61)

where we have again assumed that the velocity field can be
decomposed as a sum of the velocity fields associated with
each of the (now nonorthogonal) vortex planes separately.
From this it can be seen that in general we can split the
total hydrodynamic energy into a sum of the energies of each
individual vortex plane (cf. Sec. IV B) together with the hy-
drodynamic vortex-vortex interaction, which is given by

Evv = m
∫

ρv1 · v2d4r. (62)

As we discussed above and in Ref. [14], the velocity fields
v1,2 induced by two orthogonal planes were themselves
everywhere orthogonal, v1 · v2 = 0, meaning that this hy-
drodynamic vortex-vortex interaction between the planes
vanished. However, as we now show, this is not true for
nonorthogonal vortex planes, meaning that the vortex-vortex
interaction term is nonzero in general.

In order to find Evv, we start from the assumption that a
pair of nonorthogonal vortex planes can be described by the
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dimensionless Ansatz

ψ = r|k1|
1 r′

2
|k2|ei(k1θ1+k2θ

′
2 )g

(
r2

1 , r′2
2

)
= (x + σ1iy)|k1|(z′ + σ2iw′)|k2|g(x2 + y2, z′2 + w′2), (63)

where the primed and unprimed coordinates are related by
a double rotation given by a matrix M defined below, such
that r′ = Mr, and k1,2 are the winding numbers of the two
vortices while σ j = sgn(k j ). The function g ensures that the
density returns to the homogeneous value when both r1 and
r′

2 are large compared to the healing length and is given by
g(r2

1 , r′2
2 ) = const × fk1,k2 (r1, r′

2)/r|k1|
1 r′

2
|k2|, where fk1,k2 is the

dimensionless profile associated with the Ansatz for orthogo-
nal vortex planes in Eq. (48). In particular, g is always positive
and must satisfy the asymptotic relations

g
(
r2

1 , r′
2

2) ∼ const × fk1 (r1)

r|k1|
1

as r′
2 → ∞, (64)

g
(
r2

1 , r′2
2

) ∼ const × fk2 (r′
2)

r′|k2|
2

as r1 → ∞, (65)

where fk is the dimensionless 2D vortex profile described in
Sec. II A. These asymptotics physically are the requirement
that far from one of the vortex planes, the density profile is
determined purely by the remaining one.

Concretely, the state in Eq. (63) contains vortex planes
along x = y = 0 and z′ = w′ = 0, respectively, which inter-
sect at the origin. In order to keep this Ansatz general while
minimizing the number of parameters, we will refer to Ap-
pendix A, where we derive the general form of M required to
describe the tilting of a plane in R4. The result is that, without
loss of generality, we may choose the form

M =

⎛
⎜⎜⎝

cos α1 0 − sin α1 0
0 cos α2 0 − sin α2

sin α1 0 cos α1 0
0 sin α2 0 cos α2

⎞
⎟⎟⎠, (66)

with α1,2 ∈ [0, π/2), such that

z′ = sin α1x + cos α1z, w′ = sin α2y + cos α2w. (67)

To use this result in describing our skewed vortex planes
we must assume that the vortices exist within a spherically
symmetric 4D superfluid of radius R such that r2

1 + r2
2 = r′2

1 +
r′2

2 � R. Note that having a pair of orthogonal vortex planes,
as discussed in the previous section, corresponds to taking
α1 = α2 = 0 such that M becomes an identity matrix and
r′ = r. Given the spherical geometry, we assume, in analogy
with Sec. IV, that the velocity fields induced by each vortex
have the simple forms

v1 = k1
h̄

m

θ̂1

r1
, v′

2 = k2
h̄

m

θ̂
′
2

r′
2

. (68)

Let us first consider the special case where the matrix M is
a simple rotation, meaning one of the angles α1,2 is equal to
zero. In this case it is easier to use the Cartesian representation
of Eq. (68), which is

v1 = k1
h̄

m

xŷ − yx̂
x2 + y2

, v′
2 = k2

h̄

m

z′ŵ′ − w′ẑ′

z′2 + w′2 . (69)

Without loss of generality, we can choose α2 = 0 such that we
have w′ = w and ŵ′ = ŵ, which is of course orthogonal to
both x̂ and ŷ. Therefore, the dot product between the velocity
fields is given by

v1 · v′
2 = k1k2

(
h̄

m

)2
w

z′2 + w2

yẑ′ · x̂ − xẑ′ · ŷ
x2 + y2

. (70)

Using Eq. (67), we have that ẑ′ = sin α1x̂ + cos α1ẑ, and
therefore the interaction energy is given by

Evv = k1k2 sin α1
h̄2

m

∫
wyρ(x2 + y2, z′2 + w2)

(z′2 + w2)(x2 + y2)
d4r. (71)

Keeping in mind that only x and z appear in z′, we can see
that the above integrand is an odd function of both y and w.
This integral therefore vanishes, since our chosen geometry
is symmetric with respect to both of these coordinates. In
order to get a nonzero interaction potential we would need
the superfluid to occupy a region that is asymmetric in both
the y and w directions. This may be an interesting avenue for
future work but is beyond the scope of this paper.

We now derive the form of the hydrodynamic interaction
energy [Eq. (62)] in the special cases where M is an isoclinic
rotation. There are two main reasons for this choice of rota-
tion: First, an isoclinic tilt allows us to derive an analytic form
for the interaction using the integral transform into nonorthog-
onal double polar coordinates derived in Appendix B, and
second, in Sec. VI we will use the results we derive here to
investigate possible low-energy vortex configurations in a su-
perfluid doubly rotating at unequal frequencies, and we obtain
predictions that agree closely with numerics when the fre-
quencies are not too high. Isoclinic rotation here corresponds
to the condition α2 = να1, with ν = ±1 denoting whether M
is left (−) or right (+) isoclinic. Let us therefore define η ≡ α1

for simplicity and proceed. Using Eq. (67), we see that the
primed coordinates now take the form

z′ + iw′ = c(z + iw) + s(x + νiy), (72)

where we have applied the shorthand c = cos η and s = sin η.
The equations of the plane z′ = w′ = 0 then become

z = −x tan η, (73)

w = −yν tan η. (74)

This is tilted away from the plane z = w = 0 by an angle η, so
the angular separation of the planes z′ = w′ = 0 and x = y =
0 is π/2 − η. Alternatively, we can derive the angle between
the planes as follows. First, note that the plane z′ = w′ = 0 is
spanned by the unit vectors x̂′ and ŷ′ and that these are related
to the unprimed basis vectors by

x̂′ = cx̂ − sẑ, (75)

ŷ′ = cŷ − sŵ. (76)

This lets us define arbitrary unit vectors in the x′-y′ plane and
z-w plane as

û′ = cos φ′x̂′ + sin φ′ŷ′, (77)

û = cos φẑ + sin φŵ, (78)
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where φ′ and φ are arbitrary angles between 0 and 2π . We
can then find the angle between these vectors in the usual way
using the dot product

û′ · û = (cos φ′x̂′ + sin φ′ŷ′) · (cos φẑ + sin φŵ)

= cos φ′ cos φx̂′ · ẑ + sin φ′ sin φŷ′ · ŵ

= −s(cos φ′ cos φ + sin φ′ sin φ)

= − sin η cos(φ′ − φ). (79)

When φ′ − φ = π/2 we obtain the minimum angle between
the two planes, which is given by arccos(sin η) = π/2 − η. In
the rest of the paper, we will sometimes refer to the angle η

as the skewness between two planes, since it measures how
far from orthogonal those two planes are; when η = 0 the two
planes are orthogonal and when η reaches its maximum value
of π/2 the two planes coincide.

Continuing, we substitute Eq. (72) into Eq. (63) and find
that our Ansatz is given by

ψ = (x + σ1iy)|k1|[c(z + σ2iw) + s(x + νσ2iy)]|k2|g, (80)

where we have suppressed the arguments of g for brevity.
Note that if we have ν = σ1σ2, then x + σ1iy = x + νσ2iy and
the planes are skewed in such a way that they are beginning
to perfectly align, while ν = −σ1σ2 corresponds to pure an-
tialigning. We therefore expect that ν = sgn(k1k2) will give
rise to a repulsive interaction between the planes, while ν =
−sgn(k1k2) will lead to an attractive interaction (cf. Sec. II C).

In order to compute the hydrodynamic vortex-vortex in-
teraction energy, we first rewrite Eq. (72) in double polar
coordinates as

r′
2eiθ ′

2 = cr2eiθ2 + sr1eiνθ1 . (81)

As the hydrodynamic interaction energy density depends on
ρv1 · v′

2 [cf. Eq. (62)], we must find an expression for the dot

product θ̂1 · θ̂
′
2 under the assumption of velocity fields of the

form in Eq. (68). To do this, we start by taking the vector
gradient of Eq. (81) as

(r̂′
2 + iθ̂

′
2)eiθ ′

2 = c(r̂2 + iθ̂2)eiθ2 + s(r̂1 + iνθ̂1)eiνθ1 , (82)

where we have used the primed coordinate system on the LHS
and the unprimed coordinate system on the RHS. Then taking
the dot product of both sides with θ̂1 gives

(r̂′
2 · θ̂1 + iθ̂

′
2 · θ̂1)eiθ ′

2 = iνseiνθ1 . (83)

Dividing through by ieiθ ′
2 and then taking the real part of both

sides gives

θ̂
′
2 · θ̂1 = νs cos(θ ′

2 − νθ1), (84)

such that v1 · v′
2 = νk1k2(h̄/m)2s cos(θ ′

2 − νθ1)/r1r′
2, and the

vortex-vortex interaction is given by

Evv = νk1k2
h̄2

m
s
∫

B4(R)
ρ(r1, r′

2)
cos(θ ′

2 − νθ1)

r1r′
2

d4r, (85)

where Bd (R) denotes the d-dimensional ball of radius R cen-
tered at the origin, which is our chosen geometry.

