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Restoring the topological edge states in a finite optical superlattice
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We consider the emergence of edge states in a finite optical lattice and show that the boundaries of the
lattice play a decisive role for their location in the corresponding energy spectrum. We introduce a simple
parametrization of the boundaries of the optical lattice and demonstrate the existence of an optimal choice of the
values of the parameters which leads to an approximate restoration of chiral symmetry. A crucial property of this
optimization is the suppression of tunneling between next-nearest-neighboring wells of the lattice. This in turn
allows the mapping of the optical lattice setup to a finite SSH model. The topological character of the emerging
edge states is discussed.
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I. INTRODUCTION

Ever since the experimental realization of Bose-Einstein
condensation (BEC) [1–3] ultracold atomic platforms have
emerged as a highly versatile test bed for a wide range of
phenomena in atomic, molecular, and condensed matter sys-
tems [4,5]. A crucial step in that direction is the ability to
precisely control the interatomic interaction strengths, via
Feshbach resonances [6–8]. Modern optics can be utilized so
that the shape of the external confinement results in almost
arbitrary trap geometries, including setups of low-dimensional
lattices [9]. This level of control has enabled among others the
realization of Hubbard models and the study of the superfluid-
Mott insulator transition [10,11]. Moreover, it has facilitated
the realization of topological phases of matter related to the
quantum Hall effect and topological insulators such as the
Su-Schrieffer-Heeger (SSH) model [12,13].

The simplicity of the SSH model establishes it as an ideal
starting point for understanding the topological phases of mat-
ter. One of the most important features of the SSH model is
its chiral symmetry, which is strongly connected to its topo-
logical properties. Namely, since there is a strong bulk-edge
correspondence (BDI symmetry class [14]), one can predict
when topologically protected edge states will be supported by
the system. Those states are of great interest because of their
robustness against certain disorders, rendering them promis-
ing candidates for quantum information processing [15–17].
The SSH model can be easily extended to describe more
complex systems, such as higher dimensional systems with
enriched topological phases [18,19] or including interactions
[20–22].

Realizations of the SSH model in optical lattices are mainly
focused on the study of the quantized charge transport for

*These authors contributed equally to this work.

both fermionic [23] and bosonic [24] atoms. In this context,
the parameters of the discrete SSH model are derived from
the continuous optical lattice potential, by fitting their cor-
responding Bloch spectra primarily in the two lowest bands,
whose gap determines the topological properties of the system
[12]. Importantly, in principle next-nearest-neighbor (NNN)
hopping is always present in optical lattices, although it is
significantly suppressed for deep potential wells, and it is
usually ignored in studies of the SSH model. However, from
the theoretical side, even a small NNN hopping amplitude
explicitly breaks the underlying chiral symmetry of the SSH
model [25,26], leading to an extended SSH model (eSSH)
belonging to a different symmetry class (AI) and possessing a
different topological invariant. Additionally, edge states in 2D
topological systems were observed only recently by adding
a sharp wall potential to a driven honeycomb lattice [27]
and a rotating trap [28]. Other observations of edge states
relied on artificial dimensions using internal states for defining
sharp edges [29–32]. Edge states were also probed in tweezer
arrays with Rydberg interactions [33], where the edges also
occur naturally.

For the above reasons, we focus on a systematic study of
the conditions under which a finite continuous optical lattice
may be mapped, within the tight-binding approximation, to
an SSH model. Specifically, we demonstrate and analyze the
problems that emerge when finite confined systems are con-
sidered, and we provide the essential tools to control them.
In particular, we introduce a simple extension of the potential
domain of the optical lattice, and we find the optimal choice
of its parameters values so that the effects of the confinement
are maximally suppressed. Finally, we address the presence of
NNN hopping when the potential wells are not deep enough,
and we propose criteria so that the corresponding terms can
be omitted.

This work is structured in the following way. In Sec. II we
mention the basic characteristics of the SSH and eSSH models
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(a)

(b)

FIG. 1. Schematics of (a) SSH and (b) eSSH models with M = 3
cells.

and describe the optical superlattice potential we employ to
realize them. The explicit mapping from the continuous to the
discrete system is also presented. Then in Sec. III we analyze
the criteria and in particular boundary conditions under which
topological edge states emerge in the finite continuous system,
via directly solving the corresponding Schrödinger equation.
In Sec. IV we present the results derived from the mapping
to the discrete (tight-binding) system and examine their de-
viations from the (extended) SSH model with the same bulk
parameters. Finally, in Sec. V we summarize our results and
highlight future perspectives.

