
PHYSICAL REVIEW A 110, 013323 (2024)

Tunneling dynamics of 164Dy supersolids and droplets
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The tunneling dynamics of a magnetic 164Dy quantum gas in an elongated or pancake skewed double-well
trap is investigated with a time-dependent extended Gross-Pitaevskii approach. Upon lifting the energy offset,
different tunneling regimes can be identified. In the elongated trap and for sufficiently large offset, the different
configurations exhibit collective macroscopic tunneling. For smaller offset, partial reflection from and trans-
mission through the barrier lead to density accumulation in both wells, and eventually to tunneling locking.
One can also reach the macroscopic self-trapping regime for increasing relative dipolar interaction strength,
while tunneling vanishes for large barrier heights. A richer dynamical behavior is observed for the pancake-like
trap. For instance, the supersolid maintains its shape, while the superfluid density gets distorted, signifying the
emergence of peculiar excitation patterns in the macroscopic tunneling regime. The findings reported here may
offer alternative ways to probe distinctive dynamical features in the supersolid and droplet regimes.
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I. INTRODUCTION

Dipolar Bose-Einstein condensates (dBECs) consisting
of magnetic chromium [1] or lanthanides such as dyspro-
sium [2], erbium [3], and europium [4] offer highly flexible
platforms to unravel exotic many-body phases of matter
(for reviews, see Refs. [5–7]). The interplay of long-range
anisotropic dipole-dipole interactions (DDI), short-range
isotropic interactions, and quantum fluctuation contributions
may prevent a collapse of the dBEC [8–13]. It gives rise to the
(by now well-studied) supersolid (SS) and droplet phases, see
the recent review of Ref. [7].

Advances in ultracold atoms have opened up new possibil-
ities to observe this intricate SS state of matter. Predictions
were made for Rydberg-excited BECs [14] and in the dipole-
blockade regime [15]. Early experimental realizations of
supersolidity were reported, for example, in spin orbit [16]
and BECs coupled to optical cavities [17,18]. The above-
mentioned dBECs, however, provide a particularly favorable
setting since the localization is not externally initiated, but
rather is an intrinsic property resulting from the spontaneous
symmetry breaking due to the interactions. Only shortly after
the discovery of dipolar droplets, the SS state was uncovered
in three milestone experiments with highly magnetic dyspro-
sium and erbium atoms [19–21].

In dBECs, for the SS and self-bound states, quantum
fluctuations play a major role. Similar to the description
of stable self-bound droplets in binary BECs [22], they
are commonly modeled with the extended Gross-Pitaevskii
method (eGPE) [10,12,13,23,24], including the Lee-Huang-
Yang (LHY) correction [25,26] to approximate quantum
fluctuations to first order. In a dipolar SS, the spontaneous
breaking of translational symmetry [19–21,27] gives rise
to density modulations while partially retaining superfluid
(SF) properties and exhibits both diagonal and off-diagonal

long-range order [28–33]. This phenomenon is underpinned
by the presence of a roton minimum in the energy-momentum
dispersion relation which has been experimentally probed
[34–36]. Notably, in cases where long-range interactions are
dominant, the dilute SF background density, characteristic of
the SS phase, may vanish leading to the formation of isolated
droplet lattice (DL) configurations [9,10,19].

SS and DL phases have been realized in elongated traps,
where they can order periodically along one spatial dimension
[19–21,37], and more recently, in planar droplet arrays in
two dimensions [27,38,39]. In oblate trap geometries, states
of dysprosium with different ground-state morphologies were
predicted, from honeycomb to triangular, striped, and ring-
shaped lattices [40–42]. In the presence of an optical lattice,
a geometrical frustration of the dipolar droplet lattice may
be induced, and more complicated phase patterns emerge
[43]. Dipolar mixtures have more recently been investigated
[44–47], for which alternating-domain supersolids have also
been found [48]. Dynamical properties offer intriguing future
prospects [49], and notable examples include (but are not
limited to) interaction quenches [19,20,50,51], the formation
of vortex configurations [52–54], the manifestation of persis-
tent currents [55,56], or the impact of relevant thermal effects
[39,57,58].

For BECs with short-range interactions, the tunneling dy-
namics in double-well potentials has been widely investigated,
see, for instance, the review in Ref. [59] or the collected arti-
cles in Ref. [60]. Such systems constitute atomic analogues of
the well-known superconducting Josephson junction [61] and
exhibit tunneling phenomena [59,62] including, for instance,
Josephson oscillations [63] and macroscopic quantum self-
trapping [64]. However, the tunneling dynamics of dBECs
in the SS and DL phases, and in particular, the interplay of
short- and long-range interactions on the emergent tunneling
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regimes remain largely unexplored. Additionally, since the
droplet crystal configuration depends on the spatial dimension
of the system, it would be intriguing to explore the impact
of dimensionality on the emergent tunneling behavior. Rele-
vant open questions, for instance, include whether the crystal
arrangement retains its symmetry in the course of tunneling
and how suppression of the latter occurs due to interactions in
various dimensions.

Here, we report an attempt to theoretically investigate the
tunneling dynamics of a dipolar SS or DL in a double-well
potential within the eGPE framework. The approach is antic-
ipated to capture the basic dBEC tunneling dynamics, while
higher-order effects, such as additional tunneling channels
or interband contributions, require more sophisticated ap-
proaches [65] and are left for future work.

The dBEC is initially confined in a tilted double-well po-
tential, with the individual wells chosen to be elongated or
pancake-like. Then the system is suddenly quenched from an
initial energy offset between the wells to a symmetric double-
well potential. The initial energy offset, the relative dipolar
strength (i.e., contact versus dipolar coupling), and the barrier
height determine the tunneling characteristics of the system.
Prior to the quench, the single-well configurations exhibit the
well-known formation of SF, SS, and DL states (see, e.g.,
the review of Ref. [7]). For an elongated double-well with
a sufficiently large initial energy offset, the different dBEC
configurations exhibit periodic oscillations between the wells
with constant amplitude and frequency, thus featuring collec-
tive tunneling. When the offset is reduced, partial reflection
and transmission occur through the barrier, resulting in the
accumulation of density in both wells and eventually leading
to tunnel locking. At long evolution times, in the self-bound
DL regime, a significant population difference is established,
distinguishing it from the SF phase where the imbalance van-
ishes. Additionally, the SS and DL states exhibit a reduced
center-of-mass velocity compared to the SF phase, indicating
their rigidity. Increasing the barrier height while keeping all
other parameters fixed, it is possible to enter the macroscopic
self-trapping regime. The different patterns also manifest in
pancake-like double-well systems, however, with a richer phe-
nomenology.

