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The second law of thermodynamics posits that in closed macroscopic systems the rate of entropy production
must be positive. However, small systems can exhibit negative entropy production over short timescales, seem-
ingly in contradiction with this law. The fluctuation theorem quantitatively connects these two limits, predicting
that entropy-producing trajectories become exponentially dominant as the system size and measurement time are
increased. Here, we explore the predictions of the fluctuation theorem for a fluid of point vortices, in which the
long-range Lorentz-like interactions and existence of negative-absolute-temperature states provide an intriguing
test bed for the theorem. Our results suggest that while the theorem broadly holds even at negative absolute
temperatures, the form of the interactions inherent in the vortex matter lead to anomalously large entropy
production over short time intervals. The predictions of the fluctuation theorem are only fully recovered when

sufficient noise is introduced to the dynamics to overwhelm the vortex-vortex interactions.
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I. INTRODUCTION

The second law of thermodynamics states that in a closed
macroscopic system entropy will only ever increase [1-3].
However, as identified by Loschmidt [4], a question arises
regarding how such irreversible behavior can emerge from
the microscopic equations of motion, which are themselves
reversible. In mathematical terms, why is it that a system’s
phase-space trajectory has a preferred direction towards a
higher-entropy state when the corresponding time-reversed
trajectory would appear to be equally likely to occur? Fluc-
tuation theorems (FTs) provide one approach for resolving
this paradox. They predict that a physical system can al-
ways exhibit both entropy-producing and entropy-reducing
trajectories through phase space but that the latter are expo-
nentially suppressed as the system size or evolution time is
increased. These theorems therefore bridge the gap between
the reversible microscopic and irreversible macroscopic dy-
namics and recover the familiar second-law behavior in the
thermodynamic limit.

FTs can be categorized into two broad classes: Evans-
Searles-type FTs, which predict the statistics of the entropy
produced in systems perturbed from equilibrium by a con-
stant driving [5-10], and Crooks-type FTs, which predict the
statistics of work fluctuations in systems with time-dependent
driving [11,12]. Importantly, these theorems are not restricted
to equilibrium systems, providing one of the few analyti-
cal thermodynamic predictions valid in the nonequilibrium
regime. A wealth of experimental verification now exists for
both forms of FT [13-20], cementing their importance in our
understanding of statistical physics.

In this work we consider the statistical properties of a
fluid of point vortices. This system consists of a collection
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of pointlike vortex “particles” that interact with each other
via long-range Coulombic forces. Unlike massive particles,
these vortex particles experience a velocity perpendicular
to this interaction force, analogous to the magnetic Lorentz
force on a charge. Point vortices were first considered as
a toy model for two-dimensional (2D) fluids but more re-
cently have been found to accurately describe the dynamics
of quantized vortices in 2D superfluid Bose-Einstein con-
densates [21-28]. One remarkable feature of this system is
its ability to exhibit negative-absolute-temperature states in
any bounded container, as identified by Onsager [29]. In this
negative-temperature regime, the vortices tend to form same-
sign clusters [22,23,30,31], maximizing the kinetic energy
of the flow field while reducing the configurational entropy.
These negative-temperature states have now been realized
experimentally in ultracold gases [25,26] and, more recently,
in exciton-polariton condensates [32].

Here, we investigate the applicability of the Evans-Searles
FT to the point-vortex fluid, given its unusual features of long-
range, Lorentz-like interaction forces and negative absolute
temperatures. In analogy with Ref. [13], we consider a driving
scheme in which one vortex is dragged by an external po-
tential through the system, which is otherwise in equilibrium
at a chosen temperature. Our results indicate that while the
theorem seems largely unaffected by the sign of the temper-
ature, the unusual form of the vortex-vortex interactions does
appear to give rise to anomalously large entropy production
over short timescales, leading to a disagreement with the FT
prediction. However, over longer timescales the FT—and, in
turn, the second law of thermodynamics—is recovered.

The rest of this paper is organized as follows. Section II
describes the system setup and numerical methods employed.
Section III formally defines the Evans-Searles FT and outlines
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our method for applying it to the point-vortex fluid. In Sec. IV,
we discuss our main results. We explore how the FT predic-
tions are affected by the temperature of the system, the finite
system size, and noise added to the vortex dynamics. Finally,
in Sec. V we conclude and discuss potential future research
directions.

