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Simulation of time-crystal-like behavior for a few-boson chiral soliton model in a ring
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We present numerical simulations for a chiral soliton model with N = 2, 3 bosons in a ring, which is a few-
particle version of our previous mean-field model for a quantum time crystal. Following Syrwid, Kosior, and
Sacha (SKS), the notion is that a precise position measurement of one particle can lead to spontaneous formation
of a bright soliton that in a time crystal should rotate intact for at least a few revolutions around the ring. In their
work SKS found spontaneous formation of a soliton due to the position measurement, but quantum fluctuations
cause the soliton to subsequently decay before it has a chance to perform even one revolution of the ring. Based
on this, they concluded that time-crystal dynamics are impossible for Wilczek’s model of a bright soliton in a
ring. In contrast, for our few-boson chiral soliton model, allowing for imprecise (weak) measurements of the
particle position, we show that time-crystal-like behavior is possible, allowing for several revolutions of the
spontaneously formed soliton around the ring.
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I. INTRODUCTION

Since Wilczek’s seminal paper initiated the field of quan-
tum time crystals in 2012 [1], it has attracted intense interest,
both fundamental and applied. His model comprised N bosons
with attractive interactions in a ring that was pierced by a flux
tube, the key idea being that this model could yield a ground
state composed of a soliton that was rotating around the ring.
Although this model was subsequently shown to always yield
a nonrotating ground state [2], the time crystal idea had taken
root. Now there is active research in both continuous and
discrete time crystals and for a variety of platforms, includ-
ing optics, ultracold atoms, metamaterials, spin systems, and
both closed and open systems. For recent reviews of the area
see [3–5].

A genuine time crystal involves a Hamiltonian system that
exhibits sustained periodic motion even in its lowest-energy
state. To the best of our knowledge there is only one exam-
ple of such a system, which involves long-range interactions
but has no physical implementation to date [6]. The issue
undermining Wilczek’s initial proposal for a genuine time
crystal was nicely illustrated in a paper by Syrwid, Kosior,
and Sacha (SKS) in which they simulated N bosons in a
ring that is pierced by a flux tube and initiated from the
N-particle ground state which shows no signatures of rotation
or localization [7]. What they showed was that a precise po-
sition measurement of one particle could, indeed, lead to the
spontaneous formation of an (N − 1)-particle soliton that is
rotating, and they suggested that if this initial soliton could
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survive several revolutions around the ring, then one could
at least speak of time-crystal-like behavior for the Wilczek
model. However, SKS found that quantum fluctuations cause
this initial soliton to subsequently decay before it has a chance
to perform even one revolution of the ring: They presented
results for particle numbers in the range N = 10–60, and
the lifetime tc of the soliton was found to increase with
N . We observed the same behavior for a nonchiral version
of our model with N = 3 for both precise and imprecise
position measurements (with an uncertainty in the position
measurement), with the lifetime being longer for the imprecise
measurement.

In 2019 we proposed a mean-field chiral soliton model
for a quantum time crystal [8]. This paper was followed by
discussion in the literature with SKS [9–12], culminating in
their paper cited above [7]. The goal of the present paper is to
examine a few-boson (N = 2, 3) limit of our previous chiral
soliton model to numerically assess whether time-crystal-like
behavior is possible in our model. In particular, we find the
N-boson ground state, perform a position measurement of
one particle, and see whether spontaneous formation of the
resulting (N − 1)-boson soliton can persist over several rev-
olutions of the ring. We find that for an imprecise or weak
position measurement time-crystal-like behavior is possible in
our chiral soliton model, whereas for a precise measurement
quantum fluctuations cause the soliton to decay in accordance
with SKS [7]. We therefore argue that our chiral model can
display time-crystal-like behavior when weak position mea-
surements are employed.

The chiral model we discuss here was recently experimen-
tally realized in the mean-field limit by Frölian et al. [13]
and theoretically studied in [14–16]. This chiral scenario, with
its density-dependent nonlinear gauge potential, opens up a
number of intriguing possibilities to study topological gauge
theories which can emerge as the low-energy limit of strongly
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correlated systems such as the Chern-Simons theory of frac-
tional quantum Hall phenomena. The experimental realization
of the chiral nonlinear situation [13] utilizes a weakly inter-
acting Bose-Einstein condensate in which two internal atomic
states are coupled by a laser. The experimental protocol relies
on the fact that scattering lengths can be different for the two
bare internal states. This, in turn, results in the corresponding
atom-photon dressed states having momentum-dependent ef-
fective collisional interaction strengths, which can be mapped
onto a density-dependent gauge potential.