This paper proceeds as follows. Section II introduces the
dBEC setting and the relevant eGPE framework. The ground-
state phases of the system confined in a double-well with an
energy offset for varying interactions are discussed in Sec. III.
Consecutively, the resultant tunneling dynamics of the differ-
ent phases after suddenly switching off the underlying energy
offset is analyzed for an elongated double-well in Sec. IV and
a pancake-like one in Sec. V. We summarize and comment on
future perspectives in Sec. VI. In Appendix A, we discuss the
effect of three-body recombination on the tunneling behavior,
while Appendix B explicates the persistence of tunneling after
a linear ramp of the energy offset. Appendix C further elabo-
rates on some technical details.

II. EXTENDED GROSS-PITAEVSKII
FOR THE DIPOLAR GAS

We consider a dBEC of 164Dy atoms having a mag-
netic dipole moment μm = 9.93μB (where μB is the Bohr

magneton) being polarized along the z direction. At zero
temperature, the dynamics of the dBEC is modeled by the
eGPE [10,12,13,23,24] containing the first-order LHY beyond
mean-field correction

ih̄
∂ψ (r, t )

∂t
=

[
− h̄2

2m
∇2 + V (r) + 4π h̄2as

m
|ψ (r, t )|2

+ γ (εdd )|ψ (r, t )|3

+
∫

dr′Udd (r − r′)|ψ (r′, t )|2
]
ψ (r, t ). (1)

The three-dimensional (3D) wave function is represented
by ψ (r, t ) and m is the mass of Dy atom. The long-range

anisotropic DDI is Udd (r, t ) = μ0μ
2
m

4π
[ 1−3 cos2 θ

r3 ]. The angle be-
tween the relative distance r of two dipoles and the z axis
of the quantization axis (defined by the magnetic field) is
denoted by θ , and μ0 represents the permeability of the
vacuum. Moreover, the dipolar atoms experience short-range
contact interactions whose strength is quantified via the 3D
s-wave scattering length, as, that can be experimentally tuned
through Fano-Feshbach resonances [66,67]. The LHY term
[25] approximates the lowest-order quantum fluctuation con-
tributions to the energy functional. These fluctuations in three
dimensions appear to be repulsive and scale with the gas

density as ∼n3/2, taking the form γ (εdd ) = 32
3 g

√
a3

s
π

(1 + 3
2ε2

dd )
[26]. Its contribution is crucial for the system to sustain many-
body self-bound states such as droplets and SS and it has been
shown to adequately describe experimental observations (as
reviewed in Ref. [7]).

In a 3D harmonic trap the relative strength εdd = add/as

between the DDI and the short-range interactions determines
the many-body phase of the system [9]. In particular, the dipo-
lar length of 164Dy atoms is add = μ0μ

2
mm/12π h̄2 = 131aB,

with aB being the Bohr radius. For sufficiently small val-
ues of εdd, the system exhibits a SF phase. The equilibrium
solution is determined by the delicate balance between the
attractive or repulsive long-range dipolar interaction and the
repulsive contact interaction. As the short-range scattering
length decreases, the relative strength of the long-range dipo-
lar interaction becomes dominant. Within a small range of εdd,
the system favors the SS phase, where a periodic structure of
localized densities coherently connected by a dilute superfluid
background emerges. However, a further increase in εdd leads
to a DL phase.

The initial state is prepared in an external 3D tilted double-
well potential

V (r) = 1
2 m

(
ω2

x x2 + ω2
y y2 + ω2

z z2) + VDe− x2

2w2 + Dx, (2)

where VD is the barrier height and w is the barrier width.
For our purposes, we use VD = 10 h̄ωx and w = 0.5losc, with
losc = √

h̄/(mωx ) being the harmonic oscillator length and ωx

denoting the frequency of the external confinement. The last
term is the linear external field gradient of strength D that
energetically favors the population on the left well. The tilt
strength ranges from D = 1 h̄ωx/losc to D = 10 h̄ωx/losc.

Our analysis extends from (i) an elongated double-well
characterized by (ωx, ωy, ωz ) = 2π × (19, 53, 81) Hz (with
the single wells being similar to those in Refs. [19,37])
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FIG. 1. Ground-state density isosurfaces of a dBEC initially
localized on the left side of (a)–(c) an elongated and (d)–(f) pancake-
like tilted double-well trap, as depicted by the contour lines in the
lowest panels. The density isosurfaces represent 20% and 2.5% of
the maximum density. All atoms reside in the left part of the double-
well, and the entire density profile is located in the minimum of
the left well. Depending on the relative interaction strength εdd the
dBEC in the left well features (a), (d) a regular SF for εdd = 1.31,
(b) an elongated (εdd = 1.4) or (e) planar SS (εdd = 1.49), (c) an
elongated DL pattern for εdd = 1.49 as well as (f) a single droplet
surrounded by a homogeneous density distribution for εdd = 1.559.
Notice that the individual transitions are shifted to larger εdd from the
quasi-1D to the quasi-2D setting. The tilt strength is D = 7 h̄ωx/losc

enforcing all N = 40 000 magnetic atoms to reside on the left part
of the double-well. The left part of the double-well is character-
ized by frequencies (a)–(c) (ωx, ωy, ωz ) = 2π × (19, 53, 81) Hz and
(d)–(f) (ωx, ωy, ωz ) = 2π × (43, 43, 131) Hz, while having a width
w = 0.5losc and height VD = 10 h̄ωx . The potential contours at z = 0
plane for D = 7 h̄ωx/losc, along with the variation of the potentials
V (x, 0, 0) across x for D = 7 h̄ωx/losc (solid line) and D = 0 (dashed
line), are shown in the left and right panels for elongated and
pancake-like single-wells, respectively.