This integral will be as difficult to compute in the primed
coordinate system as the unprimed one; however, we can
greatly simplify the integrand by using the nonorthogonal

(a) (b)

FIG. 2. Geometric and algebraic description of the two terms in
Eq. (86). (a) The first term corresponds to the region where sr1 < cr2,
meaning that the complex coordinate r′

2eiθ ′
2 encircles the origin. This

means that r′
2 always reaches a minimum value of 0, and θ ′

2 spans a
full period, i.e., r′

2 ∈ [0, r+], and θ ′
2 ∈ [−π, π ). (b) The second term

corresponds to sr1 � cr2, which means that r′
2eiθ ′

2 no longer winds
around the origin, so r′

2 has some minimum value r− which can be
positive, and θ ′

2 no longer spans a full period. This in turn means
that θ ′

2 takes values in the interval [θ1 − θ∗, θ1 + θ∗], where θ∗ � π/2
with equality occurring when sr1 = cr2 and the blue dotted circle
passes through the origin. The limits on r1 are derived in Appendix B
and come from combining the inequalities on sr1 and cr2 with the
spherical geometry r2

1 + r2
2 � R2.

coordinate system defined by (r1, θ1, r′
2, θ

′
2), at the cost of

complicating the integration limits. In Appendix B we derive
the integral transformation into this nonorthogonal coordinate
system for the region B4(1). To use this result we must make
the substitution r → Rr so that the integral is over B4(1)
rather than B4(R) and we make the substitution θ ′

2 = θ + νθ1

to simplify the cosine. Altogether, we then have

Evv = A
s

c2

∫ c

0
dr1

∫ π

−π

dθ1

∫ π

−π

dθ

∫ r+

0
dr′

2ρ cos θ

+ A
s

c2

∫ 1

c
dr1

∫ π

−π

dθ1

∫ θ∗

−θ∗
dθ

∫ r+

r−
dr′

2ρ cos θ, (86)

where the prefactor A = νk1k2R2h̄2/m and the limits θ∗ and
r± are given by

θ∗ = arcsin
[
c
(
1 − r2

1

)1/2
/sr1

]
, (87)

r± = sr1 cos θ ± [
c2

(
1 − r2

1

) − s2r2
1 sin2 θ

]1/2
. (88)

While this integral transform is derived in great detail in Ap-
pendix B, a quick pictorial explanation for the form taken by
Eq. (86) is given in Fig. 2. In particular, the fact that there are
two distinct terms in this equation with different integration
limits is directly related to whether r′

2eiθ ′
2 encircles the origin

(first term) or not (second term).
Now that we are using the natural coordinates for this

problem, we can proceed to evaluate the integrals. Similar
to Sec. II A, we ignore the vortex core and approximate the
density as constant ρ = N/V , where N is the particle num-
ber and V = π2R4/2 is the 4D volume of the system. This
approximation works provided the angle η is not too close to
π/2, as will be discussed later. The vortex-vortex interaction
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energy is then given as

Evv = A′ s

c2

∫ c

0
dr1

∫ π

−π

dθ

∫ r+

0
dr′

2 cos θ

+ A′ s

c2

∫ 1

c
dr1

∫ θ∗

−θ∗
dθ

∫ r+

r−
dr′

2 cos θ, (89)

where the new prefactor A′ = 4νk1k2Nh̄2/πmR2. After fur-
ther algebraic steps detailed in Appendix B, we then obtain
the final result

Evv = −4k1k2νN
h̄2

mR2
ln(cos η). (90)

We now see that our expectation regarding the sign of Evv

was correct: The overall sign is given by sgn(νk1k2) such that
the interaction is positive (i.e., repulsive) when the planes are
skewed in an aligning sense [ν = sgn(k1k2)] and negative (i.e.,
attractive) when they are antialigning [ν = −sgn(k1k2)].

Combining this with the result from Sec. IV B, we have that
the total hydrodynamic energy of the nonorthogonal vortex
plane state is

Eh = 2N
h̄2

mR2

[(
k2

1 + k2
2

)
ln

(
R

ξ

)
− 2νk1k2 ln(cos η)

]
.

(91)

Note, however, that we just derived the interaction term un-
der the constant density approximation, while the individual
hydrodynamic energies of the vortices was calculated using
a hollow-core model. This hollow core was needed to remove
the unphysical 1/r2 singularity around each vortex that gives a
divergent contribution to the energy, which in a mathematical
sense is why vortices have cores. In contrast, the interaction
energy density only goes as 1/r1r′

2, which is not singular once
integrated.

Recall, as per the discussion in Sec. II C, that the same
is true of point vortices in two dimensions: Their interaction
can be approximated with a constant density, but this fails to
give a finite answer for the individual energies. As previously
discussed, the correct answer can still be obtained if we take
the vortices to be combined once their separation is of the
order of ξ or below.

The question arises whether we can recover the expression
for vortex combination in this 4D case. Here we have an angle
between the vortex planes, given by π/2 − η, and we see
that the interaction energy Evv diverges in the limit η → π/2
under the constant density approximation. This also occurred
when using this approximation for point vortices in two di-
mensions as their separation distance �r approached zero, so
we see that the angular separation π/2 − η is playing a similar
role here in four dimensions as �r did in two dimensions.
In contrast to two dimensions, however, we do not have a
unique value for the separation distance between the vortices,
so coming up with a criterion for when they have combined
seems difficult.

We will identify a natural separation as follows: Each plane
makes a circle of intersection with the boundary of the hy-
persphere, and we argue that the maximum reasonable value
for the distance between the planes should be given by the
minimum distance between these circles. This distance is the

length of the most direct straight line between the two planes
at the boundary and, as we derive in Appendix C, is given
by

√
2R(1 − sin η)1/2. This result can be obtained by naively

applying the cosine rule in analogy to lines in two dimensions.
Setting this distance less than or equal to ξ , we have

√
2R(1 − sin η)1/2 � ξ, (92)

which rearranges to

sin η � 1 − ξ 2

2R2
. (93)

We want this inequality in terms of cos η, since this is what
appears in the interaction. Therefore, we square both sides,
which is safe as they are each non-negative, giving

1 − cos2 η �
(

1 − ξ 2

2R2

)2

, (94)

which rearranges to

cos η � ξ

R

(
1 − ξ 2

4R2

)1/2

. (95)

To leading order in ξ/R, we can therefore say that the vortices
are combined once cos η = ξ/R or less. Substituting this into
Eq. (91) (using that ν2 = 1), we obtain

Eh = 2Nh̄2

mR2
(k1 + νk2)2 ln

(
R

ξ

)
, (96)

which is the correct result for a vortex plane with winding
number k1 + νk2. This concludes our discussion of the ener-
getic properties of nonorthogonal vortex planes, the results of
which we will now use to construct a model of superfluids
doubly rotating at unequal frequencies.

VI. UNEQUAL-FREQUENCY DOUBLE ROTATION

In this section we consider the behavior of a 4D superfluid
undergoing constant double rotation with unequal frequen-
cies, given by �xy = �zw + �� in the laboratory (x, y, z,w)
frame. Wetake �� > 0 without loss of generality and we
also assume the superfluid occupies a hyperspherical (4D ball)
region for simplicity. Note that this breaks the isoclinic SU(2)
symmetry (cf. Sec. III), which is associated with the manifold
of different rotation planes when the frequencies are equal. We
begin in Sec. VI A by considering what happens to a single
vortex plane in this setup, before discussing the case of two
vortex planes in Sec. VI B. We then present our numerical
results in Sec. VI C.

A. Single vortex plane under unequal-frequency double rotation

In this section we develop our intuition by considering the
simple case of a single vortex plane in a system with unequal
frequency double rotation. We assume that this plane remains
rigid but allow it to arbitrarily tilt in order to optimize its
energy. The energy of the superfluid in the rotating frame is
reduced by the amount

Erot = �xy〈L̂xy〉 + �zw〈L̂zw〉 (97)

relative to an inertial frame. Since �xy > �zw it is natural
to presume that the lowest energy occurs when the vortex
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plane lies along the z-w plane (thereby inducing rotation in the
x-y plane) such that 〈L̂xy〉 = Nh̄ and 〈L̂zw〉 = 0. The converse
case of a vortex plane spanning the x-y plane would certainly
be higher in energy, as this state would have 〈L̂xy〉 = 0 and
〈L̂zw〉 = Nh̄; however, it is not obvious that the superfluid
energy decreases monotonically as the vortex plane is tilted
from the x-y plane to the z-w plane, that is, the lowest en-
ergy overall could occur when the vortex plane is oriented
somewhere between these two limits. Such a state would have
positive values of both 〈L̂xy〉 and 〈L̂zw〉 and would be given as

ψ = (x′ + iy′)g(x′2 + y′2), (98)

where the primed coordinates are to be defined shortly and the
function g is given by g(r2) = const × f1(r/ξ )/r, with f1 the
dimensionless density profile of a point vortex in two dimen-
sions (see Sec. II A). The primed coordinates are defined such
that the vortex plane is given by x′ = y′ = 0, so, as derived in
Appendix A, we may assume without loss of generality that
the primed coordinates are given by⎛

⎜⎜⎝
x′
y′
z′
w′

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

cos α1 0 sin α1 0
0 cos α2 0 sin α2

− sin α1 0 cos α1 0
0 − sin α2 0 cos α2

⎞
⎟⎟⎠

⎛
⎜⎜⎝

x
y
z
w

⎞
⎟⎟⎠.

(99)

A more useful form of the order parameter for this state is
given in polar coordinates r′

1eiθ ′
1 ≡ x′ + iy′ as

ψ = r′
1eiθ ′

1 g
(
r′2

1

)
. (100)

In order to use this, we must express the transformation into
the primed coordinate system in polar coordinates as well.
Taking the combination x′ + iy′ gives

r′
1eiθ ′

1 = cos α1x + sin α1z + i cos α2y + i sin α2w (101)

and switching to polar coordinates and rearranging gives

r′
1eiθ ′

1 = cos α1 + cos α2

2
r1eiθ1 + sin α1 + sin α2

2
r2eiθ2

+ cos α1 − cos α2

2
r1e−iθ1 + sin α1 − sin α2

2
r2e−iθ2 .

(102)

The terms on the second line are proportional to e−iθ j and
therefore generate angular momentum counter to the external
rotation (since �xyLxy = −ih̄�xy∂θ1 and similarly for zw).
To maximize the energy reduction from rotation we should
eliminate these terms. We therefore set α1 = α2 ≡ η to obtain

r′
1eiθ ′

1 = cos η r1eiθ1 + sin η r2eiθ2 . (103)

An expression of this same exact form [Eq. (29)] was de-
rived in Sec. III B in the context of finding the rotation planes
of any left isoclinic rotation in the x-y and z-w planes, i.e.,
a rotation ML generated by L̂+ = L̂xy + L̂zw. Here, however,
r′

1eiθ ′
1 = 0 encodes the vortex plane, so we see that the vortex

plane always lies in a rotation plane of ML, regardless of the
value of η. This vortex generates angular momentum in the
plane orthogonal to itself, which is also a rotation plane of
ML. This is all essentially summed up by the (easily verifi-
able) fact that r′

1eiθ ′
1 is an eigenfunction of the sum of the

angular momenta L̂+ despite not being an eigenfunction of
either component. The superfluid containing this tilted vortex
therefore has the same value of 〈L̂+〉 = Nh̄ for every value of
η. We can exploit this knowledge by rewriting the rotational
energy [Eq. (97)] as

Erot = �zw〈L̂+〉 + ��〈L̂xy〉. (104)

Since the first term is constant with respect to η we there-
fore maximize Erot by simply maximizing the second term,
proportional to 〈L̂xy〉. This clearly occurs at η = 0, where
r′

1eiθ ′
1 = r1eiθ1 , and so the initial intuition was correct: A single

perfectly rigid vortex plane will always tend to fully align with
the higher frequency.

B. Two vortex planes under unequal-frequency
double rotation

Armed with this knowledge, we now seek to find the op-
timal configuration of two rigid vortex planes in a doubly
rotating superfluid with unequal rotation frequencies. Each
vortex will tend to align its angular momentum with the x-y
plane as much as possible to gain from the larger rotation
frequency in this plane. However, as we showed in Sec. V,
vortex planes will interact with each other hydrodynamically
once they are not orthogonal. This interaction will limit how
close together (in orientation) each vortex can be and the
competition between this effect and the rotational energy will
determine the optimal orientation of each plane respectively.
This is a simplified model of the situation, and it is worth
briefly discussing the approximations we are making.