The remainder of this paper is organized as follows: Sec. II
describes the few-boson version of our chiral soliton model
and gives a description of the parameters involved. The case
with N = 2 particles is covered in Sec. III and shows the
ideas involved in a transparent manner. Section IV contains
the main results and covers the three-particle case that demon-
strates that our few-boson chiral soliton model can display
time-crystal-like behavior in which a two-boson soliton state
[17] can execute several revolutions of the ring, and the soliton
lifetime is explored as a function of the position uncertainty
of the position measurement. A summary and conclusions are
given in Sec. V.

II. CHIRAL SOLITON MODEL

A. N-particle Schrödinger equation

We consider a system of N scalar bosons of mass m located
circumferentially in a ring of radius R. The Schrödinger equa-
tion for the N-particle wave function ψ (θ1, θ2, . . . , θN , t ) is,
in scaled units [18],

i
∂�

∂t
=

N∑
j=1

(
−i

∂

∂θ j
− A(θ1, θ2, . . . , θN )

)2

�

+ g

2
ρ(θ1, θ2, . . . , θN )�. (1)

Here θ j = [−π, π ], j = 1, 2, . . . , N are angular coordinates
around the ring, and time is in units of 2mR2/h̄. The scaled
gauge potential is given by

A(θ1, θ2, . . . , θN ) = A(0) + κρ(θ1, θ2, . . . , θN ), (2)

where A(0) represents the single-particle contribution to
the gauge potential and ρ(θ1, θ2, . . . , θN ) describes the
density-dependent contribution to the gauge potential.
The dimensionless parameter κ characterizes the strength
of the density-dependent chiral gauge potential, and the
parameter g controls the density-dependent and nonchiral con-
tribution to the system energy. The density-dependent gauge
potential is built from the combinations of the two-particle
interactions between the composite bosonic particles, with
the two-particle interaction being denoted η(x), x being the
separation between the two particles. In particular, we set

ρ(θ1, θ2, . . . , θN ) =
N∑

i=1

N∑
j>i

η(θi − θ j ), (3)

where ρ(θ1, θ2, . . . , θN ) is symmetric under particle exchange
by virtue of the symmetry η(x) = η(−x). Since the den-
sity and corresponding density-dependent gauge potential are

symmetric under particle exchange, which breaks Galilean
invariance, we expect chiral dynamics to appear in this model.

B. Model parameters

In our previous mean-field model the chiral soliton model
was derived starting from the spinor Schrödinger equation for
a system of two-level bosonic atoms trapped in a ring that are
dipole coupled using a laser beam carrying orbital angular mo-
mentum (OAM) characterized by the winding number 
. By
preparing the atoms in the appropriate dressed state a scalar
field analysis may be obtained in which the atoms are subject
to a vector potential of the form in Eq. (2) with A(0) = 


2 .
Moreover, the density-dependent gauge potential results from
a collision-induced detuning, with the consequence that the
dimensionless parameter κ ∝ 
. This means that if the wind-
ing number of the laser beam 
 = 0, then κ = 0, and there will
be no chiral dynamics and no possibility for time-crystal-like
behavior. The term proportional to the dimensionless parame-
ter g describes energy shifts due to many-body interactions.

For numerical purposes it is impractical to consider s-wave
many-body interactions with η(x) = δ(x). Instead, we here
use the nonlocal model [18]

η(x) = Q cos2q(x/2), q = 1, 2, 3, . . . , (4)

where Q is a normalization constant such that
∫ π

−π
η(x)dx =

1. This allows for numerical simulations to be performed in
conjunction with checking that the results obtained are not
particularly sensitive to the choice of q. In the simulations
presented, we set q = 50, but increasing it to q = 100 made
little difference, meaning that the nonlocality is not a key
ingredient for the results we obtain. In this sense our model
is local for all practical purposes.

III. TWO-PARTICLE CASE

As a first example we consider the case of two bosons in
a ring. This example is oversimplified in that if one particle
is measured, only one particle is left on the ring, so that the
subsequent dynamics is linear. This example is, nonetheless,
quite transparent and illustrates the ideas involved.