to (ii) a pancake double-well with circular single wells,
(ωx, ωy, ωz ) = 2π × (43, 43, 133) Hz (as in Ref. [53]). The
lowest panels of Fig. 1 show the contours of the potentials
cut through z = 0 for D = 10 h̄ωx/losc. Also, Figs. 1(a)–1(f)
represent the dBEC configurations in the left well before
the quench for the elongated and planar single wells, re-
spectively. The characteristic timescales determined by the
trap frequency accordingly correspond to ω−1

x = 8.4 ms
and ω−1

x = 3.7 ms in the elongated and planar cases, with
harmonic oscillator lengths losc = √

h̄/(mωx ) = 1.8 µm and
1.2 µm, respectively. Another important timescale is set by
the energy difference among the pre and postquench states,
τDin = 1/
EDin , where 
EDin ≡ EDin − EDfi . Here, EDin and EDfi

refer to the energy of the dBEC at the initial (Din = D) and
final (Dfi = 0) tilt strengths. The interaction dependence of


EDin is weak for the considered values of εdd. We thus
provide an average value for each Din. In this sense, relevant
timescales obtained from this energy difference correspond to
τDin=10 ≈ 40 ms and τDin=7 ≈ 20 ms in both settings.

In what follows, we explore a 164Dy dBEC under the
influence of the energy offset for specific values of εdd cor-
responding to a SF, a SS, and a DL in the initial state. After
preparing the initial configuration, we perform a quench of the
tilt strength from a finite value to zero, and monitor the system
dynamics as the energy offset vanishes for up to 1 second.

III. INITIAL STATES IN THE TILTED DOUBLE-WELL

Let us begin by investigating the ground-state phases of the
dBEC as sketched in Fig. 1. For simplicity, we employ a tilt
strength D = 7 h̄ωx/losc providing an energy offset among the
wells which ensures that the entire dBEC is initially trapped
in the left part of the potential. To obtain the ground states,
we employ the imaginary time propagation method in the
eGPE of Eq. (1) using the split-step Crank-Nicolson [68]
approach (see also Appendix C). Characteristic isosurfaces of
the three-dimensional density n(x, y, z) are shown in Fig. 1 for
different values of εdd. Recall that the integrated spatial den-
sity distribution (over tightly confined directions) showcasing
crystal arrays can be experimentally probed by in situ imaging
[27,57].

The structural configurations depend on both the magni-
tude of εdd and the confinement geometry. For relatively small
values of εdd such as εdd ≈ 1.31 where the contact interaction
dominates over the long-range anisotropic dipolar interaction,
a nonmodulated SF state emerges. It is characterized by the
typical homogeneous density profile along the x direction
[Fig. 1(a)] for the elongated single well, and a pancake dis-
tribution in the x-y plane [Fig. 1(d)] in the circular single
well, respectively. The distributions are compressed across the
tightly confined directions along y and z in the elongated trap
and across the z direction in the case of the planar trap, see
Sec. II. As expected, in both cases, the SF state has positive
energy and chemical potential, here, for D = 7 h̄ωx/losc [see
also Fig. 2(a)].

Increasing εdd while maintaining the confinement and
dipolar direction eventually renders the system self-bound,
characterized by a negative chemical potential. For instance,
when εdd ≈ 1.4 for the elongated single-well (and similarly,
for εdd = 1.49 in the case of the pancake-like double-well)
we observe the formation of a periodic, density-modulated
pattern in the left well.1 The individual density peaks2 are
phase-coherently interlinked by a coherent background SF
and a SS state forms. For larger εdd, the dipolar interactions

1Concerning a state of the dBEC that is entirely trapped in one of
the wells, the transition from the SF towards the SS and DL phases
can also be seen in the momentum distribution where, in contrast
to the single-peak structure of the SF, additional higher-lying ones
accumulate in both the SS and droplet regimes.

2The number of the generated density humps increases for larger
atom number while keeping all other system parameters fixed as it
was also discussed, e.g., in Ref. [38]. These structures appear in the
transverse direction as elongated filaments.
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FIG. 2. (a) Dependence of the dBEC chemical potential in the
elongated double-well for varying tilt strength D and specific relative
interaction coefficients εdd (see legend). The interplay among D and
εdd dictates the ground-state phases from SF to SS and droplet lattice.
(b) The initial velocity v(0) ≡ v0 of the dBEC center of mass as a
function of the tilt strength for several εdd (see legend). It features an
interaction-dependent linear behavior with the SF (εdd = 1.31) pos-
sessing a larger velocity. The modification in the slope of v0 around
D = 6 h̄ωx/losc occurs since, above this value, the entire dBEC is
located at the left part of the double-well.

become dominant. This leads to a vanishing SF background
and a simultaneous stronger spatial localization of the
aforementioned density humps, see Figs. 1(c) and 1(f). In this
droplet phase, the self-bound character is related with large
negative energy or equivalently chemical potential [Fig. 2(a)].
Figure 1(c) depicts a characteristic DL density distribution
in an elongated geometry. However, in the planar geometry,
instead, a central droplet is surrounded by a ring-shaped SF
configuration, see Fig. 1(f), as discussed in Ref. [23].

Increasing the energy offset favors the DL formation and
can lead to a negative chemical potential [Fig. 2(a)]. The
offset thus also enables a crossover to self-bound states in the
double-well. For a smaller energy offset between the wells
a certain fraction of population can still reside in the right
part of the double-well. The interaction-dependent critical tilt
value, where the entire cloud is solely trapped in the left
well, is lower for larger εdd, e.g., D < 4 h̄ωx/losc for εdd =

1.49, and increases for reduced εdd, e.g., D < 6 h̄ωx/losc for
εdd = 1.36. Furthermore, through the adjustment of D, it is
possible to prepare more intricate density patterns arising
from populations located in both wells. For instance, when
D = 2 h̄ωx/losc, two droplets form in the left well, while a
single-slanted DL structure appears in the right well. Such
configurations, influenced by interference and restricted initial
velocities dictated by the value of D, have a significant impact
on the resulting dynamical behavior, as will be discussed in
the following.