We are going to again assume a constant density profile
given by ρ = N/V , thereby ignoring the vortex core. As pre-
viously discussed in Sec. II A, we need to account for the core
to avoid a divergent hydrodynamic energy cost of a vortex
[see, for example, Eq. (10) with ξ taken to zero]. However,
in this case we are only interested in how the energy varies
with the orientation of each vortex plane. This means we can
ignore any terms which do not vary as the planes tilt. If we
denote the velocity field induced by each plane by v j , with
j = 1, 2, respectively, then the hydrodynamic energy can be
expanded as in Sec. V as

1

2

∫
ρv2d4r = 1

2

∫
ρ
(
v2

1 + v2
2

)
d4r +

∫
ρv1 · v2d4r. (105)

The first term is the individual hydrodynamic cost of each
vortex, which diverges if we ignore the core by assuming
a constant density. However, this term does not vary with
orientation due to the spherical symmetry of the boundary.
On the other hand, the second term, which is the hydro-
dynamic interaction between the planes, depends on their
relative orientation but does not diverge in a constant density
approximation, as explained in Sec. V.

We therefore ignore the constant first term, keeping only
the second term which can safely be approximated using a
constant density. This constant density approximation also al-
lows us again to ignore the energy contributions from quantum
pressure [the first term in Eq. (8)] and the bosonic interaction
[Eq. (9)] as is also done in Sec. V.
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As we are assuming a constant density n = N/V , we may
take the order parameter for this configuration to be

ψ = n1/2ei(θ́1+θ̀2 ), (106)

where the acute (ŕ) and grave (r̀) coordinate systems are to
be defined shortly. Note that this assumes the vortex planes
remain flat and intersecting at the origin. In our numerical
results, we do find some curvature and an avoided crossing
near the origin (see Sec. VI C), but these seem to have only a
small effect on the energies. We will investigate the phenom-
ena of curved vortex cores with avoided crossings in more in
the following paper [15].

Recall from Sec. VI A that the vortex planes will tend to
stay on one of the rotation planes of left isoclinic rotations ML

generated by L̂+. We will therefore use our result [Eq. (37)]
from Sec. III B for the general form of such rotation planes
relative to a fixed basis [in this case the laboratory basis
(x, y, z,w)]. Using this result for each of the acute and grave
coordinates, we have(

ŕ1eiθ́1

ŕ2eiθ́2

)
=

(
cos η1 eiϕ1 sin η1

−e−iϕ1 sin η1 cos η1

)(
r1eiθ1

r2eiθ2

)
, (107)(

r̀1eiθ̀1

r̀2eiθ̀2

)
=

(
cos η2 eiϕ2 sin η2

−e−iϕ2 sin η2 cos η2

)(
r1eiθ1

r2eiθ2

)
, (108)

where η1,2 ∈ [0, π/2] and ϕ1,2 ∈ [0, 2π ), with ϕ j undefined
when η j = 0 or π/2. The location of each vortex plane is then
given by ŕ1eiθ́1 = 0 and r̀2eiθ̀2 = 0, respectively. The parame-
ters η1,2 denote the angle that each plane makes with the x-y
and z-w planes, respectively, while ϕ1,2 denote the directions
of this tilt.

The vortex at ŕ1eiθ́1 = 0 is tilted by an angle η1 away
from the x-y plane, while the vortex at r̀2eiθ̀2 = 0 is tilted by
π/2 − η2 off of the same plane. Since the two vortex planes
are indistinguishable, we can define the acute and grave coor-
dinates such that the former vortex is closer to the x-y plane
than the latter, which translates to the following constraint on
the angles:

η1 � π

2
− η2. (109)

Note that η1 = η2 = 0 corresponds to the configuration that
we have previously studied [14], a completely orthogonal pair
of vortex planes spanning the rotation planes of the superfluid,
i.e., the x-y and z-w planes, respectively. A change of basis in
either of these planes redefines the ϕ j variables as

(
e−iα 0

0 e−iβ

)(
cos η j eiϕ j sin η j

−e−iϕ j sin η j cos η j

)(
eiα 0
0 eiβ

)

=
(

cos η j ei(ϕ j−α+β ) sin η j

−e−i(ϕ j−α+β ) sin η j cos η j

)
. (110)

We choose a basis in which −ϕ2 = ϕ1 ≡ ϕ, leaving us with
three free parameters η1, η2, and ϕ, describing the orientation
of the two vortex planes relative to the laboratory frame. In
terms of these parameters the two planes are defined by the

zeros of the complex coordinates

ŕ1eiθ́1 = cos η1r1eiθ1 + eiϕ sin η1r2eiθ2 , (111)

r̀2eiθ̀2 = cos η2r2eiθ2 − eiϕ sin η2r1eiθ1 , (112)

restated here for clarity. We will now find and then minimize
the sum of the rotational and hydrodynamic energies of the
superfluid with respect to these three variables.

1. Rotational energy

First, we will calculate the rotational energy, which is the
expectation value of −�xyL̂xy − �zwL̂zw in the state ψ [cf.
Eq. (97)]. Since this is a first-order differential operator we
may use the product rule on Eq. (106), e.g., for each angular
momentum component as

�xyL̂xyψ = n1/2(eiθ̀2�xyL̂xyeiθ́1 + eiθ́1�xyL̂xyeiθ̀2 ), (113)

ψ∗�xyL̂xyψ = n(e−iθ́1�xyL̂xyeiθ́1 + e−iθ̀2�xyL̂xyeiθ̀2 ), (114)

such that the rotational energy density is simply the sum of
contributions from each vortex independently. From Sec. VI A
recall that the favorable possible orientations of the two planes
are limited to those which are planes of rotation of the iso-
clinic rotation generated by L̂+. This means that, as in the
single vortex case we just considered, we can rewrite the
rotational energy density as

ψ∗(�xyL̂xy + �zwL̂zw )ψ

= 2nh̄�zw + n��

(
L̂xyeiθ́1

eiθ́1
+ L̂xyeiθ̀2

eiθ̀2

)
, (115)

where the extra factor of 2 in the first term on the RHS arises
because we now have two vortex planes instead of one [cf.
Eq. (104)]. This means that to proceed we simply have to
evaluate the angular momentum of each vortex in the x-y
plane. In other words, we must compute the integral∫

B4(R)

L̂xyeiθ́1

eiθ́1
d4r; (116)

this is carried out in Appendix D, with the final result that∫
B4(R)

d4r
L̂xyeiθ́1

eiθ́1
= h̄

π2

2
R4 cos2 η1. (117)

The calculation for the eiθ̀2 term follows identical logic and so
we simply state the result, which is∫

B4(R)
d4r

L̂xyeiθ̀2

eiθ̀2
= h̄

π2

2
R4 sin2 η2. (118)

Putting these together and recalling that n = N/V and V =
π2R4/2, we have

Erot = 2Nh̄�zw + Nh̄��(cos2 η1 + sin2 η2) (119)

for the rotational energy of two rigid, intersecting vortex
planes under unequal frequency double rotation, with η1 (η2)
denoting the angle that the first (second) plane is tilted com-
pared to the x-y (z-w) rotation plane.
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2. Vortex-vortex interaction energy

Second, we consider the hydrodynamic vortex plane inter-
action previously derived in Sec. V, which, as we state again
here, is calculated from

Evv = m
∫

ρv1 · v2d4r. (120)

As this depends on the dot product between the velocity fields
of each individual vortex, this energy is entirely dependent
on the skewness η of the two planes, which measures how
far from being mutually orthogonal the vortex planes are (see
Sec. V for details). The most direct way to find η is to take the
acute and grave coordinates and define a rotation transforming
between them. Recalling that each of the vortex planes is a
rotation plane of a left isoclinic rotation ML, we can use our
result from Sec. III B that the transformation between them
has the form [cf. Eq. (35)](

r̀1eiθ̀1

r̀2eiθ̀2

)
=

(
eiφ1 cos η eiφ2 sin η

−e−iφ2 sin η e−iφ1 cos η

)(
ŕ1eiθ́1

ŕ2eiθ́2

)
, (121)

where η ∈ [0, π/2] and φ1,2 ∈ [0, 2π ). Substituting Eq. (108)
into Eq. (107) gives a relation of this form; specifically, exam-
ining the top left entry of the matrix allows us to relate η to
η1, η2, and ϕ as

eiφ1 cos η = cos η1 cos η2 + e−2iϕ sin η1 sin η2. (122)

Taking particular values of ϕ in this equation will give us
intuition for how this parameter corresponds to the direction
of the tilt, as mentioned previously, and hence allow us to
deduce the form of the vortex-vortex interaction. In particular,
we will examine the cases in which ϕ is a multiple of π/2,
as this renders the RHS of Eq. (122) real and non-negative,
allowing us to simplify this equation by choosing φ1 = 0.
Specifically, when ϕ = 0 or π we have

cos η = cos(η1 − η2) → η = |η1 − η2|, (123)

while ϕ = π/2 or 3π/2 gives

cos η = cos(η1 + η2) → η = η1 + η2. (124)

Note that cos(η1 + η2) is non-negative due to the constraint
on η1,2 [Eq. (109)].

To understand these special cases let us look at the equa-
tions of the vortex planes directly. Substituting ϕ = 0 into
Eqs. (111) and (112) gives

ŕ1eiθ́1 = cos η1(x + iy) + sin η1(z + iw), (125)

r̀2eiθ̀2 = cos η2(z + iw) − sin η2(x + iy) (126)

such that the two planes are defined by

x = − tan η1z, y = − tan η1w for ŕ1eiθ́1 = 0, (127)

z = tan η2x, w = tan η2y for r̀2eiθ̀2 = 0, (128)

while the same procedure for ϕ = π/2 gives

x = tan η1w, y = − tan η1z for ŕ1eiθ́1 = 0, (129)

z = − tan η2y, w = tan η2x for r̀2eiθ̀2 = 0. (130)

(a) (b)

FIG. 3. Possible configuration of tilted vortex planes relative
to the x-y and z-w planes, visualized as lines in two dimensions,
for special values of ϕ. (a) When ϕ = 0 the planes are given by
Eqs. (127) and (128), which describe a pair of lines in (x, z) space
and an identical pair of lines in (y,w) space, plotted simultaneously.
(b) When ϕ = π/2 we have instead Eqs. (129) and (130), describing
a pair of lines in (x, w) space and their reflection about the horizontal
axis in (y, z) space, which we plot on the same graph here by trans-
forming (z,w) to (w, −z). Equivalent pictures for ϕ = π and 3π/2,
respectively, can be found by reflection about the vertical axis.

In the ϕ = 0 case, Eqs. (127) and (128) describe a pair of
lines in the 2D (x, z) subspace and identical lines found by
taking the first lines and sending (x, z) → (y,w). Similarly,
when ϕ = π/2 we have a pair of lines in the (x,w) subspace
and a pair in the (y, z) space which are related to the first pair
by (x,w) → (y,−z). For ϕ = π, 3π/2 note that ϕ → ϕ + π

transforms the equations for the planes simply by z → −z and
w → −w.

Since the equations separate into lines in 2D subspaces
this way, we can visualize the planes by simply plotting these
lines, as shown in Fig. 3. From Fig. 3(a) it is clear that when
ϕ = 0 (or π ) the vortex planes are tilted away from the coor-
dinate planes in the same direction. Similarly, Fig. 3(b) shows
that when ϕ = π/2 or 3π/2 the vortices are tilted in opposite
directions and hence towards each other. Other values of ϕ

interpolate between these two scenarios such that the two
vortex planes are not tilted along a common direction. This
visual understanding also agrees with the two expressions for
η, given in Eqs. (123) and (124).