II. METHODS

A. Point-vortex system

We model a system of N, point vortices in a square ge-
ometry of side length L, with periodic boundaries in both
directions. We fix N, = 100 unless otherwise stated. If we
write the position of vortex i as (x;, y;) and its circulation as
I'; = ;¢ (with s; = £1 and 'y being a unit of circulation),
the pseudo-Hamiltonian for such a system can be expressed
as [33]

where
G(xij, yij)
_ i n <COSh[(27TXij/L) —2mn] — Cos(znyij/l‘)>
. cosh(27rn)
— 27 (x;;/L) @

and p is the bulk value of the 2D superfluid mass density.
Here, x;; = x; — x; (with similar notation for y;;). We restrict
our analysis to the neutral vortex system, for which there
are an equal number of clockwise- and counterclockwise-
circulating vortices.

The conservative equations of motion for the vortices
[which we denote with the superscript (0)] are given by
Hamilton’s equations,

pLix” = 0H /9y,
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For the purposes of testing the fluctuation theorem in this
system, we modify the dynamical model by adding a driving
term in analogy with an earlier work [13]. Specifically, we
attach one vortex to a harmonic trapping potential, which
is translated at a constant velocity Viap = Uyrap€y across the
system, where €, is the x-directional unit vector. In addition to
the forces arising from interactions with other vortices, this
“test” vortex thus experiences a restoring force Firesioring =
—K(riest — Iirap) towards the center of the translating har-
monic trap. Here, Iieg (Fyap) 18 the location of the test vortex
(trap center), and K is a parameter that determines the stiff-
ness of the trap. We assume that this force is realized by
a dissipative Gaussian laser beam, which locally depletes
the superfluid mass density from its bulk value p, pulling
the test vortex towards its center with a velocity Fiegtoring =
Frestoring/ P10 [34—38]. We account for this additional velocity
by modifying the equations of motion (4) such that

X = XEO) — k(Xiest — xtrap)Si,test’
o (5)
Yi=DY — k(Yest — ytrap)ai,test’

where we have defined the spring constant k = K/pI'y. Nu-
merically, we implement the restoring force in such a way
that the dynamics are “unwrapped” with respect to the pe-
riodic boundaries: when the trap moves infinitesimally from
x=+L/2 to x = —L/2, the force on the vortex does not
change in strength or direction.

A schematic of our system setup is shown in Fig. 1(a),
with vortices (antivortices) shown as blue (red) circles and the
harmonic trap depicted by the pink shaded region with the test
vortex captured inside of it. We track the trajectory of the test
vortex during the dynamics and use it to investigate the FT
predictions for the vortex system (see Sec. III). In Figs. 1(b)
and 1(c), we plot the horizontal displacement §x of the test
vortex (blue curve) relative to the trap center (pink line) as a
function of simulation time for two different spring constants
k. As expected, the test vortex is able to drift farther from the
trap center for smaller k [Fig. 1(b)]. In all our simulations, the
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FIG. 1. (a) Schematic of our system with 10 positive-circulation
(blue) and 10 negative-circulation (red) point vortices in a doubly
periodic square geometry. The harmonic trapping potential (indi-
cated by the pink shaded circle) moves at a constant speed vy, in
the positive x direction, dragging the test vortex through the system.
(b) and (c) show the horizontal deflection §x (blue line) of the test
vortex relative to the trap center (pink line) as a function of time
for trap spring constants k = 0.5¢,' and k = 100z, ', respectively. In
both cases, vy = 0.3x0 /1.
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dynamics are initialized with the trap at the location of the test
vortex (hence, 6x = 0 at # = 0), and the trap is translated at a
velocity of vy = 0.3x0/f9. Here and throughout this work,
we express length, time, and energy in units of xo = L/10,
to = x3/To, and &9 = pT'ox3 /to, respectively.