A. Two-particle Schrödinger equation

The density of the two bosonic particles may be written as

ρ(θ1, θ2) ≡ η(θ1 − θ2), (5)

and the Schrödinger equation for �(θ1, θ2, t ) then
becomes [18]

i
∂�

∂t
=

2∑
j=1

(
−i

∂

∂θ j
− 


2
− κη(θ1 − θ2)

)2

�

+ g

2
η(θ1 − θ2)�. (6)

If we change to center-of-mass (c.m.) and relative coordinates
using s = (θ1 + θ2)/2 and x = (θ1 − θ2), the transformed
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FIG. 1. (a) Ground-state profile |ϕ(x)|2 versus x and g and
(b) scaled energy ε versus g. The parameters used are N = 2, 
 = 2,
κ = 0.2, and q = 50.

Schrödinger equation for �(x, s, t ) becomes

i
∂�

∂t
=

[
−2

∂2

∂x2
− 1

2

∂2

∂s2
+ 2i

(



2
+ κη(x)

)
∂

∂s

+ 2

(



2
+ κη(x)

)2

+ g

2
η(x)

]
�. (7)

B. Two-particle ground state

We seek a two-particle stationary state using the ansatz [18]

�(x, s, t ) = e−iεt+ipsϕ(x), (8)

with ε being the scaled energy of the two-particle system and
p being an integer that is the winding number associated with
the c.m. OAM of the two particles. Substituting this ansatz
into Eq. (7) yields[

− d2

dx2
+

(
(p − 
)

2
− κη(x)

)2

+ g

2
η(x)

]
ϕ(x) = ε

2
ϕ(x).

(9)

We solved Eq. (9) numerically for a range of parameters
using the imaginary-time method [19] applied to Eq. (7), in
particular to obtain the ground state ϕ(x) and associated scaled
energy ε. Figure 1 shows the numerical results for parameters

 = 2, κ = 0.2, and q = 50. Specifically, Fig. 1(a) shows a
color-coded plot of the ground-state profile |ϕ(x)|2 versus x
for a variety of g < 0 along the horizontal axis, and Fig. 1(b)
shows the scaled energy ε over the same range of g. The
ground-state profile |ϕ(x)|2 is normalized to unity on axis, so
that the profile can be discerned for each value of g. What is
evident is that for g > −0.5 the ground state is uniform to a
high degree, whereas for g < −0.5 the ground-state profile is
localized in terms of the relative coordinate x.

In the remainder of this section we choose g = −2 as an il-
lustrative example, although similar results could be obtained
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FIG. 2. (a) Scaled energy ε versus c.m. winding number p and
(b) ground-state profile |ϕ(x)|2 versus x. Parameters are the same as
in Fig. 1, along with g = −2.

for different combinations of parameters. Figure 2 shows
some more detail of the solution for this choice. In particular,
Fig. 2(a) shows the scaled energy versus p and reveals that the
ground state occurs for p = 
 = 2, and Fig. 2(b) shows a line
plot of the ground-state profile |ϕ(x)|2 (properly normalized)
versus x for p = 2. Furthermore, the width (full width at half
maximum) of the ground-state profile in Fig. 2(b) with respect
to the relative coordinate x of the two particles is w ∼ 1.6; the
parameter w characterizes the expected width of any localized
two-particle solutions that may arise.

C. Time-crystal-like dynamics from measurement

To proceed we first recognize that the ground state rep-
resented by the probability density in Fig. 2(b) does not
correspond to a localized state on the ring since |ϕ(x)|2
depends only on the relative coordinate x, and there is no
information concerning the c.m. position s of the particle.
On the other hand, since the ground state has a winding
number p �= 0, it does represent a persistent flow [20]. We can
probe further and reconstruct the ground-state two-body wave
function �(θ1, θ2) (at t = 0), where |�(θ1, θ2)|2 is shown
in Fig. 3(a). From this it is straightforward to see that the
probability density of finding the particle at θ1 for any value
of θ2,

P(θ1) =
∫ π

−π

dθ2|�(θ1, θ2)|2 = 1

2π
, (10)

is a flat distribution, once again verifying that for the ground
state the solution does not represent a localized solution that
is pinned to a given c.m. position. In their work SKS [7]
argued that a precise position measurement of one particle
could initially lead to spontaneous formation of a localized
solution, and we pursue and expand that concept here for our
chiral soliton model. In particular, we assume that the position
of particle 2 is measured, yielding a value θ

(0)
2 , but allow for

the measurement to be imprecise, so that the wave function
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FIG. 3. (a) Reconstructed ground-state probability density
|�(θ1, θ2)|2 and (b) color-coded plot of the probability density
p(θ1, t ) for a measurement with n = 50 that localizes particle 2
with an uncertainty �θ ∼ 0.34. This example does not display time-
crystal-like behavior. Parameters are the same as in Fig. 1, along with
g = −2.