Now we can use physical intuition to deduce, without any
further calculation, the most energetically favorable value for
ϕ for any fixed values of the parameters η1,2. Recalling that the
rotational energy was independent of ϕ, we need only consider
the interaction potential between the two vortices, given by

Evv = −4μN
ξ 2

R2
ln cos η, (131)

which is positive and therefore repulsive. This result was
derived in Sec. V in the case that φ1,2 = 0; however, these
angles do not affect the interaction since they can be absorbed
into the definition of θ́1,2 and θ̀1,2. Since this interaction is
repulsive we can clearly see that it is maximized when ϕ =
π/2 or 3π/2 as the vortex planes are tilted directly toward
one another. Equally, in the other case where ϕ = 0 or π the
vortices are tilted in the same direction and the interaction
energy cost is minimized. Therefore, we can set η = |η1 − η2|
and proceed with finding the minimum energy as a function of
the remaining parameters η1,2. For concreteness we will also
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set ϕ = 0, but note that ϕ = π provides an equivalent solution
with the same energy.

3. Finding the minimum

Our final step is to add the rotational and the vortex-vortex
interactions energies together and to minimize the resulting
sum. First, we define quantities that will make the calcula-
tion simpler. Let E⊥

rot = Nh̄(�xy + �zw ) denote the reduction
in energy due to rotation of the state with orthogonal vor-
tex planes along the x-y and z-w planes [cf. Eq. (58)]. We
then define a dimensionless energy density relative to E⊥

rot,
given by

ε = R2

2ξ 2μN
(−Erot + E⊥

rot + Evv), (132)

and a dimensionless frequency difference ω = R2h̄��/2ξ 2μ.
Note that in units of the critical frequency �c

[Eq. (59)], this dimensionless frequency is given by
ω = ln(2.07R/ξ )��/�c. We then must find the minimum of

ε = ω(1 − cos2 η1 − sin2 η2) − 2 ln cos(η1 − η2). (133)

Note that we have not needed to include the absolute value
on the RHS of Eq. (123) since cos |x| = cos x. Additionally,
the logarithmic divergences as η1 − η2 → π/2 are unphysical
as there the vortex planes coincide and the constant density
approximation that we took in Sec. V fails.

Setting the derivatives of this energy to zero gives us the
simultaneous equations

∂ε

∂η1
= ω sin 2η1 + 2 tan(η1 − η2) = 0, (134)

∂ε

∂η2
= −ω sin 2η2 − 2 tan(η1 − η2) = 0. (135)

First, examining the sign of the terms in each of these equa-
tions (recalling that η1,2 < π/2), we must have that

η1 � η2. (136)

Physically, this is because if η1 is greater than η2 then the force
from the repulsive interaction acts in the same direction as the
force from the rotational energy. Therefore, we can eliminate
the absolute value in Eq. (123) such that

η = η2 − η1. (137)

Second, Eqs. (134) and (135) together imply sin 2η1 =
sin 2η2. There are two ways to satisfy this, i.e., by taking

η1 = η2 (138)

or

η1 = π

2
− η2. (139)

The former case is precisely the condition that the two planes
are orthogonal, which eliminates the interaction term. Sub-
stituting Eq. (138) into Eqs. (134) and (135) then leads to
the result η1 = η2 = 0, the state we have previously studied
[14]. This state has an energy of ε = 0 by definition, since
ε was defined relative to this state. Moreover, we also note
that if we substitute Eq. (138) into Eq. (133), we see that
any state with η1 = η2 has energy ε = 0. Interestingly, these
orthogonal states are still all degenerate despite the isoclinic

symmetry being broken when ω �= 0. The stationary point at
(η1, η2) = (0, 0) is therefore a saddle point, since it has this
line of constant energy passing through it.

The latter case is much more interesting as it arises from
competition between the interaction and rotational energies.
Note that the relation between the tilt angles [Eq. (139)] en-
sures that the two planes are symmetrically tilted with respect
to the rotation planes of the superfluid; what we mean by this
is that each vortex makes the same angle with the x-y plane
and also with the z-w plane. This can be seen by considering
Fig. 3 and noting that the vortices are each tilted away from the
x-y plane by angles of π/2 − η1 and η2, respectively. When
η1 = π/2 − η2 these two angles are equal, and the same is of
course true with the angles the vortices make with the z-w
plane. Using Eqs. (137) and (139), we can write both the
angles η1,2 in terms of the skewness as

η1 = π

4
− η

2
, (140)

η2 = π

4
+ η

2
, (141)

which makes it clear that η1 � π/4 and η2 � π/4. At this
point it is worth restating our Ansatz, since it now only de-
pends on η. Recall that the order parameter is defined as
[Eq. (106)] ψ = n1/2eiθ́1 eiθ̀2 , with these angles defined by
Eqs. (111) and (112). Substituting ϕ = 0 and the above equa-
tions for η1,2, Eqs. (111) and (112) become

ŕ1eiθ́1 = sin

(
π

4
+ η

2

)
r2eiθ2 + sin

(
π

4
− η

2

)
r1eiθ1 ,

(142)

r̀2eiθ̀2 = sin

(
π

4
+ η

2

)
r2eiθ2 − sin

(
π

4
− η

2

)
r1eiθ1 , (143)

where we have used that cos(π/4 ± η/2) = sin(π/4 ∓ η/2).
Note that we can now clearly see that two planes are arranged
symmetrically, in the sense that after a rotation of angle π

in the x-y plane (θ1 → θ1 + π ) the two equations (142) and
(143) swap and hence the two vortex planes swap (note that
this is also true for a π rotation in the z-w plane, up to a shift
in the angles θ́1 and θ̀2). This symmetry can also be seen in the
equations for the vortex planes [Eqs. (127) and (128)], which
are now given by

z = ± tan

(
π

4
+ η

2

)
x, w = ± tan

(
π

4
+ η

2

)
y, (144)

where + and − refer to the planes given by r̀2eiθ̀2 = 0 and
ŕ1eiθ́1 = 0, respectively. From these equations we can actually
see that this configuration is invariant under a π rotation in
any one of the six coordinate planes.

We also now see from these equations that both vortices are
closer in angle to the z-w plane than they are to the x-y plane.
An interesting consequence of this is that when η = 0 the
orthogonal state we get does not consist of vortices spanning
the x-y and z-w planes. Instead the vortices occupy a pair of
diagonal (in terms of the laboratory frame) planes, given by
z = ±x and w = ±y. This does not matter when the frequency
difference is zero, as then the rotation is isoclinic and these
diagonal planes are also rotation planes (cf. Sec. III), but for
any other value of �� the only rotation planes are the x-y and
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z-w planes, so it is perhaps surprising that none of these states
ever occupy them.

Substituting Eqs. (140) and (141) into Eq. (134) gives the
relation between ω and the optimal skewness

ω = 2 tan η

cos η
, (145)

which rearranges to the quadratic equation for sin η,

sin2 η + 2

ω
sin η − 1 = 0. (146)

This has only one solution for sin η in the interval [−1, 1],
given by

sin η = (1 + ω2)1/2 − 1

ω
. (147)

Physically, this means that the optimal skewness vanishes in
the limit that ω (i.e., the frequency difference in rotation) goes
to zero, corresponding to the situation where the two vortex
planes become completely orthogonal, as expected. In the
opposite limit that ω becomes very large, this formula instead
predicts that sin η → 1 and hence η → π/2, meaning that the
angle between the two planes goes to zero. This corresponds
physically to the two planes both aligning with the z-w plane
so as to maximize the energetic reduction due to the higher
rotation frequency �xy > �zw. However, this limit should also
be treated with caution, as at high enough frequencies we
expect that it will become energetically favorable to introduce
more vortices and/or more complicated vortex structures, as
briefly discussed in Appendix E. We also expect there will
be other contributions to the energy, which we have neglected
here; for example, our assumption of a constant density profile
will break down when the two vortex planes become very
close together.

Now we can find the energy of this optimally skewed state;
using Eqs. (137), (139), and (141), the energy [Eq. (133)]
becomes

ε = ω(1 − 2 sin2 η2) − 2 ln cos η (148)

= ω cos
(π

2
+ η

)
− ln cos2 η. (149)

Rearranging Eq. (145), we can quickly find that cos2 η =
2 sin η/ω, and after using cos(π/2 + η) = − sin η we have
everything in terms of sin η. Substituting Eq. (147) then gives
the energy density for the optimal skewed states in terms of ω

as

ε = −[(1 + ω2)1/2 − 1] + ln

(
ω2

2[(1 + ω2)1/2 − 1]

)
. (150)

For small and large ω we have the asymptotics

ε = −ω2

2
+ o(ω2) as ω → 0, (151)

ε = −ω + o(ω) as ω → ∞. (152)

Recall that ω ∝ R2��; therefore, these limits can be reached
by decreasing or increasing either �� or the radius R.

This energy [Eq. (150)] is also negative for all ω > 0,
which means our simplified model has predicted that this
tilted vortex plane state is lower in energy than the orthogonal

FIG. 4. Difference in dimensionless energy density [Eq. (133)]
between the skew vortex plane Ansatz and the orthogonal configura-
tion as a function of the tilt angles η1,2. The dimensionless frequency
difference has been set to ω = 2; for this value the minimum occurs
at a skewness of η ≈ 38◦ as calculated from Eq. (147). Contour lines
are included as guides to the eye to highlight the degeneracy along
the line η1 = η2 and the minimum in the upper left. We have omitted
values of ε > 2 to avoid the logarithmic divergences at (0, π/2) and
(π/2, 0).

state for any frequency difference �� > 0. Figure 4 shows
the energy landscape as a function of both tilt angles for di-
mensionless frequency difference ω = 2. As expected, we see
a line of constant energy along η1 = η2, a minimum energy
along the line η1 = π/2 − η2, and a range of tilt angles for
which the energy is negative.

C. Numerical results

We now compare the above analytical predictions for
tilted vortex planes to numerical results obtained using the
methods described in Sec. IV C. We choose an initial phase
profile identical to that of our nonorthogonal vortex Ansatz
[Eq. (106)], where the acute and grave coordinates are given
by Eqs. (142) and (143), respectively, with a chosen value for
the skewness η. We then use Eq. (145) to calculate the fre-
quency difference �� that will energetically favor the chosen
value of η if the model is accurate, and then we run the ITEM
with this value of �� on our initial state with added noise.

Once the ITEM is converged, we compare the geometry
of the vortex core in the numerical final state with that of
our predictions. Figure 5 shows the numerical vortex core
for �x = 0.5ξ , which corresponds to a system radius of
R ≈ 20.6ξ and with frequencies �zw = 0.85�c and �xy ≈
1.43�c, corresponding to a predicted skewness of η = 40◦.
Figures 5(a) and 5(b) show two different rotations of the core
in (x, y, z) space, with the points colored according to their w

value (see the color bar on the far right). Already we can see
that, at large distances from the origin, the vortex cores look
like the predicted tilted planes, symmetrically arranged with
respect to the rotation planes of the superfluid. Figure 5(c)
shows a side-on view where the vortex core appears approx-
imately as a pair of lines, just as in Fig. 3. On top of these
data points we have plotted the lines z = ± tan(π/4 + η/2)x
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FIG. 5. Numerical vortex core in the final state of the ITEM-evolved 4D GPE under double rotation [Eq. (45)]. The spatial step size
was �x = 0.5ξ , corresponding to R ≈ 20.6ξ . Rotation frequencies were �zw = 0.85�c and �xy ≈ 1.43�c, chosen such that the predicted
skewness was precisely η = 40◦. The initial phase profile was given by that of the Ansatz described in Sec. VI B, with this predicted value of
η and added noise. (a) and (b) Two different views of the core in (x, y, z) space, with points colored according to their w value. The overall
structure resembles the skew planes of the Ansatz, but (b) clearly shows how the core curves away from these planes to form an avoided
crossing [15]. (c) Points projected down into (x, z) space (again with w shown as color) as well as the lines z = ±x tan(π/4 + η/2), which the
theory predicts that the core points should lie along from this perspective. The agreement between these analytical lines and numerical points
is very good.