II. TIGHT-BINDING MODELS AND OPTICAL
LATTICE POTENTIALS

In this section, we begin by noting the basic characteristics
of the SSH model and its extension (eSSH) when NNN hop-
ping terms are considered (Sec. II A). We then proceed with
a continuous setup involving a superlattice optical potential,
which enables the implementation of the SSH model in ul-
tracold atomic platforms (Sec. II B). Finally, we present the
tight-binding (TB) approximation, which we employ for the
detailed comparison between the continuous and the corre-
sponding discrete system (Sec. II C).

A. SSH and eSSH models

The Hamiltonian of an SSH model [34,35] with M unit
cells can be written as

ĤSSH = v

M∑
m=1

â†
mb̂m + w

M∑
m=1

â†
m+1b̂m + H.c., (1)

where v,w are the intracell and intercell hopping amplitudes,
and â†

m (âm) and b̂†
m (b̂m) are the creation (annihilation) op-

erators, creating (annihilating) a particle in the m cell on the
A/B sublattice, respectively. A schematic of the SSH model
is provided in Fig. 1(a). We also consider an extension of the
SSH model with the addition of NNN hopping terms of the
form

ĤNNN = t
M−1∑
m=1

(â†
m+1âm + b̂†

m+1b̂m) + H.c., (2)

where t is the NNN hopping amplitude [see Fig. 1(b)]. The
Hamiltonian of this extended SSH (eSSH) is

ĤeSSH = ĤSSH + ĤNNN. (3)

These two models are of great interest because they can
both support topologically protected edge states (TESs), i.e.,
states that are localized on the edges of the lattice and their
energies reside in the center of the band gap. We emphasize
that in the SSH model the existence and protection of TESs
are connected to the chiral symmetry of the system (BDI
symmetry class) [14], while in the case of the eSSH model
they are related to the inversion symmetry (AI symmetry
class) [25,26]. Specifically, in the SSH model when v > w

the system is in the topologically trivial phase and it does not
support edge states. In contrast, for v < w the system resides
in the topologically nontrivial (i.e., topological) phase where
it supports two edge states. On the other hand, for the case
of eSSH, even though the bulk-edge correspondence holds,
specifics of the edge states, such as their position on the energy
spectrum or their robustness, cannot be easily predicted. How-
ever, when edge states are supported by eSSH, they are in fact
of topological nature. In most of the cases considered below
the parameter t will always be relatively small in comparison
to the values of the v and w parameters, hence the NNN terms
could be treated as a perturbation.

B. Superlattice potential

An optical lattice can be implemented experimentally by
forming a standing wave, utilizing two counterpropagating
laser beams. A sequence of M double wells as required to
realize the SSH and eSSH models can be achieved by super-
imposing two such standing waves with different frequencies
[12,36,37], leading to the superlattice (SL) potential:

VSL(x) = Vs cos2 (2krx) + Vl cos2 (krx), (4)

where Vs, Vl are the amplitudes of the two standing waves,
kr = 2π/λ0 is the single-photon recoil momentum, and λ0 is
the wavelength of the lattice. For a system of M cells and total
length 2L it holds that λ0 = 2L/M.

The stationary Schrödinger equation

Ĥ |�n〉 = En |�n〉 , with Ĥ = − h̄2

2m

∂2

∂x2
+ V̂SL (5)

can then be solved numerically, e.g., via exact diagonalization
(ED), to obtain the complete spectrum of eigenstates and
eigenenergies of the system. In the following, our analysis
will focus on the lowest band, i.e., the eigenstates with the
2M lowest lying eigenvalues.

The heights of the two barriers of the SL potential shown
in Fig. 2 are given by the following expressions:

Vlow = Vs

(
1 − Vl

4Vs

)2

, Vhigh = Vs

(
1 + Vl

4Vs

)2

. (6)

Evidently, changing one of the amplitudes Vs,l results in a
nonlinear shift of both the relative and absolute heights of the
potential barriers. Hence, it is convenient to express our results
in terms of the height of the higher barrier Vhigh and the ratio
between the lower and higher barrier u = Vlow/Vhigh. Finally,
for computational convenience, we recast the Schrödinger
equation in a dimensionless form by expressing the length
in terms of k−1

r and the energy in terms of the recoil energy
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FIG. 2. Schematic of the SL potential for M = 3, Vl = 15Er and
Vs = 40Er , and x in units of k−1

r .