for the remaining particle may be written as

ψ (θ1, t = 0) = �
(
θ1, θ

(0)
2

) =
∫ π

−π

dθ2 G
(
θ2 − θ

(0)
2

)
�(θ1, θ2),

(11)

where the function G(θ2 − θ
(0)
2 ) reflects the uncertainty of the

position measurement of particle 2 and is a distribution which
obeys the periodicity of the ring, with an adjustable width �θ

[full width at half maximum of |G(θ )|2]. Here, for illustration,
we employ the following distribution:

G(θ − θ (0) ) = N cos2n

(
θ − θ (0)

2

)
, n = 1, 2, 3, . . . ,

(12)

with N being a normalization constant. In the limit n � 1
this distribution approaches a δ function which corresponds to
the precise measurement model adopted in the paper by SKS,
whereas for n = 1 the measurement uncertainty is around
�θ ∼ 2.3. After the measurement, precise or imprecise, the
wave function ψ (θ1, t = 0) (suitably normalized) for the re-
maining particle is given by Eq. (11), and subsequent time
development is governed by the single-particle Schrödinger
equation

i
∂ψ

∂t
=

(
−i

∂

∂θ1
− 


2

)2

ψ. (13)

Taking into account the eipθ1/2 angular variation associated
with the ground-state solution (8), the general solution of this
equation is

ψ (θ1, t ) = eipθ1/2

√
2π

∞∑
j=−∞

c je
−i j2t , (14)
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FIG. 4. Color-coded plot of the probability density p(θ1, t ) for
an imprecise measurement with n = 1 and an uncertainty �θ ∼ 2.3
that dominantly couples the remaining particle after the measurement
of particle 2 to a nondispersing solution for the ring. This example
does display time-crystal-like behavior. Parameters are the same as
in Fig. 1, along with g = −2.

with c j being expansion coefficients. This general solution
reveals the fact that the single-particle quantum dynamics
must be periodic in time with period 2π .

Figure 3(b) shows a simulation of the single-particle proba-
bility density p(θ1, t ) = |ψ (θ1, t )|2 versus t and θ1 according
to Eq. (13) with θ

(0)
2 = 0 without loss of generality and n =

50 so that �θ ∼ 0.34. We chose n = 50 as this value ap-
proaches a precise measurement as closely as possible within
our nonlocal model with q = 50 in Eq. (12). In this case the
uncertainty is much less than the expected width w ∼ 1.6 for a
two-particle localized state, so the measurement is expected to
be very disruptive. We note that, as expected, the probability
density varies periodically in time with period 2π . This tem-
poral periodicity might suggest time-crystal-like behavior, but
that is not the case since the initial probability density profile
p(θ1, t = 0) becomes rapidly distorted as time increases, not
simply translated in time as expected for a time crystal. This is
in perfect keeping with the findings of SKS that too precise a
position measurement of one particle can produce a localized
state initially but it will be rapidly dispersed before the initial
localized solution can exhibit even a single rotation around
the ring.

For time-crystal-like behavior what is required is that the
center of mass of the initial localized state translate in time
while maintaining its shape for several transits of the ring. An
estimate of the magnitude of the rotation rate may be obtained
as follows: Assuming some portion of the center-of-mass
OAM h̄p of the ground state is transferred to the localized
state via the weak measurement, we find that mNR| ds

dt | � h̄|p|,
with ds

dt being the velocity of the center of mass of the local-

ized state, and the rotation rate obeys |�| = 1
R | ds

dt | � h̄|p|
mNR2 .

In our scaling the unit for time is ts = 2mR2/h̄, so the scaled
rotation rate obeys |v| = |�|ts � 2|p|

N , or |v| � 2 for the cur-
rent example. Figure 4 shows an example of time-crystal-like
behavior using n = 1 and �θ ∼ 2.3, which means a much
weaker measurement than in Fig. 3(b). In this case the un-
certainty is greater than the expected width w ∼ 1.6 for a
two-particle localized state, so the measurement is expected
to be less disruptive. Figure 4 shows that the initial localized
solution remains largely intact while it rotates with a velocity
v ∼ 1 [21], and it persists over several rotations around the
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ring—an infinite number for the N = 2 example since solu-
tions of Eq. (13) must be periodic with period 2π . The initial
position of the centroid of the localized solution is set by the
outcome of the initial measurement, θ (0) = 0 in Fig. 4(b), and
the centroid simply translates at velocity v as time advances.
This example therefore exhibits time-crystal-like behavior.