IV. DYNAMICS IN AN ELONGATED DOUBLE-WELL

To explore the dynamical properties of the dBEC in a
double-well, we first consider an elongated geometry along
the x direction. The system is quenched by instantaneously
(at t = 0) switching off the external tilt, from a value D > 0
to D = 0. For the impact of a time-dependent ramp-down
of the tilt on the tunneling dynamics and the persistence of
the discussed tunneling regimes for different ramp rates, see
Appendix B. Naturally, the strength of the tilt potential is
related to the initial velocity imparted on the dBEC directly
after performing the D = 0 quench. Namely, a larger initial D
refers to an increasing velocity. This can be readily verified by
determining the velocity of the center of mass of the dBEC,
v(t = 0) ≡ v0, provided in Fig. 2(b) for various interactions
as a function of D. The velocity herein is defined as the
time derivative of the center-of-mass coordinate XCM(t ) =∫ x0

−x0
dx xn1D(x, t ), where n1D(x, t ) = ∫

dydz n(x, y, z, t ) de-
notes the one-dimensional (1D) integrated density and ±x0/2
is the location of the employed hard-wall boundaries along
the x direction. These are, of course, chosen sufficiently wide
such that they do not affect our results. The dependence of v0

on the interaction strength is clearly seen. For larger εdd values
and a fixed D, i.e., towards the droplet regime, the velocity
decreases, reflecting the rigidity of the state.

To visualize the overall dynamical response of the elon-
gated dBEC we invoke the underlying integrated density,
n1D(x, t ) (Fig. 3). Moreover, to determine the emergent tun-
neling behavior, we monitor the population imbalance [65]
among the left (L) and right (R) wells


N (t ) = 1

N

[ ∫ 0

−x0/2
dx n1D(x, t ) −

∫ x0/2

0
dx n1D(x, t )

]

≡ nL(t ) − nR(t ). (3)

It allows to estimate both the frequency and amplitude of the
induced macroscopic tunneling properties.

As a starting point, we leverage a relatively large tilt
strength, D � 10 h̄ωx/losc, rendering the impact of the initial
velocity v0 [which is enhanced here, Fig. 2(b)] irrelevant.
Indeed, for D � 10 h̄ωx/losc, the entire dipolar gas is localized
in the left double-well rendering the quench-induced tunnel-
ing process independent of the tilt strength. This enables us
to unravel the ensuing interaction effects on the dynamics.
Ramping-down D leads to coherent oscillations of the dBEC
with a frequency that is weakly dependent on the relative
interactions εdd, see Figs. 3(a1)–3(a3) and Fig. 4(b). Notice,
however, that the oscillation amplitude is reduced for increas-
ing εdd, see also the discussion below and Fig. 4(b). In the
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FIG. 3. Dynamics in the elongated double-well, triggered by quenching the tilt strength from (a1)–(a3) D = 10 h̄ωx/losc and (b1)–(b3)
D = 7 h̄ωx/losc to D = 0. In the panels from left to right, the system is in the SF with εdd = 1.31, a SS characterized by εdd = 1.394 and
a droplet array with εdd = 1.489, respectively. The colorbar represents the integrated density n1D(x, t ) after the quench in units of N/losc,
where N = 40 000 and losc = 1.80 µm. The tunneling frequency is nearly unaltered for different values of εdd, but the amplitude is reduced for
increasing εdd. It is evident that the tunneling properties of the dBEC depend strongly on its initial velocity as quantified by the initial D value,
i.e., for decreasing D the dBEC density smudges over both wells for longer evolution times.

case of a SF (εdd ≈ 1.31) the entire dBEC coherently moves
between the left and right wells with constant amplitude and
period3 TRabi ≈ 55, in analogy to what is known for regular
BECs [62,63]. This response will be dubbed the macroscopic
collective tunneling regime.

A similar dynamical behavior is also observed for a SS
[Fig. 3(a2) for εdd = 1.397] and a droplet array [Fig. 3(a3)
for εdd = 1.49]. Initially being localized in the left well, after
quenching, the SS or DL crystal structures move towards the
right side, and during this process come into close proximity
with each other, particularly in the vicinity of the potential
barrier [see Figs. 3(a2) and 3(a3)]. Subsequently, the crys-
tals move into the right well, and as they reach the right
well’s edge they separate from each other again. This process
repeats periodically. The maximum separation between the
single crystals at the well’s edge is more pronounced for larger
εdd due to the dominant dipolar interactions, which enhance
repulsion among the density humps in the transverse plane
[see Figs. 3(a3) and 3(b3)].

A reduction of the tilt strength [or equivalently the ini-
tial velocity, Fig. 2(b)] leads to significant alterations of
the dynamical behavior. Comparing Figs. 3(a1)–3(a3) with
Figs. 3(b1)–3(b3) reveals a different response, displaying
intricate tunneling dynamics. At short evolution times, t ≈
τDin=7, the dBEC oscillates back and forth between the wells.
However, owing to the reduced velocity at t = 0, the dBEC

3Notice that TRabi ∼ 2π/(ωx ) for large D, meaning that the tun-
neling is essentially a collective center-of-mass oscillation, i.e., the
dipole mode. However, a more accurate estimation of the tunneling
period for all D examined herein would require knowledge of the
ensuing energy gap among the wells. In this context, a larger gap
enforced by increasing tilt strength leads to a smaller period.

gradually starts to be partially transmitted to the other well
while a relatively small fraction is reflected back. As more
particles are reflected in the course of the evolution, indi-
vidual density humps become less prominent both in the SS
[Fig. 3(b2)] and the DL [Fig. 3(b3)]. Eventually, after four
oscillation periods (t � τDin=7 ) a certain population remains
trapped within each well and tunneling locks. Indeed, employ-
ing D = 7 h̄ωx/losc which still ensures the confinement of the
dBEC within the left well at t = 0, we observe that the smaller
initial velocity (as compared to the case with D = 10 h̄ωx/losc)
results in a gradual suppression of the interwell tunneling,
see also 
N (t ) in Fig. 4(a). A further decrease of D favors
an appreciable part of the population to initially also reside
in the right well. This eventually leads to suppression of the
tunneling due to the relatively weak exerted momentum by
the quench, see the values of 
N (t ) for D = 2 h̄ωx/losc, for
example, in Fig. 4(a). This resembles a type of self-trapping,
as it has been also realized in regular BECs [59,62,69,70].