B. Numerical implementation

In the following, we explore the behavior of the vor-
tex system as a function of the (inverse) vortex temperature
B [29]. We do this by sampling the initial states for our
dynamical simulations from a canonical ensemble at fixed
B. As in earlier works [24,39,40], we achieve this using a
Markov chain Monte Carlo method. Briefly, every step in the
Markov chain involves randomly selecting one vortex from
the configuration, attempting to move it a small distance in
a random direction, and then deciding whether to accept the
move. The probability of accepting a given move is given by
the Metropolis rule, min{1, exp(—BAH)}, where AH is the
change in the energy (1) that would be produced by the move.
To avoid singular behavior, we reject all moves that cause any
two vortices to be separated by less than 0.0016xj.

For a given choice of temperature, we perform a total of
10° Markov-chain steps. Following an initial burn-in of 10°
steps, we sample 1000 microstates separated by intervals of
900 steps to ensure minimal correlations between sampled
states. We then use these microstates as our ensemble of initial
conditions at the chosen 8 and evolve each in time by numeri-
cally integrating Eq. (4) with the additional trapping potential
described in the previous section. The dynamical simulations
are conducted using a fourth-order Runge-Kutta method with
6000 numerical time steps over an integration time of 40¢,.

III. FLUCTUATION THEOREM

The Evans-Searles fluctuation theorem predicts that, for
a nonequilibrium finite system, the second law of ther-
modynamics will be violated over short timescales [5,6].
Mathematically, the theorem states that over a time interval
7, the probability P(o;) of observing a phase-space trajectory
that produces entropy o is related to the probability P(—o7)
of observing a trajectory that consumes an equivalent amount
of entropy via the expression

P(—o07)
P(o:)

= exp (—o7). (6)
Since o, is an extensive quantity, this ratio becomes increas-
ingly small as either the system size or the time interval
T is increased, and hence, the second law is recovered in
the thermodynamic limit [13]. The derivation of this expres-
sion assumes that the system under consideration is time
reversible, ergodic, and at fixed energy when no driving is
applied [9,41]. These conditions should all be well satisfied
for this point-vortex system [42].
Here, we consider an integrated form of the FT [13,43],

P(o; <0)
P(o, > 0)

where the angular brackets on the right-hand side (RHS) de-
note an average over all trajectories that produce entropy. The

)

= (eXP (_GT ))U, >0

left-hand side (LHS) of Eq. (7) may be measured by taking
the ratio of the number of entropy-consuming (o; < 0) and
entropy-generating (o; > 0) trajectories over time interval t.

Our primary goal is to investigate the applicability of
Eq. (7) for the case of point vortices by comparing the two
sides of Eq. (7). We define the entropy o, produced (or con-
sumed) over a time 7 by the translating trap as the ratio of the
work W, done by the translating trap to the thermal energy
kBTi)Z

We

= — . 8
O¢ kBYI) (3

Here, T, is an ambient “phonon” temperature, which we treat
as a free parameter in our simulations because the point-vortex
model does not account for the dynamics of phonon degrees
of freedom that would be present in a superfluid. We calculate
the work W; done by the trap over time T = #; — #; as an inte-
gral of the scalar product between the trapping force Fregtoring
acting on the test vortex and the trap translation velocity Virp.
Hence, Eq. (8) becomes

I
O =« / dsvlrap : Frestoring’ &)
t

where we have defined the phonon (inverse) temperature o =
1/(kgTy). Since the trap is translating at a constant velocity,
this expression will result in entropy production (o, > 0)
whenever the test vortex is behind the trap and entropy con-
sumption (o; < 0) when the test vortex gets pushed ahead of
the trap due to interactions with other vortices in the system.

IV. RESULTS

A. Effect of the vortex temperature

We first consider a test of the FT as a function of the
vortex temperature. To this end, we have run dynamical sim-
ulations for a range of initial temperatures spanning from
the Berezinskii-Kosterlitz-Thouless (BKT) transition temper-
ature Bkt = 87 /pT'Z, at which the vortices and antivortices
pair strongly to form dipoles [44—46], to the Einstein-Bose-
condensation transition temperature Bggc = —167/ pF%NV,
where the vortices arrange into same-sign clusters to max-
imize the energy [39,47—49]. In the following, we scale all
positive temperatures B8 by Bpkr and all negative tempera-
tures B_ by Besc [24,26,40].