The above argument may appear counterintuitive since one
would expect a localized initial state to expand and produce
interference around the ring, giving rise to complicated dy-
namics. However, it is possible to construct solutions to the
single-particle Schrödinger equation for a ring that are local-
ized, nondispersive, and rotating that have nonzero angular
momentum [22]. Adapted to the solution of Eq. (13), these
solutions take the form

ψ (θ1, t ) = N0 cos[m(θ1 − vt )]ei
θ1/2+ivθ1/2−i(m2+v2/4)t , (15)

where N0 is a normalization constant and m and v are solution
parameters. From Eq. (15) we notice that ψ (θ1, t ) is a travel-
ing localized solution with velocity v, and 2m is the number
of wave-function nodes around the ring. For the simulation in
Fig. 4 for 
 = 2 there is one node around the ring, so m = 1/2,
and the velocity is v = 1. Moreover, one can verify that the
corresponding initial wave function

ψ (θ1, t = 0) = N0 cos

(
θ1

2

)
e3iθ1/2 (16)

is a physically allowed single-valued wave function that rep-
resents an excited state. We have verified numerically that
when the weak measurement is performed on the two-particle
ground state using Eq. (11), the initialized wave function may
be approximated near the origin by the above wave function
ψ (θ1, t = 0). The physical relevance of this is that, given our
choice of measurement distribution in Eq. (12) with n = 1
and θ

(0)
2 = 0, the weak measurement can dominantly excite

a traveling-wave solution of the ring that is initially centered
at θ1 = 0 and that does not spread significantly over several
transits of the ring. In addition, because of the linearity of
the single-particle Schrödinger equation (13), we can always
construct superpositions of states such that we have a nonzero
background like what appears in the simulations.

D. Role of the measurement strength

The results shown in Figs. 3 and 4 show the extremes of
strong and weak measurements, respectively, and how they
impact the quantum dynamics, as reflected in the probability
density p(θ1, t ) of our system. Next, we provide some details
of the transition between these extremes and how it may be
quantified.

To proceed we first consider the strong-measurement ex-
ample shown in Fig. 3(b), and in Fig. 5(a) we plot the
corresponding probability density p(θ1, t ) versus t = [0, 2π ]
for θ1 = 0 (solid line) and θ1 = π/2 (dashed line). For θ1 = 0,
the time variation of the probability density clearly displays
periodic behavior with a large contrast between the minimum
and maximum values, whereas for θ1 = π/2, while the pe-
riodicity is still evident, the contrast between the minimum
and maximum values is reduced by a factor of 2. This depen-
dence of the temporal variation of the probability density upon
the choice of spatial angular position θ1, with concomitant
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FIG. 5. (a) Probability density p(θ1, t ) versus t = [0, 2π ] for
θ1 = 0 (solid line) and θ1 = π/2 (dashed line), (b) probability
density versus θ1 = [−π, π ] for t = 0, 2π (solid line), t = π/2
(dash-dotted line), and t = π (dash line), and (c) the normalized
contrast Cmin/C(t = 0) as a function of n. (d) Color coded plot of the
probability density for n = 5. Parameters are the same as in Fig. 1,
along with g = −2.

variation in contrast, is a feature that arises when we use a
strong measurement for which �θ/w < 1; that is, the angular
uncertainty �θ of the measurement is less than the width
w of the N = 2 solution. The same conclusion arises when
we consider the spatial profile of the probability density for
given times, and Fig. 5(b) shows the probability density versus
θ1 = [−π, π ] for t = 0, 2π (solid line), t = π/2 (dash-dotted
line), and t = π (dash line). The solid line shows both the ini-
tial localized probability density created by the measurement
and the same superposed after t = 2π , whereas at t = π/2
(dash-dotted line) the probability density profile has signif-
icantly lower contrast. The spatial profile of the probability
density is also the same as the input at t = π ; it is just shifted.
In contrast, for the example of a weak measurement with
�θ/w > 1 as illustrated in Fig. 4, the contrast in the spatial
probability density p(θ1, t ) for a given time remains constant
to within a few percent.