For larger εdd, different droplet lattice configurations can
be realized in the left well compared to the right well. In this
case, the individual crystals or SSs undergo multifrequency
intrawell oscillations of varying amplitude induced by the
tunneling of the background SF, see also the explicit time
evolution in Ref. [71]. We note here that removing the small
offset between the wells is essentially equivalent to imparting
a small kick velocity to the crystal structures. The vibrational
patterns emanate from the activation of the different underly-
ing normal modes, as demonstrated in Ref. [72]. The main
features of the above-described tunneling behavior remain
robust (at least up to certain times) even in the presence of
three-body losses, which are customarily present in experi-
ments, as showcased in Appendix A. However, in this case the
tunneling is suppressed for longer evolution times and, e.g.,
the SS or DL character is lost due to atom losses.
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FIG. 4. Time evolution of the population imbalance 
N (t ) be-
tween the left and right wells for (a) different initial tilts D (see
legend) at fixed εdd = 1.394 referring to a SS and (b) distinct relative
interactions, εdd (see legend) when D = 7 h̄ωx/losc. It is evident that
a decreasing tilt strength slows down tunneling, while for a con-
stant D population imbalance at long evolution times is suppressed
only within the SF phase and becomes maximal for a droplet array.
(c) 
N (t ) in the SS case with εdd = 1.456 and using an initial D =
7 h̄ωx/losc for several barrier heights VD (see legend). An increasing
VD leads to a macroscopic self-trapping regime. The dBEC consists
of N = 40 000 164Dy atoms confined in a quasi-1D double-well. The
tilt strength D of the double-well is measured in units of h̄ωx/losc.

A smudging of density occurs for the SF, SS, and DL
regimes as can be readily seen by inspecting the population
imbalance, 
N (t ), shown in Fig. 4(b) for varying εdd and
fixed D = 7 h̄ωx/losc. In particular, we deduce that the con-
densate density smudges at a faster rate for a SS (εdd = 1.424)
as compared to the other phases, an outcome that is attributed
to the enhanced interference of the individual crystals due to
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FIG. 5. Dynamics of the velocity, v(t ), of the dBEC center-of-
mass coordinate for various εdd (see legend) keeping D = 7 h̄ωx/losc.
Apparently, upon considering fixed D and increasing εdd towards the
droplet regime leads to a progressively smaller velocity signifying
the crystalline nature of the dBEC. At long evolution times the dBEC
relaxes and its velocity vanishes. The tilt strength D of the double-
well is expressed in terms of h̄ωx/losc.

the background SF.4 Moreover, the population imbalance in
the long time evolution after the termination of the tunneling is
found to depend on the dBEC phase and thus the interactions.
With increasing εdd , atoms exhibit a stronger tendency to
self-bind, leading to their preferential accumulation within a
specific well in the long time evolution and causing a more
pronounced atom imbalance. A larger dilute SF component,
occurring for weaker εdd, however, facilitates the progressive
restoration of interwell population balance. As such, 
N (t )
in the course of the tunneling may serve as a probe to identify
the crystalline nature of the dBEC. The suppression of the
tunneling is also supported by the behavior of the velocity
of the center of mass showcased in Fig. 5. Keeping the initial
tilt strength fixed, for example, at D = 7 h̄ωx/losc, the veloc-
ity in the course of the dBEC evolution is overall reduced
towards the self-bound state regime realized for larger εdd.
This can be traced back to the enhanced rigidity of the droplet
arrays.

Naturally, the barrier height has a crucial impact on the
tunneling, as is also known from short-range interacting BECs
[59,60,65]. To explicate this dependence we consider a SS
state at εdd = 1.456 experiencing a tilt of D = 7 h̄ωx/losc and
measure 
N (t ) for various VD presented in Fig. 4(c). It
becomes apparent that by increasing VD, which equivalently
means that the involved energy gaps become larger [59], it
is possible to transition to distinct tunneling regions. In other
words, it is possible to adjust the dBEC response from co-
herent density oscillations, as here for VD = 5 h̄ωx, to density
smudging and tunneling locking at long times, for instance,

4The same observations in terms of the tunneling regimes can be
made by inspecting the dynamics of the integrated current J (t ) =

h̄
2mi

∫
dxdydz(�∗ ∂�

∂x − � ∂�∗
∂x ), not shown for brevity.
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FIG. 6. Snapshots of the integrated 2D density n2D(x, y, t ) visualizing the tunneling of a SF configuration for εdd = 1.31 when the initial tilt
strength of the double-well is set to (a1)–(a6) D = 10 h̄ωx/losc and (b1)–(b6) D = 7 h̄ωx/losc. The tunneling behavior depends on the original D
value. For D = 10 h̄ωx/losc, i.e., large initial velocities, it leads to persistent oscillations of the SF among the wells and its motional excitation
at longer evolution times. However, a reduced velocity (here quantified by D = 7 h̄ωx/losc) results in a progressive damping of the tunneling
and its subsequent locking. The evolution is induced by suddenly suppressing the tilt strength. The colorbar signifies n2D(x, y, t ) in units of
N/l2

osc, where N = 40 000 and losc = 1.2 µm.

when VD = 7 h̄ωx, and vanishing interwell tunneling at V >

20 h̄ωx.

V. DYNAMICS IN A PANCAKE DOUBLE-WELL

Let us now investigate how the above-described phenom-
ena depend on the dimensionality of the system and turn
to the pancake-like double-well. The dBEC is initialized in
the tilted double-well assembling in different configurations
according to the value of εdd as depicted in Figs. 1(d)–1(f).
As before, the time evolution is induced via quenching the
tilt strength D from a finite value down to D = 0. Similar
to the elongated geometry [Fig. 2(b)], the initial velocity, v0,
exhibits a linear increase for larger D and fixed εdd, while
being reduced for larger εdd and constant D (not shown).
The overall dynamical behavior is characterized through
the two-dimensional (2D) integrated density defined as
n2D(x, y, t ) = ∫

dz n(x, y, z, t ) and the respective population

imbalance 
N (t ) = (1/N ) [
∫ 0
−x0/2

∫ y0

−y0
dxdy n2D(x, y, t ) −∫ x0/2

0

∫ y0

−y0
dxdy n2D(x, y, t )], with ±x0/2 [±y0/2] denoting the

position of the hard walls in the x (y) direction.
Considering a large energy offset at t = 0, quantified by

D = 10 h̄ωx/losc, we find that irrespective of εdd the entire
dBEC undergoes regular oscillations between the left and
right wells with constant amplitude and frequency through-
out the time evolution. This behavior can be directly seen
in the densities of a SF (SS) depicted in Figs. 6(a1)–6(a6)
[Figs. 7(a1)–7(a6)], but also in the corresponding interwell

population imbalance provided in Fig. 8(a) exemplary for the
SF case. Focusing on the evolution of the SF state with εdd =
1.31, there are two main distinct dynamical stages: At early
evolution times, the SF coherently oscillates back and forth
characterized by a Rabi frequency TRabi ≈ 24 ms ≈ 2π/ωx

and without experiencing any noticeable density deformation.
While later on [Figs. 6(a5) and 6(a6)], the density distortion
gradually enhances, likely due to the trigger of underlying
collective modes [35–37,73] after multiple collisions of the
condensate with the central barrier.