In Fig. 2 we present histograms of the entropy production
o at three vortex temperatures, 8. =1, 8. =0, and f_=—1.
For each temperature, we have produced histograms using
both a short time interval, T & 0.007#, [Figs. 2(a)-2(c)], and
a longer interval T = 401 [Figs. 2(d)-2(f)]. The dashed ver-
tical line in each panel denotes o, = 0. In Figs. 2(a)-2(c),
the distributions are almost symmetric about o; = 0, indi-
cating that entropy-consuming and -producing trajectories
are approximately equally likely for such short time inter-
vals. By contrast, for the longer integration times shown
in Figs. 2(d)-2(f), the histograms become skewed towards
o, > 0, reflecting the tendency for entropy to be produced
over long times, on average. Ultimately, for sufficiently long
time intervals, entropy-producing trajectories should become
overwhelmingly dominant with almost vanishing probability
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FIG. 2. Histograms of the dimensionless entropy production o;.
The three columns correspond to inverse vortex temperatures B =1,
. =0and B_ = —1, from left to right. The measurement intervals
are (a)—(c) T =~ 0.007fy and (d)-(f) T = 40¢), and the dashed red
vertical line in each panel indicates the location of o, = 0. Each
histogram is produced from an ensemble of 1000 computational
trajectories, and we use every possible window of length 7 in each
simulation. The total sample sizes for these histograms are therefore
1000 x 6000 for (a)—(c) and 1000x 1 for (d)—(f).

of entropy-consuming trajectories, in accordance with the sec-
ond law of thermodynamics. It can also be seen in Fig. 2 that
as the vortex temperature shifts from positive to negative, the
entropy distribution widens. This is presumably due to the
stronger flow fields produced by the vortex clusters, which

push the test vortex further from the trap center, in turn giving
rise to larger restoring forces.

Using these entropy distributions, we can test the FT pre-
diction in Eq. (7). For the temperatures 8 we have considered,
we independently measure the LHS and RHS of Eq. (7)
for varying time intervals in the range 0.007f <t < 40¢.
The results are presented in Fig. 3. Figures 3(a)-3(e) depict
example initial-vortex configurations at five inverse tempera-
tures, B+ = {1,0.5,0} and B_ = {—0.5, —1}, demonstrating
the transition from dipole pairing to same-sign clustering as
is reduced. The trap position is shown as a pink asterisk, which
coincides with the test vortex at time t = 0. Figures 3(f)-3(j)
show the resulting FT curves corresponding to each tempera-
ture as a function of 7, with the red (teal) line corresponding
to the LHS (RHS) of Eq. (7). Note that the right-hand side
involves the free parameter «, defined in Eq. (9). We treat
o as an optimization parameter and set it equal to the value
for which the mean-square error between the two curves is
minimized over all 7. In all cases, it can be seen that the two
curves start near unity and tend towards zero with increasing
7, in broad agreement with the predictions of the fluctuation
theorem. However, as B is reduced, the timescale required
for entropy production to dominate over entropy consumption
increases. This suggests that at negative temperatures, our
driving protocol becomes much less efficient at producing
entropy and instead continues to produce almost equal num-
bers of entropy-producing and entropy-reducing trajectories
even for large t [this is also reflected in the near symmetry
of the histogram in Fig. 2(f)]. Regardless, Eq. (7) still ap-
pears to be broadly satisfied for 8 < 0, suggesting that the
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z (units of x;)
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FIG. 3. (a)—(e) Initial vortex configurations and (f)—(j) the corresponding fluctuation-theorem (FT) curves for inverse vortex temperatures
B+ ={1,0.5,0} and B = {—0.5, —1}. The blue and red markers in the top row represent the vortex and antivortex locations, respectively. A
blue dot inside a red marker indicates the presence of a vortex directly beneath the antivortex. The pink asterisk indicates the trap location at
t = 0, which coincides with the initial position of the test vortex. The bottom row shows the number ratio (red curves) of entropy-consuming
(0; < 0) to entropy-producing (o, > 0) trajectories as per the left-hand side of Eq. (7), together with the right-hand side of Eq. (7),
(exp (=07 ))s, »0 (teal curves). Each curve has been averaged over 1000 simulations of a system with N, = 100. The trap parameters are