Er = h̄2k2
r /2m, where m is the atomic mass and h̄ the reduced

Plank constant.

C. Tight binding approximation

In the context of the tight binding (TB) approximation, we
assume that in a deep enough lattice, the description of the
system can be accurately truncated to the first, or first few,
energy bands [38,39]. For a system of M double wells (cells),
i.e., a system with N = 2M minima (sites), restricted to the
lowest band, the TB Hamiltonian takes the form

ĤT B =
N∑
i=1

N∑
j=1

hi, j α̂
†
i α̂ j, (7)

where α̂
†
i (α̂i) are the creation (annihilation) operators, creat-

ing (annihilating) either a bosonic or a fermionic particle in
the lowest band at the site i, and the matrix elements

hi, j =
∫

w∗
i (x)

[
h̄2

2m

∂2

∂x2
− VSL(x)

]
w j (x) dx (8)

are defined in terms of the Wannier functions wi(x) localized
at each site i. In the following, we define the Wannier func-
tions as

wi(x) = 〈x |χi〉, (9)

where |χi〉 are the eigenstates of the position operator re-
stricted to the lowest band (X̂band), which can be obtained by
solving the eigenvalue problem X̂band |χi〉 = χi |χi〉, with

X̂band =
N∑

n=1

N∑
m=1

|�n〉 〈�n| x̂ |�m〉 〈�m| , (10)

and |�n〉, |�m〉 fulfilling the eigenvalue problem given by
Eq. (5). In one dimension this definition of the Wannier func-
tions has been shown to produce uniquely defined maximally
localized Wannier functions, even when generalized to take
into account higher bands [40]. In the following, we aim to
determine the conditions under which the TB Hamiltonian
(7), corresponding to the finite continuous system subjected
to the SL potential, can be accurately mapped to the SSH or
eSSH model.

III. IMPACT OF THE BOUNDARY CONDITIONS ON
THE FINITE CONTINUOUS SYSTEM

In order to obtain a uniquely defined set of eigenstates
and eigenenergies (up to an overall phase), specific boundary
conditions have to be implemented when we solve the
Schrödinger equation. For a periodic system, e.g., in a ring
geometry, one has to employ periodic boundary conditions
(PBCs). In this case, it has been shown that the lowest band
of the energy spectrum of the continuous system subjected
to the SL potential given by Eq. (4), is in good agreement
with that of the corresponding discrete SSH model with PBCs
[11,12]. However, in the case of PBCs the system cannot
exhibit edge states by construction. Hence, in order to directly
observe topological edges states we have to consider finite lat-
tices with open boundary conditions, i.e., systems with clearly
defined edges.

When considering finite systems, the choice of boundary
conditions is not unique. A common choice is the consid-
eration of hard wall boundary conditions (HWBCs), i.e., to
demand that the eigenstates are exactly zero (vanish) at the
boundaries of the potential landscape. Moreover, we expect
a vanishing probability of observing a particle in the regions
where the energy lies below the potential strength, namely,
in the classically forbidden regions. So the energetically low-
lying eigenstates are expected to take values close to zero
in the vicinity of the positions of the potential’s local and
global maxima. In the context of optical lattices the boundary
conditions are usually considered at its maxima, so the eigen-
states are expected to not exhibit an abrupt transition of their
profiles, even in the case of HWBCs. Ultimately, from a theo-
retical point of view HWBCs seem at first to be a particularly
natural choice for our system, especially when the description
is restricted to the lowest band. However, in this section we
illustrate that they are not an appropriate choice for capturing
topologically protected edge states in the continuous finite
system (Sec. III A), and we propose an alternative boundary
which instead allows for their emergence (Sec. III B).