[cf. Eq. (144)], which are the predicted lines on which the
numerical data should lie. As can be seen in the figure, there is
excellent agreement between these numerical final states and
our analytic predictions. However, note that near the origin
we see [most prominently in Fig. 5(b)] an avoided-crossing
structure [15], as also discussed further below.

In addition to the above qualitative comparisons of the
numerical and predicted vortex cores, we have made a quan-
titative analysis of the accuracy of our predicted energy
[Eq. (150)]. To do this we performed the ITEM for a range
of different frequencies �zw and ��, again using our Ansatz
to determine the initial phase, and then calculating the energy
of each final state. The procedure for these calculations was as
follows. We fixed a value of �zw and then ran the ITEM with
�� = �c on our prescribed initial state. From the final state
we calculated the energy, and then to speed up calculations
we used this final state as the initial state for the next ITEM
run with �� = 0.9�c. This process was repeated down to the
isoclinic point �� = 0. Finally, many of these loops were run
at once with different values of �zw so that we could explore
an area in frequency space rather than just a line. The results
for these energies are shown in Fig. 6, with each value of
�zw corresponding to a different color. On top of these points
we have plotted lines given by performing a single fit of this
data over the area in frequency space to a redimensionalized
version of Eq. (150) given by

E = E0 − Nh̄(�� + 2�zw ) + 2μN
ξ 2

R2

[
1 −

√
1 + R4h̄2��2

4ξ 4μ2

+ ln

(
R4h̄2��2

4ξ 4μ2

)
− ln

(√
1 + R4h̄2��2

4ξ 4μ2
− 1

)]
,

(153)

where E0 is simply the energy of the system when the vor-
tex planes are orthogonal and there is no external rotation.
Since ξ and μ are both external parameters in the numerics,
the only parameters in the fit were R and E0, the energy at
�zw = �xy = 0. Furthermore, R is not truly a free parameter
as it is determined up to boundary effects by the radius of the
simulated region, which is roughly 20.6ξ . The fit produced a
value of R ≈ 19.5ξ , which is consistent if we estimate the size
of the boundary region to be roughly equal to ξ . Additionally,
the agreement between the numerical points and lines from

FIG. 6. Numerical (points) and analytical (solid lines) results for
the energy of aligning nonorthogonal vortex states, as a function
of �zw and ��, described in this section, as well as numerical
results for the energy of the orthogonal vortex state (dotted lines).
The resolution was set to �x = 0.5ξ , giving a system radius of
R ≈ 20.6ξ . All of the analytical lines were generated by a single fit of
the numerical points to Eq. (153), with E0 and R as fitting parameters.
The fit produced E0 ≈ 0.71 µN and R ≈ 19.5ξ and agrees excellently
with the numerical data. The numerical zero-vortex ground state in
this system has an energy of Ehom ≈ 0.67 µN, which suggests that
the numerical critical frequency in this system is very close to 0.9�c,
where �c is our predicted value [Eq. (59)].
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FIG. 7. Minimum distance rmin of the vortex core from the origin,
as a function of �zw and ��, for the nonorthogonal numerical states
whose energy is shown in Fig. 6. This quantity captures the size of
the avoided-crossing region seen in Fig. 5 and similar final states.
As shown above, this region generally shrinks as either frequency
increases. These data are not particularly smooth, which may be due
to some sampling error from the discretization of the Cartesian grid.

the fit is excellent. We also attempted to track the energy
of the theoretically predicted skew plane branch at a frequency
of �zw = 1.3�c, by performing two of these iterative ITEM
runs from �� = �c down to �� = 0. Interestingly, as we
decreased �� for these runs the states we obtained increas-
ingly diverged from the skew plane states, even down to the
isoclinic point at �� = 0. For plots of these states at the
isoclinic point, see Appendix E.

The dotted line shows the numerical energy of the orthogo-
nal state [14] as a function of the frequencies. This was found
by running the ITEM once, with �zw = �xy = 1.2�c, and
then calculating the energy of this fixed final state for different
values of �zw and ��. As shown in Fig. 6, the energies of
the orthogonal state form dotted straight lines that meet the
fit lines tangentially at �� = 0, which is exactly as predicted
since the skewness of the tilted state is approaching zero in
this limit. Finally, note that the numerical zero-vortex ground
state in this system has an energy of Ehom ≈ 0.67 µN, which is
roughly equal to the energy of the skew and orthogonal vortex
states when �zw = 0.9�c and �� = 0. This means that the
value of the numerical critical frequency in this system is very
close to 0.9�c, where �c is our predicted value [Eq. (59)].

To get an idea of the size of the avoided crossing as a func-
tion of the frequencies, we have taken each state represented in
Fig. 6 and calculated the minimum distance between its vortex
core and the origin, which we denote by rmin. This is plotted
in Fig. 7, which shows that, in general, the avoided crossing
decreases in size with both �zw and ��. Note that these lines
are not perfectly smooth and also change their ordering as
�� changes, suggesting that there are multiple metastable
branches being sequentially followed by our numerical states.
Nevertheless, these must be very close together in energy,
since the fit in Fig. 6 is very good, and the long-range core
structure has good agreement with the predicted state.

Finally, we have further tested our analytical results by
using a different initial phase profile in the numerics. We
still use the tilted plane Ansatz [Eq. (106)], but with differ-
ent values of η1 and η2 than those predicted. Instead of the
predicted values η1 + η2 = π/2 [Eq. (139)], we chose η1 = δ

and η2 = η + δ, where η is the skewness of the theoretically
predicted configuration and δ is a small angle added to ensure
all symmetries are broken. The corresponding planes still have
skewness given by η but are now asymmetric with respect
to the planes of the external rotation. This initial state (with
added noise) converges to the same final state as in Fig. 5 for
the same value of all parameters (�x = 0.5ξ , corresponding
to R ≈ 20.6ξ , and �zw = 0.85�c and �xy ≈ 1.43�c, corre-
sponding to η = 40◦), showing that this predicted state is
likely the ground state in this regime. However, at a higher
value of �zw = 1.25�c, we find very different final states of
the ITEM depending on which initial phase profile is used.
Specifically, using the predicted phase profile (with added
noise), we find the same final states as before, with just as
good agreement with the analytics. Using the asymmetric
phase profile (with added noise) described above, we find very
different vortex core structures, with slightly higher energies
than the theoretical states (see Appendix E).

VII. CONCLUSION

In the first part of this section we focus on summarizing
the main conclusions of our paper and highlighting the open
questions that directly follow from our study. In the second
part of this section we briefly discuss the more general fu-
ture outlook for research into topological excitations in 4D
superfluids, looking beyond the physics of the minimal model
studied in this paper.

A. Summary

In this paper we have demonstrated that stationary states of
the 4D GPE under unequal-frequency double rotation can host
complicated vortex core structures consisting of skew planes
and curved surfaces. This work generalizes Ref. [14], which
focused on completely orthogonal and rigid vortex planes, and
lays the groundwork for Ref. [15], which explores whether a
different configuration of tilted vortex planes can be energeti-
cally favored under equal-frequency double rotation.

In more detail, we first showed in Sec. V that nonorthog-
onal vortex planes interact hydrodynamically, in contrast to
the case of orthogonal planes, and we analytically derived
the form of this interaction in the special cases of planes
related by an isoclinic or simple rotation. Understanding this
interaction potential in the general double-rotation case would
be an interesting topic for future work, allowing our analytics
to extend to the full configuration space of nonorthogonal
vortex planes.

Second, we approached the problem of a 4D hyperspheri-
cal superfluid doubly rotating at unequal frequencies, under
the assumption that the vortices remain rigid planes. In
Sec. VI A we showed that a single vortex plane in this sys-
tem will always tend to fully align with the higher of the
two rotation frequencies. Then, using this result, we tack-
led the case of an intersecting vortex pair in Sec. VI B,
proposing a nonorthogonal such pair as an Ansatz for the
ground state. This was based on the observation that for both
planes to benefit from the higher frequency they had to be
skewed in a purely aligning sense, thereby inducing repulsive
vortex-vortex interaction from our result in Sec. V. We built an
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analytic model based simply on the balance between these two
energies, which predicted that a skew configuration of vortex
planes could indeed have lower energy than an orthogonal
one. With this model we were able to find which of these
configurations was optimal and calculated the predicted tilt
angles and energy. Comparing these results with numerics,
we found excellent agreement, despite the fact that we did not
account for the avoided crossing of these states that was seen
numerically, but which will be discussed further in Ref. [15].
At high frequencies we also found that more exotic states with
highly curved vortex surfaces could appear (see Appendix E),
suggesting the ground state of a doubly rotating superfluid is
in general very complex.

The results presented in this paper show that the physics
of vortex surfaces in four dimensions can be incredibly rich,
even in the absence of dynamics. The fact that curved and
tilted vortex surfaces can be stable and exist at low energies
in such a minimal model is a dramatic departure from the
physics of lower dimensions under rotation, suggesting a vast
configuration space to explore and investigate in the future.

B. General outlook

In this paper we have focused on a minimal theoretical
model for a 4D superfluid based on the 4D GPE under ro-
tation. This is motivated as the simplest extension of textbook
2D and 3D superfluids (cf. Sec. II) into higher spatial dimen-
sions [14]. However, in the future, it will be both interesting
and relevant to go beyond this simple model to study more
realistic systems with the aim of making an experimental
proposal and to explore the even richer vortex physics that
will likely emerge.

Recent interest in higher spatial dimensions has been
sparked by various theoretical and experimental works aimed
at exploring signatures of single-particle physics in
artificial 4D systems, based, e.g., on topological pumping
[16,19,20,72–80], synthetic dimensions [18,26,31–35,38–
45,47–53,55,56,81–105], artificial parameter spaces
[21–24,106–108], and the connectivity of classical electrical
circuits [25–29]. Of these schemes, that of synthetic
dimensions in particular may provide a way in the future
to experimentally explore the physics of a 4D superfluid. In
this general approach, a set of states or internal degrees
of freedom are externally coupled together and then
reinterpreted as lattice sites along an extra spatial dimension
[31]. Such a synthetic dimension can then be combined
with other real or synthetic dimensions to allow particles to
explore a system with the desired effective dimensionality,
e.g., four dimensions. Interest in this approach has grown
dramatically in recent years, with significant theoretical and
experimental progress in implementing synthetic dimensions
across ultracold atoms [33–37,39,41,56,85–87], photonics
[13,18,42,44–46,49,83,88,93,103,104,109–111], and other
systems [50–53]. Within ultracold atoms, for example,
synthetic dimension schemes have so far been realized based
on using internal atomic states [31–34,41,56], momentum
states [35,39,112], harmonic trap states [37,38,55], orbital
states [102], superradiant states [99], and Rydberg states
[97,101], among others. Of particular note, a recent
experiment has realized a 4D atomic quantum Hall system

made up of two synthetic dimensions of internal states as well
as of two real dimensions [56]. Combining such a scheme
with the interparticle interactions necessary for superfluidity
may open the way for the experimental investigation of 4D
interacting states, such as 4D vortices, in the future.