The tunneling behavior of a SS configuration obtained
at εdd ≈ 1.49 with fixed D = 10 h̄ωx/losc is demonstrated in
Figs. 7(a1)–7(a6). Interestingly, we observe the persistent in-
terwell oscillatory motion as well as the angular oscillation
of the entire SS. However, the original SS retains its shape
throughout the time evolution with the background super-
fluid exhibiting spatial undulations [Figs. 7(a3) and 7(a4)]
stemming, in part, from the particle flow between the consti-
tuting crystals and, in part, from the collision with the central
barrier. The above response substantiates the rigidity of the
droplet crystal arrangement, with the distance of the crystals
remaining almost intact, and the dilute superfluid nature of
the background. Indeed, the involved droplet crystals share a
relatively small density overlap leading to debilitated particle
flow among the droplets. As a consequence, the atom number
within each droplet is not appreciably modified in the time
evolution.

As in the elongated geometry, a reduction of the initial tilt
strength leads to significant modifications of the tunneling

FIG. 7. Density snapshots demonstrating the tunneling behavior of a SS for εdd ≈ 1.49 using an initial interwell energy offset characterized
by (a1)–(a6) D = 10 h̄ωx/losc and (b1)–(b6) D = 7 h̄ωx/losc. In the case of D = 10 h̄ωx/losc, the SS oscillates back and forth maintaining its
shape with the involved crystals featuring quadrupole excitations. In contrast, for D = 7 h̄ωx/losc dynamically unstable crystals appear in the
course of the evolution and eventually at long-time tunneling locks. The colorbar represents n2D(x, y, t ) in terms of N/l2

osc, with N = 40 000
and losc = 1.2 µm.
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FIG. 8. Dynamics of the interwell population imbalance 
N (t )
in the quasi-2D double-well when considering (a) various tilt
strengths D (see legend) and εdd = 1.31 corresponding to a SF or
(b) using different εdd (see legend) and D = 7 h̄ωx/losc. A reduced
energy offset results to a gradual suppression of tunneling. Moreover,

N (t ) in the region of D where tunneling locks vanishes within the
SF phase but it remains finite in the SS. The evolution of the quasi-2D
dBEC with N = 40 000 164Dy atoms is triggered by quenching the
initial potential offset D to zero.

behavior due to the comparatively smaller initial velocity.
Characteristic instantaneous density profiles of a SF dBEC
(εdd = 1.31) following a quench from D = 7 h̄ωx/losc to D =
0 are provided in Figs. 6(b1)–6(b6). It can be readily seen
that the SF tunnels from the left to the right well [Figs. 6(b1)
and 6(b2)], but the initial velocity is not sufficient for the
entire cloud to be fully transmitted. As such, there is a
fraction of reflected density remaining back and becoming
more pronounced during the dynamics; see, for example,
Figs. 6(b3)–6(b5), which are characterized by enhanced spa-
tial delocalization. This progressive collocation of density in
both wells results in a vanishing population imbalance and
tunneling “locks” as visualized in the density snapshot of
Fig. 6(b6) and explicitly captured via 
N (t ) in Fig. 8(a).
We remark that using smaller initial energy offsets, viz., D �
5 h̄ωx/losc the distribution of the dipoles takes place in both
the left and right wells. Following a quench to D = 0 leads
to suppression of tunneling as can be deduced from 
N (t ),
illustrated in Fig. 8(a) for D = 5 h̄ωx/losc and D = 4 h̄ωx/losc,
and eventually to solely intrawell dynamics of the underlying
density fractions; see also Ref. [74].

Similar effects occur even when a SS is considered with
smaller tilt. In Figs. 7(b1)–7(b6), we demonstrate 2D densities

at different time-instants for εdd = 1.49. For D = 7 h̄ωx/losc,
the initial SS possesses only two humps [Fig. 7(b1)]. When
performing the D = 0 quench, the crystals, at early evolu-
tion times, oscillate together back and forth between the two
wells, keeping their distance almost fixed. Simultaneously,
a fraction of atoms is reflected from the barrier. Such re-
flection and transmission phenomena give rise to unequal
populations in both wells during the dynamics. As a con-
sequence, there are various unstable droplet configurations,
such as the rhombic one depicted in Fig. 7(b3), or two droplet
configurations [Figs. 7(b4) and 7(b5)], appearing during the
dynamics. In the long time (t > 310 ms) dynamics, atoms
gradually accumulate in both wells in a symmetric manner
and a three-droplet configuration in each well can be seen on
either side [Fig. 7(b6)]. Consecutively, tunneling locks with a
small interwell population imbalance as shown in Fig. 8(b).
It is important to mention that the robustness of the SS struc-
ture during the tunneling dynamics depends strongly on the
presence of the background SF which connects the individual
crystals. Indeed, a more pronounced SF background eases
particle transfer between the crystals, thus rendering them
more susceptible to distortions and making them less rigid.

VI. CONCLUSION AND PERSPECTIVES

We investigated the ground state and the tunneling dy-
namics of a dBEC trapped in an initially tilted double-well
potential encompassing both elongated and pancake trap
geometries. To model these systems and their dynamical
behavior, we employed the extended Gross-Pitaevskii frame-
work that incorporates first-order quantum corrections. The
different phases are initialized by tuning the relative strength
ratio between dipolar and short-range interactions while main-
taining the tilt strength. The interwell energy offset imposed
by the tilt strength effectively modifies the trapping volume of
the dBEC. Thus, even for fixed interactions, when changing
the tilt strengths a transition from a SF to SS and DL state may
occur, decreasing the chemical potential to negative values.
The tilt value, furthermore, governs the initial center-of-mass
velocity of the dBEC. For larger offsets and fixed interactions,
the velocity monotonically increases. Conversely, for a spe-
cific tilt and varying interactions, the velocity decreases as the
system transitions from the SF phase towards the SS and DL
phases, evincing the rigidity of the latter.