A. The case of hard wall boundary conditions

First, we begin our analysis with a topologically trivial
setting where no edge states emerge. Namely, we consider
the continuous system with HWBCs, potential barriers of
heights Vhigh = 40Er , Vlow = 20Er , and M = 9 cells, and com-
pare the energy spectrum in the lowest band with the one
obtained from the SSH model with open boundary conditions
(OBCs) as shown in Figs. 3(a) and 3(d) [see also Fig. 4(a)
for a schematic of the potential in the topologically trivial
regime]. Evidently, we indeed find a good agreement with
the corresponding SSH model with OBCs in the topologically
trivial regime.

Surprisingly, the situation is profoundly different when
considering the topological phase for the same parameters
and HWBCs [see Fig. 4(b) for a schematic of the potential].
Specifically, the energy spectrum for the continuous system
in Fig. 3(b) exhibits a structure featuring one subband with
M − 1 states and a higher subband with M + 1 states, in sharp
contrast with the spectrum of the corresponding SSH model
depicted in Fig. 3(e), which features two subbands containing
M − 1 states and the two edge states residing in the center
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(a) (b) (c)

(d) (e) (f)

FIG. 3. (a), (b) Energy eigenvalues (in units of Er) of the superlattice potential with hard-wall boundary conditions for Vlow = 20Er ,
Vhigh = 40Er , and M = 9 in the trivial and topological regime obtained via ED. (c) The nontopologically protected edge states appearing in
the presence of hard-wall boundary conditions for the continuous system (x in units of k−1

r ). (d), (e) The energy eigenvalues (in units of Er) of
the SSH model in the trivial and the topological regime. (f) The edge states of the associated SSH model. The relevant hopping amplitudes
for the SSH model, in (d)–(f), have been obtained from the bulk values of the TB Hamiltonian, i.e., v, w = hM,M±1 and μ = hM,M . The overall
energy scale offset of the graphs (a), (b) and (d), (e) is related to the larger on-site amplitudes of the edge sites in comparison to the bulk sites,
which in this case we have not taken into account.

of the gap. Interestingly, the states in the middle of the spec-
tra of both the continuous system and the SSH model (�M ,
�M+1), exhibit localization at the edges as shown in Figs. 3(c)
and 3(f).

However, the edge localized states predicted by the contin-
uous system have support in both odd and even sites—unlike
the topologically protected states of the SSH model—which
is a strong signature of the particle-hole symmetry breaking
of the system. Moreover, we note that the edge localized
states of the continuous system are significantly less localized,
and become well separated from the bulk only in the case of
very large or deep lattices (see Appendix A for an illustrative
example).

Finally, it is clear that the edge localized states in the
continuous system are not topologically protected, since they

are not separated by a subband gap from the bulk states. We
interpret the results presented here as an indication that the
HWBCs cause an offset to the potential experienced by an
atom at the edge sites 1 or 2M as compared to an atom residing
in the center of the lattice. Evidently, this seems irrelevant
when considering a topologically trivial lattice, but it has a
profound effect in a topological lattice where edge states may
be found.

B. Extension of the potential domain

To address the discrepancy between the continuous system
and the SSH model we introduce an extension to the SL
potential, in order to simulate a more physical boundary than
the infinite wall. This extension should be simple enough

(a)

(d) (e)

(b) (c)

FIG. 4. The superlattice potential with hard-wall boundary conditions for Vlow = 20Er , Vhigh = 40Er and M = 3 in the topologically
(a) trivial and (b) nontrivial regime. (c) Same as (b) with the addition of the linearly extended boundary for a slope α = 7Erkr and d = 0.3Lcell,
where Lcell = π/kr . In (a)–(c) V (x) is in units of Er and x in units of k−1

r . (d) The energy eigenvalues for M = 9 for increasing the length of
the extended boundary d and vanishing slope (α = 0). (e) Same as (d), but for increasing slope (α) and fixed length d = π/kr .
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FIG. 5. The topologically protected edge states appearing in the presence of the linearly extended boundary at d = π/kr and α = 0, for
systems with M = 5, 9, 13 and x in units of k−1

r .

to aid the theoretical analysis and at the same time to be
experimentally feasible. So we consider a linear extension of
length d and slope α, as follows [see also Fig. 4(c)]:

Vext (x) =
⎧⎨
⎩

Vs − α(x + L), −(L + d ) � x � −L
0, −L < 0 < L
Vs + α(x − L), L � x � L + d

. (11)