Vap = 0.3%0/to and k = 100z,
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FIG. 4. (a) The fitted phonon inverse temperature o = 1/(kg7},)
as a function of the vortex temperature 8. At each value of 8, we
extracted o using nine different fitting time intervals, as indicated in
the legend. (b) The relative deviation §o = | — &|/& between each
fitted « and the value & obtained from the fit to the full time window
T = [0—40]t. The color coding is as in (a).

fluctuation theorem still holds even in this exotic temperature
regime.

Curiously, however, Figs. 3(f)-3(j) all show a slight dis-
agreement between the two FT curves for small time intervals
7. Specifically, the LHS of Eq. (7) (red curves) is lower than
the RHS for small 7, indicating that even for the shortest
intervals P(o; > 0) > P(o; < 0) in this system. Expressed
another way, our point-vortex system never produces equal
numbers of entropy-producing and entropy-reducing trajecto-
ries, even for arbitrarily small t. The value of t at which the
two curves first coincide increases weakly as 8 is reduced,
suggesting that this effect is at least partially dependent on the
vortex temperature. We explore this discrepancy further in the
following sections.

First, however, we investigate how the value of the fitted
phonon temperature « varies as a function of the vortex tem-
perature B. To ensure that its value is robust to the chosen
window of 7 over which we choose to fit the two sides of
Eq. (7), we measure « from fits to nine time intervals: t € {0—
40, 0-5, 5-10, 10-15, 15-20, 20-25, 25-30, 30-35, 35-40}¢.
The results are shown in Fig. 4(a). Interestingly, there is a
near-linear relationship between « and 8 (note that this trend
continues across 8 = 0 despite the difference in scaling for
B > 0 and B < 0). However, « appears to be strictly posi-
tive, unlike S. Figure 4(b) shows the relative deviation o =
| — &|/& of each measured « from the value & extracted over
the full fitting time interval [0—40]¢. Fitting to any interval be-
ginning after T & 10t gives o ~ & (i.e., near-zero deviation).
However, the strong deviation for the earliest time interval
[0-5]t clearly quantifies the disagreement between the two
FT curves for small t, which becomes more significant as 8
is reduced towards increasingly negative temperatures.

B. Finite-size effects

The discrepancy between the two sides of Eq. (7) identified
in Figs. 3 and 4 may be due to the finite size of our nu-
merical simulation domain, in which case it should diminish
as the system size increases and the thermodynamic limit is
approached. To test this, we explore the effects of varying both
the trap strength k£ and the vortex number N,. Larger k values
prevent the test vortex from traversing large distances across
the domain, effectively making the (periodic) boundaries

1
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(d)\\%%!iw

10 20 30 0
T (units of t)

10 20 30 40
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FIG. 5. Tests of finite-size effects at 8, = 0. The top row shows
the FT curves for a system with N, = 100 vortices with trap strengths
(@) k=71;", (b) k =100, and (c) k = 1000¢;,". In the bottom
row, the vortex number is (d) N, = 50, (e) N, = 200, and (f) N, =
400, with fixed trap strength k = 100z, ! In each frame, the red (teal)
curve corresponds to the left (right) side of Eq. (7), as in Fig. 3. In all
cases, the trap speed is fixed at vy, = 0.3x /%), and « values were
obtained by fitting to the full time interval (see Sec. IV A).

appear farther away. Larger N, values, on the other hand, re-
sult in higher vortex densities, which essentially correspond to
larger system sizes (except for an overall change in timescales
since the mean vortex velocity also increases).