However, as we discussed in our previous paper [14],
the 4D GPE that we have considered [Eq. (47)] is a toy
model lacking elements which are necessary for experimen-
tal relevance to current synthetic dimension approaches. For
example, we have considered a purely hypothetical four-
dimensional space that is isotropic and continuous and we
have chosen a hyperspherical hard-wall boundary to preserve
the rotational symmetry. However, the motion, interparticle
interactions, and boundary conditions along any synthetic di-
mensions can differ from those in real space. In practice, it is
likely that an experiment may contain both real and synthetic
dimensions, which would break SO(4) rotational symmetry.
This will affect the behavior of the tilted and curved vortex
planes that we have studied, adding in additional physics that
will compete with the rotational and hydrodynamic energies
that we have considered. Additionally, most synthetic dimen-
sion implementations are discrete with hard-wall boundary
conditions and hence are best described by tight-binding mod-
els on a lattice. It is then important to consider how many
synthetic lattice sites are spanned by the typical length scales
of the problem. If the answer is many, then a continuum
approximation can be appropriate in the mean-field regime.
If not, then a tight-binding model must be used and rich
physics can be expected to arise from competition between
these length scales and the synthetic lattice spacing.

Moreover, synthetic dimensions can also have features that
are rarely seen in typical tight-binding models and which
in themselves warrant further research. These can include
nonuniform hoppings, limited system sizes, nonequilibrium
effects from external driving, and long-range interactions
along the synthetic dimension [32,33]. All of these are details
that should be considered to make this work more experimen-
tally relevant, but they also depend strongly on the experiment
in question. For this reason, and for simplicity, we have stud-
ied a minimal extension of 3D superfluid physics into four
dimensions, in order to begin investigating what is possible in
higher dimensions.

An obvious direction of future work is therefore to connect
these results to experiment, by studying more complex models
that take experimental details into account. We hope that such
research can build upon our work by using similar techniques
and Ansätze and that more physical models will yield even
richer behavior. One simple modification that could still have
interesting effects is to keep the continuous, isotropic 4D GPE
model but to change the geometry to one which breaks the
rotational symmetry and better reflects the boundary condi-
tions in a synthetic dimension. A possible choice would be
to pick out one or two directions as synthetic and give them
independent hard-wall boundaries, i.e., w ∈ [−L, L], while
retaining a rotationally symmetric geometry in the remaining
coordinates.

There are many other interesting avenues for extending our
research, aside from making the model more relevant to ex-
periment. Our numerical stationary states with curved vortex
surfaces raises the interesting possibility that other stationary
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states under rotation could contain closed vortex surfaces that
do not meet the boundary of the system. These would be
the four-dimensional generalization of vortex loops (including
links and knots) in three dimensions [113–118]. Additionally,
there is a far richer classification of closed surfaces [119]
than of closed loops, suggesting there could be more possible
closed vortex configurations in four dimensions.

It would also be interesting to study vortex surface config-
urations for even higher rotation frequencies. The presence of
intersection, curvature, and avoided crossings in our vortex
core results suggests that vortices can lose their individual
character in four dimensions. It is therefore not entirely clear,
even in some low-energy stationary states, whether we can
meaningfully assign an integer to the number of vortices in the
system. In lower dimensions the number of vortices becomes
very large in the rapidly rotating limit, where the vortices
form an Abrikosov lattice [8]. Investigating the limit of high
frequency in one or both planes of rotation in four dimensions
is therefore an interesting and open problem, due to the more
malleable nature of the vortex core(s).

This work can also be extended to consider more inter-
esting order parameters in four dimensions. Certain phases
of spinor condensates in three dimensions are known to host
non-Abelian vortices [120,121], which have more interesting
behavior when they intersect and reconnect. Given that inter-
section and reconnection are also relevant for the behavior
of vortex planes, it is natural to ask what phenomena would
arise for non-Abelian vortices in four dimensions. Finally,
this work also represents a small step towards the strongly
interacting fractional quantum Hall effect in four dimensions
[122,123], due to the analogy between a rotating superfluid
and a quantum Hall system [3].
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APPENDIX A: GENERAL ROTATION OF A PLANE
IN FOUR DIMENSIONS

We want to derive the simplest rotation to describe a plane
tilting in four dimensions without loss of generality. Consider
the plane P defined in 4D Cartesian coordinates as the set
of solutions to x = y = 0 and another plane P′ as the image
of P under a double rotation. We will represent P′ as the
set of solutions to x′ = y′ = 0, where the primed coordinates
are related to the original coordinates by double rotation with
matrix M, that is, r′ = Mr. It will be useful to write this in a
block form such that⎛

⎜⎜⎝
x′
y′
z′
w′

⎞
⎟⎟⎠ =

(
A B
C D

)⎛
⎜⎜⎝

x
y
z
w

⎞
⎟⎟⎠, (A1)

where A, B,C, D are the 2 × 2 blocks of M. Rotations in
four dimensions generally have six free parameters, but we
can reduce this down to two for the matrix M by exploiting
the symmetry of P under certain rotations and by using our
freedom to choose a basis. First, using the shorthand for a 2D
rotation matrix

R(φ) =
(

cos φ − sin φ

sin φ cos φ

)
,

note that, for arbitrary φ1,2, we can redefine M to be

M =
(

A B
C D

)(
R(φ1) 0
0 R(φ2)

)
, (A2)

without changing P′. The reason for this is that the initial
rotation we have added is a double rotation in the x-y and
z-w planes (cf. Sec. III), which leaves the plane P invariant,
such that the combined transformation results in the same
transformed plane P′. Second, we will use another double
rotation in the x-y and z-w planes to change the basis, as⎛

⎜⎜⎜⎝
x
y
z
w

⎞
⎟⎟⎟⎠ →

(
R(φ3) 0

0 R(φ4)

)⎛
⎜⎜⎜⎝

x
y
z
w

⎞
⎟⎟⎟⎠. (A3)

Denoting this matrix by R(φ3, φ4), we have that M →
R(φ3, φ4)MR(−φ3,−φ4) under this transformation. Combin-
ing this with the redefinition from Eq. (A2) we can write, for
arbitrary φ j ( j = 1, 2, 3, 4),

M =
(

R(φ3) 0
0 R(φ4)

)(
A B
C D

)(
R(φ1) 0

0 R(φ2)

)
, (A4)

without any loss of generality. Note that we have made the
shifts φ1 → φ1 + φ3 and φ2 → φ2 + φ4 for simplicity. We
can use these four free parameters to transform the upper left
(A) and lower right (D) blocks into diagonal 2 × 2 matrices.
To see this, start by expanding the product in Eq. (A4),

M =
(

R(φ3)AR(φ1) R(φ3)BR(φ2)

R(φ4)CR(φ1) R(φ4)DR(φ2)

)
. (A5)

Defining the elements of A in the standard fashion

A =
(

a11 a12

a21 a22

)
(A6)

and employing the shorthand s j = sin φ j and c j = cos φ j , the
off-diagonal elements of A′ = R(φ3)AR(φ1) are given by

[A′]12 = −a11s1c3 + a12c1c3 + a21s1s3 − a22c1s3, (A7)

[A′]21 = a11c1s3 + a12s1s3 + a21c1c3 + a22s1c3. (A8)

Setting these both to zero and taking the sum and difference
of the two gives the simultaneous equations

(a11 − a22) sin(φ3 − φ1) + (a21 + a12) cos(φ3 − φ1) = 0,

(a11 + a22) sin(φ3 + φ1) + (a21 − a12) cos(φ3 + φ1) = 0,

which always have solutions for φ1,3. Similarly, R(φ4)DR(φ2)
can be made diagonal by choosing particular values for φ2,4.
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We now look at the full transformed matrix M to see what
form the off-diagonal blocks must take. The matrix now reads

M =

⎛
⎜⎜⎝

a1 0 b11 b12

0 a2 b21 b22

c11 c12 d1 0
c21 c22 0 d2

⎞
⎟⎟⎠, (A9)

where a1,2 and d1,2 now denote the only nonzero elements of
the upper left and lower right blocks after these blocks have
been made diagonal. To proceed further, we will first focus on
the upper right B block. Normalization of the first two rows of
M can be ensured, without loss of generality, by the form

M =

⎛
⎜⎜⎝

cos α1 0 − sin α1 cos β1 − sin α1 sin β1

0 cos α2 − sin α2 cos β2 − sin α2 sin β2

c11 c12 d1 0
c21 c22 0 d2

⎞
⎟⎟⎠

(A10)

such that orthogonality of the first two rows now implies

sin α1 sin α2 cos(β1 − β2) = 0. (A11)

This has sin α1 = 0 or sin α2 = 0 as special cases, which we
ignore for now since these each lead to a simple rotation of
the plane P (cf. Sec. III). What we will derive instead is the
general case for double rotation by requiring β2 = β1 + π/2,
and this general case will actually include the simple rotation
as a special case. Proceeding, we have

M =

⎛
⎜⎜⎝

cos α1 0 − sin α1 cos β1 − sin α1 sin β1

0 cos α2 sin α2 sin β1 − sin α2 cos β1

c11 c12 d1 0
c21 c22 0 d2

⎞
⎟⎟⎠.

(A12)

Orthogonality of the last two columns gives

(sin2 α1 − sin2 α2) cos β1 sin β1 = 0. (A13)

Again, we have a special case, given by α2 = α1, which will
give an isoclinic rotation of the plane P (cf. Sec. III). We will
ignore this solution for now, and again find that it can be found
as a particular case of the remaining solution. We therefore
require either cos β1 = 0 or sin β1 = 0. This leads to the two
forms

M =

⎛
⎜⎜⎝

cos α1 0 0 − sin α1

0 cos α2 sin α2 0
c11 c12 d1 0
c21 c22 0 d2

⎞
⎟⎟⎠, (A14)

M =

⎛
⎜⎜⎝

cos α1 0 − sin α1 0
0 cos α2 0 − sin α2

c11 c12 d1 0
c21 c22 0 d2

⎞
⎟⎟⎠, (A15)

respectively, up to an unimportant common sign in the upper
right block which can be absorbed into the definition of α1

and α2. Furthermore, these two forms are related to each
other by a change of basis and redefinition of parameters. We
therefore choose the second form without loss of generality.
Orthonormality of the columns and the last two rows now
allows us to determine the remaining unknowns such that we
finally have⎛

⎜⎜⎝
cos α1 0 − sin α1 0

0 cos α2 0 − sin α2

sin α1 0 cos α1 0
0 sin α2 0 cos α2

⎞
⎟⎟⎠, (A16)

as is used in the main text.

APPENDIX B: INTEGRATION IN SKEW
DOUBLE POLAR COORDINATES

In this Appendix we derive an integral transformation from
4D Cartesian coordinates (x, y, z,w) into a nonorthogonal
coordinate system given by (x, y, z′,w′), where the primed
coordinates form another Cartesian framed related to the
unprimed one by a double rotation, and apply this to the
vortex-vortex interaction energy.