The time-evolution of the system is initiated by suddenly
releasing the initial interwell energy offset, promoting the tun-
neling motion of the dBEC. For the elongated double-well, it
is observed that for sufficiently large tilt strengths, the dBEC,
regardless of being in the SF, SS, or DL phase, undergoes
collective oscillations with a definite amplitude and frequency.
However, a smaller initial energy offset leads to the partial
transmission and reflection of the dipoles during the dynam-
ics. The resultant interference of these accumulated density
fractions gives rise to a smudging of the density, evident in
the intrawell population, and eventually tunneling locks. In
this dynamical stage, the interwell population imbalance is
highly asymmetric for the droplet array, while it vanishes in
the SF case. This characteristic provides a valuable means to
investigate the nature of the individual phases. The rigidity
of the crystal-like SS and droplet configurations is further
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supported by their smaller center-of-mass velocity compared
to the SF phase during the dynamics. Maintaining fixed inter-
actions and tilt strength but increasing the barrier height, the
dipoles consequently remain confined within the initial well.

A similar dynamical response in terms of the aforemen-
tioned system parameters also takes place in quasi-2D, but
there are characteristic properties that are inherently related
to the dimensionality of SS and DL. Indeed, for sufficiently
large tilt strengths the dBEC undergoes regular oscillations
back and forth among the wells. It also features distinctive
dynamical patterns depending on the interactions. A SS with
suppressed background SF tunnels as a whole, maintaining its
initial configurations which substantiates its rigidity. This mo-
tion is accompanied by small-amplitude angular oscillations
triggered by the quench. Exploiting a reduced energy offset
leads to partial transmission events of the dipolar cloud and
ultimately to tunnel locking caused by collocation of density
in each well during the evolution. This dynamical regime is
characterized by vanishing interwell population imbalance.

There is a variety of possible extensions of our results
in future endeavors. An imperative prospect is to testify the
validity of the eGPE to adequately describe all the emergent
tunneling channels. Along these lines, it is worth unraveling
the participation of possible interband tunneling processes,
especially in the few- to many-body crossover relying, for
instance, in ab initio methods [75,76]. In this context, it would
be possible to achieve an accurate characterization of the
induced tunneling pathways in terms of the relevant energy
gaps and possibly reveal higher-order, e.g., interband, tun-
neling channels. Additionally, the inclusion of temperature
and its impact on the discussed tunneling properties is worth
pursuing. A first step towards this direction could be to utilize
a stochastic Gross-Pitaevskii model as was done in Ref. [39].
Exploiting dynamical frustration events, e.g., by ramping a
lattice potential in SS and DL [43], to design exotic tunneling
processes is another intriguing direction. The spontaneous
generation of nonlinear wave structures stemming from the
counterflow dynamics of two initially separated dBEC clouds
is certainly desirable. Furthermore, a detailed study of the
excitation of corresponding surface modes in dBECs (for ex-
ample, using parametric driving as it was achieved in regular
BECs [77,78]) constitutes another interesting future prospect.
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APPENDIX A: IMPACT OF THREE-BODY
RECOMBINATION IN THE TUNNELING DYNAMICS

The self-bound SS and droplet configurations are known to
feature appreciable three-body losses [34,79] whose presence
naturally destructs, in the experiment, the long-time observa-
tion and characteristics of these structures. For this reason, in
what follows, we aim to expose the effect of the three-body
loss rate in the tunneling properties, e.g., of the elongated
SS at εdd = 1.394. To monitor the ensuing dynamics we

rely on the eGPE of Eq. (1) using the additional imaginary
term −(ih̄K3/2)|ψ (r, t )|4ψ (r, t ), where K3 refers to the three-
body recombination rate [50,80,81]. As a reference point of
the recombination rate coefficient we consider K3 = 1.2 ×
10−40 m6/s which was identified in the experiment in Ref. [9].
For a discussion about the interplay of three-body recombina-
tion and beyond mean-field contributions see the review of
Ref. [7].

The density evolution visualizing the emergent tunneling
dynamics of the initially prepared SS in a tilted double-
well for different energy offsets D = 10 h̄ωx/losc and D =
7 h̄ωx/losc is illustrated in Figs. 9(a) and 9(b), respectively.
As it can be deduced, the presence of three-body losses does
not prevent the observation of the tunneling processes taking
place at early timescales t < 200 ms that were discussed in
the main text, see also Figs. 3(a2) and 3(b2). Namely, for
D = 10 h̄ωx/losc oscillations of the SS between the wells oc-
cur. Also, in the case of D = 7 h̄ωx/losc despite the overall
collective tunneling behavior there are certain reflected por-
tions of the SS simultaneously with each transmission event.
In the course of the evolution they accumulate, and their inter-
ference leads to density smudging and locking of the tunneling
process.

However, as expected, the underlying atom losses depicted
in Fig. 9(c) become more pronounced for longer times (t �
ω−1

x ) resulting ultimately in the destruction of the SS because
three-body losses compete with the LHY contribution. This
can be readily seen in n1D(x, t ) where the individual density
humps gradually smoothen and disappear. The dBEC is not
able to host a SS at these timescales due to the significant
reduction of the atom number, N (t ). This decrease of the atom
number is, of course, enhanced for larger K3 coefficients as
can also be inferred from Fig. 9(c). However, it also depends
on the initial energy offset, see Fig. 9(d), but apparently, there
is a nonmonotonic trend with respect to D. This behavior is
caused by the peculiar dependence of the peak density on
D, which is here the crucial component for the loss rate for
fixed K3. For instance, at D = 2 h̄ωx/losc where the individual
crystals are self-trapped in each well, the density is more
localized when compared to larger D values as shown in the
inset of Fig. 9(d). Therefore, the reduction of N (t ) is more
rapid in this case. The same argument holds for the other D
values. A similar phenomenology occurs also for increasing
εdd (not shown), where droplet arrays form. In this case the
atom losses are more pronounced due to the relatively higher
localized densities related to negative chemical potentials, see
also Fig. 2(a).