Figure 5 shows the results of our finite-size tests, with the
vortex temperature fixed at B, = 0. Figures 5(a)-5(c) show
the FT curves for Ny = 100 with trap strengths k = 7z, Lk=
100z, ", and k = 1000z, ', respectively. The deviation at small
T does appear to decrease as k is increased, although the LHS
of Eq. (7) (red curve) shows little indication of approaching
unity at 7 &~ 0. It therefore does not appear that increas-
ing k is sufficient to completely eliminate the discrepancy.
Figures 5(d)-5(f) show the FT curves for fixed trap strength
k =100z, ' and vortex numbers N, = 50, N, = 200, and
N, = 400, respectively. The two curves appear to converge
as N, is increased, suggesting that the observed discrepancy
may disappear as N, is increased further. Nonetheless, it is
interesting that this disagreement exists even in finite-size
systems, and hence, we wish to explore its origin.

C. Effect of vortex-vortex interactions

Point vortices are unusual in that their interactions are
inherently long range and the corresponding forces give rise
to perpendicular motion. To investigate the importance of
these features of our system, here, we introduce noise to
the motion of the vortices, allowing us to effectively tune
out the long-range interactions by overwhelming them with
local fluctuations. Physically, this noise plays the role of the
phonon bath in which the vortices would be immersed in a
superfluid Bose-Einstein condensate. From the perspective of
the test vortex, there are therefore two contributions to the
environment it is moving through: a coherent part arising from
long-range interactions and an incoherent part corresponding
to the noise. To explore the interplay between these two ef-
fects, we study three scenarios: (1) noise added to all vortices
except the test vortex, (2) noise added to all vortices, including
the test vortex, and (3) noise added to the test vortex when no
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FIG. 6. FT curves at vortex temperature 8, = 0 with noise added
to the all vortices except the test vortex. The first three panels
correspond to noise amplitudes (a) A =0, (b) A = 100x,/ty, and
(¢) A =200x¢/ty. As in Fig. 3, the red and teal curves correspond
to the left- and right-hand sides of Eq. (7), respectively. The insets
of (a)—(c) each show two examples of the vortex deflection as in
Figs. 1(b) and 1(c). The axis labels for the insets in (a) and (b) are
the same as for the inset in (c) but have been omitted for visual
clarity. (d) shows a collapse of the three datasets in (a)—(c), achieved
by rescaling the time axis by multiplicative factors 1, 2, and 8,
respectively. The inset of (d) shows a magnified view highlighting
the small-t behavior, with the axes being the same as for the main
frame. In all cases, vy = 0.3x0/t0, k = 100t0‘1, and N, = 100.

other vortices are present. We implement the noise by adding
an additional term, 8v; = ;€ + {;&,, to the velocity v; of vor-
tex i in Eq. (4). The velocity increments 7; and ¢; are randomly
generated each time step from a uniform distribution within
the range [— A, A], where A is the chosen noise amplitude.
We first explore case 1, in which noise is added only to
the environment vortices. In Figs. 6(a)-6(c), we show the
analysis of the two sides of Eq. (7) with noise amplitudes
A = {0, 100, 200}xy/ty, respectively. Each panel includes an
inset showing the deflection of the test-vortex position from
the trap center (horizontal pink line) as a function of time
from two example simulations at the corresponding value of A
(purple and green curves). At the outset it appears in Figs. 6(b)
and 6(c) that the early time deviation has been mitigated by
the noise when compared with Fig. 6(a). However, a careful
analysis of Fig. 6(c) reveals that for very short time inter-
vals the deviation persists. To make this observation clearer,
Fig. 6(d) reproduces the data in Figs. 6(a)-6(c) with the time
axis rescaled by factors of 1, 2, and 8, respectively. Under this
rescaling, the data collapse, and hence, increasing A in this
scenario is effectively equivalent to reducing the timescale
of the dynamics. In the inset of Fig. 6(d), we focus on the
small-7 limit, clearly revealing that the deviation is present in
all three cases. It therefore appears that no amount of noise
added to the environment vortices could achieve agreement
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FIG. 7. Fluctuation-theorem results with noise added to the test
vortex. (a) FT curves for a system of N, = 100 vortices at temper-
ature B, = 0, with noise of amplitude A = 200x,/#, added to all
vortices, including the test vortex. (b)-(d) correspond to a system
with only the test vortex present and added noise with amplitude
A = 100x¢/ty. (b) FT curves, with the inset showing an average over
10000 simulations analyzed for small 7, as indicated by the purple
shaded region. (c) and (d) show histograms of the dimensionless
entropy production o, for time intervals T = 0.0077 (1000x6000
samples) and T = 40z, (1000x 1 samples), respectively. In all cases,
Virap = 0.3x0 /%0, and k = 1001‘0’1.

in this scenario. One possible explanation for this is that the
vortex-vortex interactions are causing the deviation, meaning
that the two curves would coincide only if local fluctuations
were also added to the test vortex.