If we are only interested in preserving the relationship be-
tween the two planes defined by x = y = 0 and z′ = w′ = 0,
respectively, then without loss of generality we can choose
this double rotation to have the form⎛
⎜⎜⎝

x′
y′
z′
w′

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

cos α1 0 − sin α1 0
0 cos α2 0 − sin α2

sin α1 0 cos α1 0
0 sin α2 0 cos α2

⎞
⎟⎟⎠

⎛
⎜⎜⎝

x
y
z
w

⎞
⎟⎟⎠,

(B1)

as derived in Appendix A. As discussed in the main text,
here we will only deal with the special case where this dou-
ble rotation is isoclinic such that α2 = να1, with ν = ±1.
From here on we will employ the shorthand c = cos α1 and
s = sin α1. We will derive this integration over nonorthogonal
coordinates for the case of a 4D ball of unit radius, since
this geometry preserves the symmetry between the primed
and unprimed coordinates. The primed coordinates can be
introduced into the integral using Dirac deltas as

∫
B4(1)

dx dy dz dw =
∫

B4(1)
dz dw dx dy

∫
R2

dz′dw′δ(z′ − cz − sx)δ(w′ − cw − νsy)

= 1

c2

∫
B2(1)

dx dy
∫
R2

dz′dw′
∫

B2(R)
dz dw δ

(
z − z′ − sx

c

)
δ

(
w − w′ − νsy

c

)
, (B2)

where Bd (R) is the ball of radius R centered at the origin in d
dimensions, and here R2 = 12 − x2 − y2.

Our goal now is to eliminate z and w by evaluating the
corresponding integrals. This in turn will define the limits

013325-24



CURVED VORTEX SURFACES IN FOUR-DIMENSIONAL … PHYSICAL REVIEW A 110, 013325 (2024)

of integration for their primed counterparts. However, this
is more easily accomplished in double polar coordinates,
whereby ∫

B2(1)
dx dy =

∫ 1

0
r1dr1

∫ π

−π

dθ1,

∫
R2

dz′dw′ =
∫ ∞

0
r′

2dr′
2

∫ π

−π

dθ ′
2, (B3)∫

B2(R)
dz dw δ(z − z0)δ(w − w0)

=
∫ R

0
r2dr2

∫ π

−π

dθ2
1

r2
δ(r2 − r0)δ(θ2 − θ0), (B4)

where we have defined z0 = (z′ − sx)/c, w0 = (w′ − νsy)/c,
r2

0 = z2
0 + w2

0, and θ0 = arctan(z0,w0). We now integrate out
r2 and θ2 as ∫ R

0
dr2δ(r2 − r0) = �

(
R2 − r2

0

)
, (B5)∫ π

−π

dθ2δ(θ2 − θ0) = 1, (B6)

where we have used that �(R − r0) = �(R2 − r2
0 ) since both

R and r0 are non-negative. In double polar coordinates we
have that R2 = 1 − r2

1 and r2
0 = [r′2

2 + s2r2
1 − 2sr1r′

2 cos(θ ′
2 −

νθ1)]/c2. Substituting this into the Theta function on the RHS
of Eq. (B5) gives

�
(
R2 − r2

0

) = �
(
c2 − r2

1 − r′2
2 + 2sr1r′

2 cos(θ ′
2 − νθ1)

)
,

(B7)

where we have used that �(c2 ·) = �(·). Altogether this gives∫
B4(1)

dx dy dz dw = 1

c2

∫ 1

0
r1dr1

∫ π

−π

dθ1

∫ 1

0
r′

2dr′
2

×
∫ π

−π

dθ ′
2�

(
c2 − r2

1 − r′2
2

+ 2sr1r′
2 cos(θ ′

2 − νθ1)
)
, (B8)

where we have also used the spherical symmetry to restrict
the upper limit of r′

2 to 1, by comparison to that of r1. (This is
unnecessary, since the step function will ultimately control the
limits of whichever radius is integrated over first, but it makes
the equivalence between the primed and unprimed coordinates
fully clear.)

From now we will assume that the primed coordinates
will be integrated over first, so let us make the substitution
θ ′

2 = θ + νθ1, treating θ1 as a constant within the θ ′
2 integral,

in order to simplify the cosine. The limits of the θ integral
will be (−νθ1 − π,−νθ1 + π ), but this is arbitrary since we
are integrating over a full circle, so we can just as easily
write θ ∈ (−π, π ). In order to figure out exactly how the
step function translates into integration limits, consider the
inequality it enforces

c2 − r2
1 − r′2

2 + 2sr1r′
2 cos θ > 0. (B9)

This form is ideal for integrating over θ first, but it will
actually be easier to integrate over r′

2 first. For this reason we

will rewrite Eq. (B9) by completing the square for r′
2 as

(r′
2 − sr1 cos θ )2 < c2(1 − r2

1

) − s2r2
1 sin2 θ. (B10)

This inequality has no solutions for r′
2 where the RHS is

negative, so we immediately obtain

| sin θ | <
c
(
1 − r2

1

)1/2

sr1
, (B11)

as a constraint for θ . Note that this constraint is trivially satis-
fied whenever c(1 − r2

1 )1/2 > sr1, which occurs when r1 < c.
Given this condition for θ , we can then satisfy the inequality
(B10) when r′

2 ∈ (r−, r+), where

r± = sr1 cos θ ± [
c2

(
1 − r2

1

) − s2r2
1 sin2 θ

]1/2
. (B12)

The last step is to enforce the constraint r± � 0, since r′
2

cannot be negative. Rearranging each inequality gives

r− � 0 ⇐⇒ cos θ � (χ2 − sin2 θ )1/2, (B13)

r+ � 0 ⇐⇒ − cos θ � (χ2 − sin2 θ )1/2, (B14)

where χ = c(1 − r2
1 )1/2/sr1. Note that the quantity on the

RHS of both of these inequalities is always non-negative, so
r− � 0 requires θ ∈ [−π/2, π/2], while r+ � 0 is automati-
cally satisfied in this same region. With this consideration of
the sign of the LHS in mind, we can square both inequalities
and rearrange to find

1 � χ2 �⇒ r2
1 � c2 for r− � 0, (B15)

1 � χ2 �⇒ r2
1 � c2 for r+ � 0. (B16)

Combining all of this with the inequality (B11) gives us two
separate integration regions. We have

r1 ∈ (0, c), r′
2 ∈ (0, r+), θ ∈ (−π, π ) (B17)

and

r1 ∈ (c, 1), r′
2 ∈ (r−, r+), θ ∈ (−θ∗, θ∗), (B18)

where θ∗ = arcsin χ . Finally, we can write the full result as∫
B4(1)

dx dy dz dw = 1

c2

∫ c

0
r1dr1

∫ π

−π

dθ1

∫ π

−π

dθ

∫ r+

0
r′

2dr′
2

+ 1

c2

∫ 1

c
r1dr1

∫ π

−π

dθ1

∫ θ∗

−θ∗
dθ

∫ r+

r−
r′

2dr′
2.

(B19)

As stated in the main text, the vortex-vortex interaction en-
ergy is then given as

Evv = A′ s

c2

∫ c

0
dr1

∫ π

−π

dθ

∫ r+

0
dr′

2 cos θ

+ A′ s

c2

∫ 1

c
dr1

∫ θ∗

−θ∗
dθ

∫ r+

r−
dr′

2 cos θ (B20)

= A′(J1 + J2), (B21)

where we have introduced J1 and J2 as shorthand to de-
note the two integrals. We will now deal with each of these
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integrals separately. Focusing on the first term, we have

J1 ≡ s

c2

∫ c

0
dr1

∫ π

−π

dθ cos θr+ = s

c2

∫ c

0
dr1

∫ π

−π

dθsr1 cos2 θ + s

c2

∫ c

0
dr1

∫ π

−π

dθ cos θ
[
c2(1 − r2

1

) − s2r2
1 sin2 θ

]1/2
, (B22)

where we have carried out the integral over r′
2. The second integral on the RHS of this equation can be shown to vanish as∫ π

−π

dθ cos θF (sin2 θ ) =
(∫ −π/2

−π

+
∫ π/2

−π/2
+

∫ π

π/2

)
dθ cos θF (sin2 θ )

=
∫ π/2

0
dθ cos(θ − π )F ( sin2(θ − π ))

+
∫ π/2

−π/2
dθ cos(θ )F (sin2 θ ) +

∫ 0

−π/2
dθ cos(θ + π )F ( sin2(θ + π ))

=
(

−
∫ π/2

0
+

∫ π/2

−π/2
−

∫ 0

−π/2

)
dθ cos θF (sin2 θ ) = 0, (B23)

which works for any arbitrary function F . This leaves us with

J1 = s2

c2

∫ c

0
r1dr1

∫ π

−π

dθ cos2 θ = π

2
s2. (B24)

We now turn to the second term of Eq. (B21), which depends
on

J2 = s

c2

∫ 1

c
dr1

∫ θ∗

−θ∗
dθ cos θ (r+ − r−)

= 2s

c2

∫ 1

c
dr1

∫ θ∗

−θ∗
dθ cos θ

(
c2

(
1 − r2

1

) − s2r2
1 sin2 θ

)1/2
.

(B25)

This has the form of the vanishing term in J1, except that the θ

limits now do not cover a full period. In fact, the limits do not
cover even half a period since θ∗ � π/2 (consider Fig. 2 with
the blue dotted circle passing through the origin), with the
consequence being that this term now contributes. To compute
it we will apply the substitution sr1 sin θ = c(1 − r2

1 )1/2 sin u
to give

J2 = 2
∫ 1

c
dr1

(
1 − r2

1

)
r1

∫ π/2

−π/2
du cos2 u

= −π ln c − π

2
s2. (B26)

Combining these results then gives the final result

Evv = −4k1k2νN
h̄2

mR2
ln(cos η), (B27)

as stated in the main text.

APPENDIX C: MINIMUM DISTANCE BETWEEN TWO
CIRCLES OF COMMON CENTER AND RADIUS

IN FOUR DIMENSIONS

Consider a pair of circles (C1,C2) in R4 with the same
radius and center, but occupying different planes, and let
these two planes be related by an isoclinic rotation. In this
Appendix we derive an expression for the minimum distance

between two such circles. Without loss of generality, we may
encode the two circles in the vector equations

rC1 = R(cos θ1x̂ + sin θ1ŷ), (C1)

rC2 = R[cos θ ′
2(cẑ − sx̂) + sin θ ′

2(cŵ − νsŷ)]. (C2)

The vector between an arbitrary point on C1 and an arbitrary
point on C2 is given by d = rC1 − rC2 . All we have to do is
compute the length of this vector and minimize it with respect
to θ1 and θ ′

2. Evaluating the modulus squared of d , we have

d2 = 2R2[1 + s(cos θ1 cos θ ′
2 + ν sin θ1 sin θ ′

2)],

d =
√

2R[1 + s cos(θ1 − νθ ′
2)]1/2. (C3)

The minimum value of d is therefore
√

2R(1 − s)1/2, which
occurs when θ1 = νθ ′

2 + π .