Quite surprisingly, this rather simple extension readily fixes
the discrepancy of the spectral behavior between the con-
tinuous system and the SSH model. As shown in Fig. 4(d)
upon increasing the length d of the linear extension (for fixed
α = 0) the edge state energies move towards the center of the
gap between the two subbands. In contrast, upon increasing
the slope α (for fixed d = π/kr), and hence recovering the
effect of a sharp wall at the edge (in the limit α → ∞ and
d �= 0), progressively the edge state energies shift towards the
higher subband. This is shown in Fig. 4(e), where the logarith-
mic scale of the x axis highlights the relatively large values
of the slope α required for the HWBC effect to reemerge.
Moreover, we indeed observe topologically protected edge
states, even for smaller systems with M = 3, 5 and M = 9 as
shown in Fig. 5.

Additionally, in Figs. 4(d) and 4(e) we observe asymp-
totically constant behavior of the eigenenergies when d is
increased (or α decreased) beyond a certain value. Based on
this behavior we can make an estimation about the required
length of the linearly extended boundary, so that the energies
of the two edge states reside in the center of the two subbands.
For all values of the parameters (Vlow, Vhigh and M), we find
that a relatively small length of the boundary extension is
needed d � 0.5π/kr for the energies of the edges states to
saturate with respect to d , indicating that only the local be-
havior of the boundary extension around the first and the last
site is relevant. Finally, considering a different starting point
for the potential extension, while ensuring the continuity of
the first derivative of the trapping potential, similar results are
obtained (see Appendix B). This highlights the generality of
the results presented here.

IV. TIGHT-BINDING APPROXIMATION ANALYSIS

In this section we focus on the results related to the cor-
responding discrete system, i.e., the form of the tight-binding
Hamiltonian (ĤT B) and the solution of its eigenvalue problem.
Specifically, we introduce a decomposition of the ĤT B into
two terms, the Ĥ0 for the bulk values and the δĤ that ex-
presses the deviations due to the HWBC (Sec. IV A). Then we
analyze the behavior of δĤ with respect to the parameters of
the extension of the potential (d and α), and we find the region

in which it is minimized (Sec. IV B). Finally, we consider
systems with δĤ = 0 and we focus on the behavior of Ĥ0

(Sec. IV C).

A. Introducing the Ĥ(0)
and δĤ terms

In order to make our analysis simpler, we establish specific
notations for the hopping amplitudes hi, j , where i and j are the
indices of the sites of the discrete system (corresponding to
the minima of the superlattice potential). So we set the on-site
(i = j) amplitudes as μi, the nearest-neighbor (|i − j| = 1)
hopping amplitudes as Jvi and Jwi , and the NNN hopping
amplitudes (|i − j| = 2) as Jti . In particular, Jvi and Jwi express
tunneling through the odd and even barriers of the superlat-
tice potential, respectively. Finally, we consider hi, j = 0 for
|i − j| > 2 because these terms are significantly suppressed,
due to the fact that they correspond to tunneling through at
least three consecutive barriers.

In the case of periodic boundary conditions (PBCs), as the
potential landscape is also periodic, it is evident that μi =
μ, Jvi = Jv, Jwi = Jw and Jti = Jt ∀i. In essence, all the corre-
sponding sites have the same potential environment. However,
we are interested in the realization of edge states via a finite
optical lattice so the latter has to possess both a left and a
right end at a finite x value. This necessarily implies that the
external potential has to be confining, breaking the translation
symmetry. In our analysis the confinement comes from the
hard wall boundary conditions (HWBCs) or from the bound-
ary extension described above.

Our mapping is mostly affected by the boundaries in the
case of the topologically nontrivial configuration of the po-
tential landscape. In particular, the tails of the localized states
related to the edge sites are forced to zero in a sharp (un-
natural) way. Another perspective of the finite boundaries
effect, is that every site of the discrete system is mapped to a
minimum of the superlattice potential that features a different
environment. With that in mind, we define

hi, j =
⎧⎨
⎩

μ + δμi i = j
Jv,w + δJvi,wi |i − j| = 1
Jt + δJti |i − j| = 2

, (12)