APPENDIX B: LINEAR RAMPING
OF THE ENERGY OFFSET

Another interesting question is whether the above-
described tunneling regimes persist in the case of reducing the
energy offset in a time-dependent manner or are unique to the
quench protocol used. In the following, we argue that indeed
the aforementioned tunneling regions can be realized utilizing
time-dependent ramps with the latter being sufficiently fast,
while closer to the diabatic regime the tunneling is naturally
delayed. This investigation allows also to testify the validity
of the eGPE predictions after quenching the tilt strength, a
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FIG. 9. Time evolution of the integrated density, n1D(x, t ), showcasing the tunneling dynamics in the presence of three-body losses with
recombination rate coefficient K3 = 1.2 × 10−40 m6/s for initial tilt strengths (a) D = 10 h̄ωx/losc and (b) D = 7 h̄ωx/losc. The tunneling
processes of the K3 = 0 case persist for early times and afterwards the SS character disappears due to prominent atom losses. The colorbar
represents the integrated density n1D(x, t ) in units of N/losc, where N = 40 000 and losc = 1.80 µm. Dynamics of the normalized atom number
N (t )/N (t = 0) for (c) different recombination rate coefficients K3 (see legend), focusing on D = 10 h̄ωx/losc and (d) varying tilt strength D
(see legend). As expected, a more prominent reduction of N (t ) takes places for larger K3. Inset of (d) depicts density profiles, n1D(x, t ), at
t = 500 ms and distinct D values evincing the nontrivial effect of the tilt strength on the density localization. Apparently, the atom loss is
crucially affected from the density localization, viz., it is enhanced for larger peak densities. In all cases, the relative interaction parameter
εdd = 1.394.

process that might induce excitations beyond the validity of
this approach.

For these reasons, instead of performing a quench of the
energy offset, we employ the linear ramp

D(t ; τ ) = Din + (Dfi−Din )t
τ

, for t � τ, (B1)

D(t ; τ ) = Dfi, for t > τ. (B2)

Here, Din [Dfi] denotes the initial (final) tilt strength and τ

quantifies the underlying ramp rate. The latter is τ → 0 for
a quench and τ → ∞ for a diabatic change of the energy
offset. As in the main text we consider Dfi = 0 and for sim-
plicity we restrict our presentation to the quasi-1D setting with
Din = 7 h̄ωx/losc and εdd = 1.394 referring to a SS. To moni-
tor the interwell tunneling features we rely on the population
imbalance, 
N (t ) in the course of the evolution showcased
in Fig. 10. Apparently, we observe that for sufficiently small
ramp-rates τ < 10 ms < τDin=7, the tunneling behavior is al-
most identical to the quench scenario, while a larger τ leads to
a significantly slower evolution and eventually to suppression
of tunneling, i.e., the magnetic atoms tend to remain in the
initial well.

APPENDIX C: NUMERICAL SCHEME

To numerically solve the 3D eGPE [Eq. (1)] we make
use of the split-time Crank-Nicholson discretization scheme
[68,82] and deploy a suitable rescaling. In particular, we
transform the 3D wave function as �(r′, t ′) = √

l3
osc/Nψ (r, t )

and express the time and length in units of the trap frequency
ωx and the harmonic oscillator length losc = √

h̄/mωx,
respectively. The ground state of the dipolar gas is found via
the imaginary time propagation method. Due to the many
energetically close-lying configurations we employ various

initial guesses to identify the many-body state with the lowest
energy. Specifically, in the 1D case the following two different
initial guesses ψ1D(x, y, z) = Ae−(x2+k2y2+λ2z2 )/2 cos2(l1x)
and ψ1D(x, y, z) = Ae−(x2+k2y2+λ2z2 )/2 sin2(l1x) are used.
The parameters k2 = ωy/ωx and λ2 = ωz/ωx stem from
the above-mentioned rescaling. However, for the 2D
scenario we invoke the initial guesses ψ2D(x, y, z) =
Ae−(x2+k2y2+λ2z2 )/2 (cos2 (l1x) + cos2 (l2y + φ)) and ψ2D(x,
y, z) = Ae−(x2+k2y2+λ2z2 )/2[sin2(l1x) + cos2(l2y + φ)]. Here,
A denotes the normalization constant while l1, l2, and φ

are varied to realize a different number of crystals in the
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FIG. 10. Temporal evolution of the interwell population imbal-
ance 
N (t ) following a linear decrease of the energy offset from
D = 7 h̄ωx/losc to D = 0 for different ramp rates τ (see legend). A
larger ramp rate of the quench protocol leads progressively to tunnel-
ing suppression. The quasi-1D dBEC consists of N = 40000 164Dy
atoms with εdd = 1.394.
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initial guess wave function. The choice of the initial ansatz is
naturally more crucial in two dimensions due to the relatively
higher degrees of freedom.

To identify the correct ground state, we evaluate the cor-
responding energies of different initial states with precision
up to ten decimal digits. The normalization of the wave
function at every step of the imaginary time evolution is
preserved by applying ψ (r′, t ) → N1/2/||ψ (r′, t )||. Conver-
gence is justified by testifying that modifications of the wave
function (at every grid point) between consecutive time steps
is lower than 10−6 and the corresponding energy alterations
lie below 10−8. This serves as the initial state for the quench-
induced tunneling dynamics which is monitored through real
time propagation of the eGPE. The divergent behavior of the

dipolar interaction potential at short distances is circumvented
by transforming to momentum space [83] for the calculations.
Subsequently, we employ the inverse Fourier transform to find
the real space configurations relying on the convolution theo-
rem. For the present simulations a 3D box with a spatial grid
(nx × ny × nz) is used which refers to (1024 × 128 × 128) in
the quasi-1D case and (512 × 512 × 128) for the quasi-2D ge-
ometry. The spatial discretization is δx = δy = δz = 0.05 losc,
and the time step of the numerical integration δt = 10−5/ωx.
Hence, to accurately simulate the real time dynamics of the
system we guarantee that (δt )2 < δxδy [82] is satisfied. In-
deed, such spatial and time discretization steps ensure that
the total particle number and total energy remain conserved,
numerically of the order of 10−6, during the evolution.
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