We next turn to case 2, in which noise is also added to
the test vortex. This situation most closely resembles a true
Bose-Einstein condensate, in which the phonon bath will af-
fect all vortices equivalently. We explore a range of noise
amplitudes A and find that for A < 100x, /1y, the deviation
between the two sides of Eq. (7) at small t persists. However,
for noise amplitudes greater than this, the discrepancy is no
longer visible. An example case with A = 200xy/#( is shown
in Fig. 7(a). In this case, the left-hand side of Eq. (7) does ap-
proach unity as T — 0, meaning that there are equal numbers
of entropy-producing and entropy-consuming trajectories in
this limit. This supports the interpretation that the intervortex
interactions are responsible for the small T anomaly because
at these amplitudes the noise is much stronger than the mean
velocity v arising from long-range interactions, which is of the
order of o ~ [y/d ~ 1x/t for our setup, where d ~ L/N\,1 2
is the mean distance between vortices.

Finally, we examine case 3, in which only the test vortex
is present and vortex-vortex interactions are entirely absent.
This scenario trivially reduces to Brownian motion of the
vortex in the trap, which more closely resembles earlier works
on the fluctuation theorem [13]. The results of this test are
presented in Figs. 7(b)-7(d). Figure 7(b) shows the two sides
of Eq. (7), with the inset displaying data averaged over a
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larger ensemble. Evidently, the agreement is excellent for
all . This result can also be verified directly from the his-
togram in Fig. 7(c), which shows that the entropy production
is distributed symmetrically around zero for the shortest time
interval, T = 0.007¢y, demonstrating an equal probability of
positive- and negative-entropy trajectories. This in contrast to
the T = 40¢y case shown in Fig. 7(c), where the histogram is
strongly skewed towards entropy production. Our results are
therefore consistent with the explanation that the long-range
vortex-vortex interactions are responsible for the short time-
interval deviations from the fluctuation theorem prediction of

Eq. (7).

V. CONCLUSIONS

We studied the fluctuation theorem in the context of a
2D vortex fluid by considering the driven dynamics of an
ensemble of point vortices in a doubly periodic square domain
at both positive and negative absolute vortex temperatures.
We found, in general, good agreement with the predictions
of the FT. However, for short time intervals, we consistently
observed anomalous deviations from the FT in our numerical
simulations. These deviations were found to be persistent
with respect to a change in the finite system parameters,
although they did appear to decrease as the vortex density
was increased. Only when the long-range vortex-vortex in-
teractions were either overwhelmed by noise or eliminated
completely was full agreement with the fluctuation theorem
recovered. Hence, we conclude that some aspect of the long-
range vortex-vortex interactions in this system plausibly leads
to anomalous deviations from the FT.

The question of which specific feature of the interactions
is responsible for the FT anomaly remains. Previous work
in the context of dusty plasmas demonstrated that the FT
can still hold in the presence of Coulombic interactions [50],
suggesting that the long-range nature alone is not sufficient to
cause the observed deviations. However, vortex-vortex inter-
actions also have a Lorentz-like character, which may be a key
difference in our system. We leave a more careful decoupling
of these properties for future work.

Our observations call for further investigations into On-
sager’s statistical hydrodynamics of point vortices and into
the role of long-range interactions in nonequilibrium systems
more generally. In particular, it is known that nonequilibrium
fluctuations in systems with short-range particle interactions
readily generate long-range spatial correlations [51]. By con-
trast, our results point to a situation where long-range particle
interactions appear to produce anomalous local entropy fluctu-
ations. Further elucidation of our observations may potentially
have an impact on studies of quantum viscosity and nonequi-
librium transport phenomena in superfluids.
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