where μ, Jv , Jw, and Jt are the bulk values corresponding to
the center sites (M and M ± 1, M ± 2), while δμi, δJvi , δJwi ,
and δJti denote the deviations from these bulk values at each
site. Those deviations will be present in any confining po-
tential, since they express the gradual modification of the
potential environment towards the edges of the system. So,
even though the following analysis is based on the considera-
tion of HWBCs or of a linear boundary, the techniques that we
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FIG. 6. (a) The λ matrix for a system of M = 5 cells, Vhigh = 40Er , and u = 0.5 for different values of the length d of the linear extension
of the potential area (α = 0). (b) The HT B matrix for a system of M = 5 cells, Vhigh = 40Er , and d = 0.14Lcell (and α = 0) for different values
of the ratio u of the heights of the potential. In all cases, we have used color plots as a visual tool to display the elements of the matrices. The
elements HT B

i j are in units of Er .

develop here can be applied to any kind of confining potential.
The Hamiltonian of the system can be written as

ĤT B = Ĥ(0) + δĤ, (13)

where Ĥ(0) has as elements the bulk values, and δĤ the
deviations.

B. Minimizing the δĤ term

In order to examine the behavior of the δĤ term, we can
define the λ matrix, with elements

λi j = |δHi j |/
∣∣H(0)

i j

∣∣, (14)

expressing the relative deviation from the bulk values. As we
can see in Fig. 6(a), the strongest (and only significant) devi-
ations arise from the terms that correspond to the endpoints,
in accordance with the results of the continuous system. Fur-
thermore, we see that the elements of the λ matrix depend on
the parameters of the linear extension of the potential domain.
Specifically, as we can see in Fig. 7(a), for fixed α and in-
creasing d , they decrease to certain minimum values and then
increase until they stabilize and become d-independent. In or-
der to determine the critical length dcrit for which the elements
of the λ matrix are minimized, we employ the spectral radius
[41]. Namely, we solve the eigenvalue problem of the matrix
δH for specific values of the parameters d and α, and we find
the eigenvalue with the maximum absolute value, which is the
spectral radius ρ(δH) of the matrix. We repeat this process
for different values of the parameter d . Finally, we identify as
dcrit the value of d for which ρ(δH) is minimized. As shown in
Fig. 7(b) for three different cases of the slope α there is indeed
a dcrit . Moreover, we observe in Fig. 8 that for specific values
of the parameters of the system there is no minimum in the
spectral radius, and one should find a different way to define
dcrit . For example, in those cases dcrit could be defined as

the value of d for which the elements of the λ matrix become
d-independent.

C. Behavior of the ĤNNN term

In this subsection we consider systems with d = dcrit so
that we can omit the δĤ term. Hence, we can write ĤT B as

ĤT B = Ĥ(0) = Ĥμ + ĤSSH + ĤNNN, (15)

(a)

(b)

FIG. 7. (a) The elements λ11, λ12 and λ13 versus the length of the
linearly extended boundary d and α = 0. (b) The spectral radius of
the matrix δH versus the length of the linearly extended boundary d
for three cases of the slope α = 0, 0.1, 1 in units of Erkr .
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FIG. 8. Color plot of the dcrit in units of Lcell defined as the point
of minimum of the spectral radius versus the ratio of the heights of
the potential barriers u and the slope α. The area colored in deep
red (top right half) indicates the parameter region where the spectral
radius has no minimum.

where Ĥμ and ĤNNN express the on-site and NNN hopping
terms, respectively. We can also neglect the Ĥμ term, since
it represents an overall offset in the energy scale that does
not affect the phenomenology of our systems. So we reach
ĤT B = ĤSSH + ĤNNN, which is clearly the exact same as
Eq. (3). Thus, we have ultimately obtained the usual SSH
model with the addition of NNN hopping terms (eSSH). In
Fig. 6(b) we present how the final form of the TB Hamiltonian
is affected by the ratio of the heights of the two potential bar-
riers u. For fixed Vhigh and increasing u we see Jv increasing,
Jw decreasing, and Jt slightly decreasing (see also Fig. 9 for
the exact values for three different cases of Vhigh).