APPENDIX D: EVALUATION OF ROTATIONAL
ENERGY INTEGRALS

As stated in the main text, in order to calculate the rota-
tional energy of two vortex planes under unequal frequency
double rotation, we must compute the integral in Eq. (116)
as well as the corresponding integral for eiθ̀2 . Here we will
only show the direct calculation of the first integral, since the
second follows identical logic. To begin, we consider acting
with L̂xy ≡ −ih̄∂θ1 on Eq. (111) as

L̂xyŕ1eiθ́1

ŕ1eiθ́1
= h̄ cos η1r1eiθ1

cos η1r1eiθ1 + eiϕ sin η1r2eiθ2
, (D1)

where we have also divided through by Eq. (111). Then, by
using the product rule, we can see that the desired integrand
in Eq. (116) can be expressed as

L̂xyeiθ́1

eiθ́1
= h̄r1ei(θ1−θ2−ϕ)

r1ei(θ1−θ2−ϕ) + tan η1r2
− L̂xyŕ1

ŕ1
. (D2)
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FIG. 8. Same as in Fig. 5 except with rotation frequencies of �zw = 1.25�c and �xy ≈ 1.35�c, corresponding to a predicted skewness of
η = 10◦. The overall structure is essentially the same as in Fig. 5, and the agreement with theory is still very good as shown in (c). However,
(c) also shows that the data have a slight mirror asymmetry in the vertical axis that is not visibly present in Fig. 5 or accounted for in the theory.

The second term can be shown to integrate to zero as∫ π

−π

dθ1
L̂xyŕ1

ŕ1
= −ih̄

∫ π

−π

dθ1ŕ−1
1

∂ ŕ1

∂θ1

= −ih̄[ln ŕ1]π−π = 0. (D3)

In terms of the integral over θ1, we are then left with∫ π

−π

dθ1
L̂xyeiθ́1

eiθ́1
= h̄

∫ π

−π

dθ1
r1ei(θ1−θ2−ϕ)

r1ei(θ1−θ2−ϕ) + tan η1r2
, (D4)

which can be evaluated as a contour integral in the complex
plane. Setting ζ = ei(θ1−θ2−ϕ) such that dζ = iei(θ1−θ2−ϕ)dθ1,
we have ∫ π

−π

dθ1
L̂xyeiθ́1

eiθ́1
= h̄

∫
|ζ |=1

−ir1dζ

r1ζ + tan η1r2

= 2π h̄�(r1 − tan η1r2). (D5)

The integral over θ2 then simply gives another factor of 2π .
What is left is a fairly straightforward double integral over the
two polar radii

∫
B4(R)

d4r
L̂xyeiθ́1

eiθ́1
= 4h̄π2

∫ R

0
r2dr2

∫ √
R2−r2

2

0

× r1dr1�(r1 − tan η1r2), (D6)

where the limits reflect that the 4D hypersphere is bounded by
r2

1 + r2
2 = R2. Since both r j are non-negative we can safely

rewrite the step function as �(r2
1 − tan2 η1r2

2 ), which allows
us to make the substitutions u j = r2

j /R2 such that the integral
then becomes∫

B4(R)
d4r

L̂xyeiθ́1

eiθ́1
= h̄π2R4

∫ 1

0
du2

∫ 1−u2

0
du1�(u1 − tan2 η1u2).

(D7)

It is now much easier to compare the step function to
the integration limits, as we have that u1 > tan2 η1u2 and
0 < u1 < 1 − u2, while 0 < u2 < 1. Clearly tan2 η1u2 is non-
negative, so we can make this value the new lower limit for u1

provided it is not greater than the upper limit of 1 − u2. This

will be true for a certain range of u2 values which satisfy the
inequality

tan2 η1u2 � 1 − u2, (D8)

u2 � cos2 η1, (D9)

in which case the above integral including the step function is
equivalent to∫

B4(R)
d4r

L̂xyeiθ́1

eiθ́1
= h̄π2R4

∫ c2

0
du2

∫ 1−u2

t2u2

du1, (D10)

where c and t are shorthand for cos η1 and tan η1, respectively.
Evaluating this, we obtain∫

B4(R)
d4r

L̂xyeiθ́1

eiθ́1
= h̄π2R4

∫ c2

0
du2

(
1 − u2

c2

)

= h̄
π2

2
R4 cos2 η1, (D11)

as stated in the main text. As the calculation for the eiθ̀2 term
follows identical logic, we simply state the result as∫

B4(R)
d4r

L̂xyeiθ̀2

eiθ̀2
= h̄

π2

2
R4 sin2 η2. (D12)

APPENDIX E: ADDITIONAL NUMERICAL RESULTS

In this Appendix we present extra numerical results to
supplement those in the main text. Some of these data are
from simulations not mentioned in the text and others are
additional data from simulations described in the text, to aid
in explanation and visualization.

Figure 8 shows the final-state vortex core for a run of
the ITEM with frequencies �zw = 1.25�c and �xy ≈ 1.35�c,
which gives a predicted skewness angle of η = 10◦. Just as
in Fig. 5, the agreement between theory and numerics is still
very good apart from the avoided-crossing region near the
origin. In particular, Fig. 8(c) shows a side-on view in which
the vortex cores lies roughly along a pair of lines, on top of
which we have plotted the theoretically predicted lines we
expect. As can be seen, the data are still very close to the
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FIG. 9. Same as in Fig. 8 except with a higher resolution of �x = 0.2ξ and with �xy ≈ 2.25�c, corresponding to a predicted skewness of
η = 45◦. The agreement with the theoretical planes is still excellent, as seen in (c), and there is no visible asymmetry about the vertical axis.
Interestingly, the avoided crossing at the origin has a different orientation from that seen in Figs. 5 and 8 and appears to be smaller.

predicted values, although interestingly there is a small degree
of asymmetry visible in Fig. 8(c) (the data points are not sym-
metric about the vertical axis) that cannot be seen in Fig. 5.

However, without further investigation we cannot tell whether
this is due to numerical inaccuracy or some genuine physical
phenomena.

FIG. 10. The top and bottom rows show two different unusual vortex core structures observed in final states of ITEM runs with the
same parameters. The frequencies were set at the isoclinic point �zw = �xy = 1.3�c and the spatial resolution was equal to �x = 0.5ξ ,
corresponding to a system radius of R ≈ 20.6ξ . These simulations were the final iteration in a series of ITEM runs similar to those that
generated Fig. 6. More specifically, we fixed �zw and varied �� starting from �c, stepping down to the isoclinic point in units of 0.1�c.
We used the final state of each run as the initial state of the next. These two states started out very close to the predicted skew planes at
high-frequency difference; however, as we decreased �� these planes began to increasingly curve, up to the maximum amount shown in this
figure at �� = 0. These states both have energy given by E ≈ 0.65 µN, which is approximately equal to the orthogonal state energy at these
frequencies, so we would need higher precision to tell if these are degenerate with the orthogonal state or if they are metastable excited states.
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FIG. 11. Numerical vortex cores in final states of the ITEM-evolved 4D GPE under double rotation [Eq. (45)]. The spatial step size was
�x = 0.5ξ , corresponding to R ≈ 20.6ξ . Rotation frequencies were �zw = 1.25�c and (a) �xy ≈ 1.35�c, (b) �xy ≈ 1.46�c, and (c) and
(d) �xy ≈ 1.83�c, corresponding to predicted skewness values of η = 10◦, 20◦, and 40◦, respectively. However, we used an initial phase
profile corresponding to asymmetrically tilted planes (rather than the predicted symmetrically tilted ones) with added noise, as described in
the main text. (a) Instead of tilting, we see that the vortex core is starting to become slightly curved even at long distances. The energy at
these frequencies is E ≈ 0.66 µN, while the predicted skew plane energy from the fit in Fig. 6 is approximately equal to 0.65 µN. (b) The
surface centered around z = w = 0 is now buckled, effectively tilting towards the other plane in different directions depending on the angle θ1.
The energy is E ≈ 0.66 µN, while the skew plane energy is approximately equal to 0.65 µN. (c) and (d) show two different views in (x, y, z)
space. The former x-y plane is now so curved that it has forced the other surface to become tilted and displaced and there is an avoided
crossing between them, as visible in (c). Note that (d) shows that parts of this surface appear to be parallel to each other. Here the energy is
approximately the same as the predicted skew plane energy at E ≈ 0.64 µN.

Figure 9 shows the final state for η = 45◦, with a spatial
resolution of �x = 0.2ξ , compared to 0.5ξ for the previous
figures. The agreement between these data and our predictions
is as good as before, as can be seen in Fig. 9(c), and the
data have mirror symmetry about the vertical axis. However,
there are also some interesting qualitative differences from the
lower resolution results. For example, the avoided crossing
between the planes has a different orientation from that in
Figs. 5 and 8, as can be seen by comparing Figs. 9(a) and 9(b).
Finally, the size of the reconnected region is smaller, which is
most likely due to the smaller system size, but could be due to
the higher resolution.

Figure 10 shows two strange curved vortex surfaces ob-
served at the isoclinic point for identical parameters. The
frequencies were �zw = �xy = 1.3�c and the spatial step size
was �x = 0.5ξ , which corresponds to a radius of R ≈ 20.6ξ .
Both of these final states were the last iteration in a sequence
of ITEM runs, starting from �� = �c down to �� = 0 in
steps of 0.1�c, with �zw = 1.3�c fixed. The final state of
each run was used as the initial state of the next, so that we
could follow the evolution of a particular energy branch. We

were attempting to track the predicted skew plane states for
a fixed �zw = 1.3�c and find their energies (cf. Fig. 6), and
the two final states at �� = �c did in fact closely correspond
to these predicted planes. However, both of these states began
to deviate from the theoretical states as we decreased ��,
becoming more and more curved all the way to the isoclinic
point. These isoclinic curved states have approximately the
same energy as each other and as the orthogonal state at
the same frequencies (E ≈ 0.65 µN). Since any energy differ-
ences are below the precision of our numerics we would need
more accuracy to investigate this. If these are indeed low-lying
excitations, this may be due to the degeneracy associated with
isoclinic symmetry, in which case we may expect many more
such states.

Finally, Fig. 11 shows the vortex cores obtained using the
asymmetric phase profile (with added noise) for �� values
corresponding to η = 10◦, 20◦, and 40◦, respectively. As men-
tioned in the main text, these are slightly higher in energy than
the theoretical states studied in the main text. Already, in the
10◦ case we can see that our assumption of flat vortex planes
is broken as there is some long-range curvature of the core.
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This is then exacerbated as the frequency �� increases, with
the 20◦ state clearly showing that there is almost no overall tilt
of the former planes, but instead the plane at z = w = 0 has
begun to buckle in an approximately threefold symmetric pat-
tern, curving towards the other surface in different directions
for different values of the angle θ1. Finally, in the 40◦ figure,
this curvature has become so extreme that the former plane
at x = y = 0 appears to have become tilted and displaced as
well as curved, leading to a sizable avoided crossing where
these two surfaces come together, as can be seen in Fig. 11(a).
Interestingly, Fig. 11(b) appears to show three parts of the vor-
tex core surface that are parallel to each other. This suggests
that this bizarre state may be limiting towards a state with
multiple vortex planes parallel to the z-w plane but separated

in the x-y plane. This is the expected lowest-energy state for
the case of high-frequency simple rotation in the x-y plane
(i.e., with �zw = 0), so it seems reasonable that it should
also be the ground state when �xy � �zw. However, we are
not quite reaching this limit in the 40◦ case, as there we
have �xy ≈ 1.46�zw. We therefore tentatively describe this
strange set of states as an instance where the frequencies are
large enough that the system requires more than two vortex
planes but not enough for three. The planes can curve in
order to become larger, thereby fitting a larger area of vortex
surface in the system. Whether this is a correct description
or not, it is clear that the behavior of vortex surfaces in four
dimensions is incredibly rich, and there is much more to be
explored.
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