In order to neglect the ĤNNN term we have to make a strong
assumption, since we have to take into account the different
scales of magnitude of the hopping amplitudes. To this end,
we define the ratios that we present in Fig. 10. Specifically,
Jv/Jw and Jt/Jv express relative sizes of the weak to strong
and NNN to weak hopping amplitudes, respectively. As we
increase u, we observe Jv/Jw increasing and Jt/Jv decreasing.
Therefore, there is a specific value of u for which the two
ratios are crossing (orange circle point in the graph of Fig. 10).
We could in principle define this value as a ucrit and omit the
ĤNNN term for u > ucrit . Alternatively, we could define ucrit

as the value of u for which Jv/Jw and (Jt/Jv )/(Jv/Jw ) are
crossing (red square point in the graph of Fig. 10). The ratio
(Jt/Jv )/(Jv/Jw ) expresses how Jv varies from small (close to
Jt ) to large (close to Jw) orders of magnitude (for fixed Vhigh

and increasing u). This is naturally a more strict definition,
since for the first definition we omit the ĤNNN term when

FIG. 10. The ratios Jv/Jw , Jt/Jv and (Jt/Jv )/(Jv/Jw ) for the hop-
ping amplitudes of a system with M = 5, Vhigh = 40Er , and d = dcrit .
The horizontal dashed line shows the 0.2 ratio value, and the vertical
dashed and dotted lines show the values of u where the crossing of
Jv/Jw with Jt/Jv and (Jt/Jv )/(Jv/Jw ) occurs, respectively.

Jv/Jw > Jt/Jv and for the second when Jv/Jw >
√

Jt/Jv . We
mention that for both definitions ucrit is Vhigh dependent.

We close this subsection by noting that both SSH and
eSSH support edge states. However, when it comes to their
experimental realization via an optical lattice, the NNN terms
will always be present if both wells are not deep enough. Thus,
the eSSH model is the easier to be implemented. We note that
next-neighbor tunneling terms in the SL were, e.g., considered
in the context of Thouless pumps, where they can lead to a
deviation of the pumped charge [42].

D. Experimental considerations

An extension of the boundary as proposed here is ex-
perimentally feasible by combining an optical lattice with
an arbitrary optical dipole potential projected via a high-
resolution imaging system. This allows shaping the potential
at the scale of a single lattice site and also to prepare desired
lattice occupations [43,44] and was recently used to create
sufficiently steep walls for the creation of edge states in 2D
systems [27,28]. The above analysis shows that the correct
midgap states are reached for a range of parameters without
fine tuning, making it experimentally feasible. The selective
preparation of the edge states could be achieved, e.g., by
an appropriate charge pump or by heating away all other
atoms via an amplitude modulation that leaves the edge state
unaffected.

(a) (b)

(c)

FIG. 9. The Jv, Jw and Jt hopping amplitudes values in units of Er for systems with M = 5, (a) Vhigh = 20Er and d = 0.15Lcell (b) Vhigh =
40Er and d = 0.14Lcell, and (c) Vhigh = 60Er and d = 0.15Lcell. In (a) the x axis starts from 0.6, since for u < 0.6 not all eigenenergies of the
first band lies below the lowest barrier (Vlow).
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V. SUMMARY AND PERSPECTIVES

We have studied the mapping of a finite continuous optical
lattice, within the tight-binding approximation, to an SSH and
an eSSH model. We revealed the complications that emerge
from the confinement of the system when hard wall boundary
conditions are considered. Specifically, we found that espe-
cially in the topologically nontrivial case, there is a substantial
discrepancy in the characteristics of the edge states of the
system between what is expected for the SSH model and the
results provided by the ED. We found that this is related to
the fact that the potential environment is gradually changing
from the bulk towards the ends of the system, due to the con-
finement. We then proceeded by providing a solution to this
problem through a linear extension of the potential area. In
detail, we established and used qualitative criteria in order to
describe the minimization of the effects related to the HWBC.
We also examined the behavior of the NNN hopping terms in
the system with experimentally feasible depths of wells.

The goal of the present work was to reveal the problems oc-
curring in the mapping of a continuous optical lattice potential
to a discrete SSH model when finite size and open boundary
conditions are considered. From a theoretical point of view,
these problems are resolved with the boundaries extension
we proposed here. Nevertheless, for the design of an optimal
experimental setup capable of detecting the associated edge
states, a more advanced optimization procedure, involving
a more general functional form of the potential extension,
may be needed. This functional form should be eventually
also adapted to the experimental requirements for the spe-
cific setup. Additionally, the observability of the continuous
formed edge states may be influenced significantly by their
dynamics. However, a corresponding dynamics analysis goes
beyond the scope of the present work and will be investigated
in the future.

The exact realization of tight-binding models for ultracold
atoms was recently also considered for tweezer arrays, includ-
ing the homogeneity of the on-site interaction strength [39].
The study of interacting superlattice systems is particularly
interesting, because the bosonic model with weak interac-
tions lacks chiral symmetry and the edge states are no longer
midgap [20]. Further interesting extensions would be to con-
sider optimal parameters for midgap states in the bulk of the
system induced by impurities [45] or by a step in the confining
potential [20], as well as optimal boundaries when combining
superlattices with a Floquet drive to realize the AIII symmetry
class [46]. It would also be interesting to perform a simi-
lar anaylsis for engineered systems with indirect band gaps,
where surprisingly no localized edge states were found [47].
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APPENDIX A: EDGE LOCALIZED STATES OF VERY
LARGE OR VERY DEEP LATTICE

In Fig. 11 we present the energy spectrum and the edge
localized states of a very [Fig. 11(a)] large and [Fig. 11(b)]

(a)

(b)

FIG. 11. The energy spectrum and the profiles of the correspond-
ing edge localized states for a very (a) large and (b) deep lattice (En

is in units of Er and x is in units of k−1
r ).

deep lattice when HWBC are considered, i.e., without the
extension of the potential domain. In both cases the energies
of the two edge localized states feature an energy shift towards
the upper band. This is to be expected, since it is related to the
consideration of HWBC for the system. However, in the case
of the very deep lattice we observe that the profiles of the two
edge localized states look similar to those of an eSSH model.
This is remarkable, since the discrepancy on the energies is
still present.

APPENDIX B: EXTENSION OF THE POTENTIAL DOMAIN
AT A DIFFERENT STARTING POINT

For the cases of nonzero slope (α �= 0), a different defini-
tion for the linear extension of the potential domain may be
used, in order to have an overall smoother potential profile.
This definition should ensure the continuity of the potential
and its first derivative for every point in the domain. Specif-
ically, we can consider a linear extension of the following
form:

Ṽext (x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

VSL(−x0) + dVSL
dx

∣∣∣
x=−x0

(x + x0), x ∈ D1

0, x ∈ D2

VSL(+x0) + dVSL
dx

∣∣∣
x=+x0

(x − x0), x ∈ D3

(B1)

with x0 a variable starting point for the extension of the
potential, and D1 = [−L − d, x0], D2 = (−x0, x0), and D3 =
[x0, L + d]. The total length of the potential landscape re-
mains the same, while x0 determines the length of the
superlattice potential and its extension. In Fig. 12 we present
schematics of the potential in the topological nontrivial
regime with the addition of the smoothly connected extension
potential for [Fig. 12(a)] zero and [Figs. 12(b) and 12(c)]
nonzero slope. The effect on the energy spectrum of the sys-
tem when varying the starting point x0 between L and the
location of the first potential minimum is shown in Fig. 12(d).
Evidently, the chiral symmetry of the spectrum is restored
more readily for starting points x0 approximately equal to L
(magenta circle and its immediate neighborhood) and for zero
slope (α = 0), which are the values that we mostly employ
in our analysis. In Figs. 12(e) and 12(f) we present for the
two different values of x0 corresponding to the magenta circle

013316-8
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(a)

(d) (e) (f)

(b) (c)

FIG. 12. (a)–(c) The superlattice potential with Vlow = 20Er , Vhigh = 40Er , and M = 3 in the topologically nontrivial regime, with the
addition of the linearly extended boundary at different starting point x0. The V (x) is in units of Er and x in units of k−1

r . (d) The energy
eigenvalues for M = 9 and fixed length d = 0.17π/kr for shifting the starting point (x0) of the extended boundary. (e), (f) The spatial profiles
of the topological edge states supported by the superlattice for L − x0 = 0 and L − x0 = 0.16π/kr , corresponding to the magenta circle and
orange square in (d), respectively. The x is in units of k−1

r .

and the orange square in Fig. 12(d), the spatial profiles of the
topological edge states that are supported by the superlattice
and their energies reside in the middle of the gap. As we can

see, the spatial profiles for both zero and nonzero slope are
similar. Thus, the realization that best fits the requirements of
a specific experimental setup can be selected in any case.
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