The above discussion highlights that the contrast in the spa-
tial profile of the probability density can serve as a quantitative
measure of time-crystal-like behavior in our system. Specifi-
cally, following SKS [7], we here define the time-dependent
contrast as

C(t ) = maxθ1 [p(θ1, t )] − minθ1 [p(θ1, t )]

maxθ1 [p(θ1, t )] + minθ1 [p(θ1, t )]
, (17)

and we expect time-crystal-like behavior to be absent when
Cmin = mint [C(t )] is quite a bit smaller than C(0), whereas
timelike behavior is possible when Cmin = mint [C(t )] 	
C(0). Figure 5(c) shows the normalized contrast Cmin/C(0)
versus n = [1, 20] from our simulations, and we see that this
drops to 0.5 for n = 5, for which �θ/w = 0.65. In agreement
with this strong measurement, we then find no time-crystal-
like behavior for n = 5, as illustrated in Fig. 5(d), which
shows the corresponding color-coded plot of the probability
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density p(θ1, t ) with concomitant degradation in the solution
profile as it rotates in comparison to Fig. 4.

As noted earlier, for N = 2 the quantum dynamics after
the measurement must be periodic in time with period 2π ,
so there is no true decay in this system. On the other hand,
following SKS [7], we can estimate the lifetime tc of the ro-
tating solution as the minimum time for which the normalized
contrast falls below 0.5. Due to the periodicity any relevant
lifetime must be less than 2π . Based on this definition, we
find from simulations that the lifetime for n = 50 in Fig. 3(b)
is tc = 1, whereas for n = 5 in Fig. 5(d) it is tc = π/2, both
of which are shorter than the period (2π ) of one rotation. In
contrast, for n = 1 the normalized contrast never falls below
0.9, so the rotating solution remains largely intact for all times
with some small superposed oscillations present (see Fig. 4).
It is in this sense that our N = 2 chiral soliton model can show
time-crystal-like behavior to a good approximation.

The basic message from our two-particle simulations is
that if we use a weak measurement of particle position, time-
crystal-like behavior is possible for the remaining particle
on the ring if �θ/w > 1. This is the case since the weak
measurement can dominantly excite a nondispersive and ro-
tating solution on the ring, whereas the more precise position
measurement excites a broader wave packet of the ring modes
that leads to the observed loss of contrast and lack of time-
crystal-like behavior. The benefit of the two-particle case is
that it reveals the role played by the position measurement
uncertainty in a transparent manner.

IV. THREE-PARTICLE CASE

Although the two-particle case provides some insight, it
does not speak to the bigger issue of whether the sponta-
neously formed and rotating solution after the measurement
can persist even for a multiparticle state so the rotating solu-
tion may be viewed even approximately as a rotating soliton.
For this reason we next consider the three-particle case so
that two particles are left on the ring after the measurement,
with the possibility of exciting the two-particle analog of a
soliton [17].

A. Three-particle Schrödinger equation

The density for the N = 3 bosonic particles may be
written as

ρ(θ1, θ2, θ3) ≡ η(θ1 − θ2) + η(θ1 − θ3) + η(θ2 − θ3), (18)

which by construction is symmetric under exchange of any
pair of particle coordinates. The Schrödinger equation for
�(θ1, θ2, θ3, t ) may then be written as

i
∂�

∂t
=

3∑
j=1

(
−i

∂

∂θ j
− 


2
− κρ(θ1, θ2, θ3)

)2

�

+ g

2
ρ(θ1, θ2, θ3)�. (19)

To proceed it is useful to use the following Jacobi coordinates
[23] appropriate to this three-body problem:

s= 1
3 (θ1 + θ2 + θ3), x = (θ1 − θ2), y = (θ1 + θ2 − 2θ3).

(20)

Inverting the Jacobi coordinates, we obtain

θ1 = s + 1
6 y + 1

2 x,

θ2 = s + 1
6 y − 1

2 x,

θ3 = s − 1
3 y. (21)

From these results we find

(θ1 − θ2) = x,

(θ1 − θ3) = 1
2 y + 1

2 x,

(θ2 − θ3) = 1
2 y − 1

2 x, (22)

so that the density ρ in these Jacobi coordinates becomes

ρ(x, y) = η
( x

2

)
+ η

( y

4
+ x

4

)
+ η

( y

4
− x

4

)
, (23)

which is independent of the c.m. coordinate s. The trans-
formed Schrödinger equation for �(x, y, s, t ) then becomes

i
∂�

∂t
= −

(
2

∂2

∂x2
+ 6

∂2

∂y2
+ 1

3

∂2

∂s2

)
� + 2i

[



2
+ κρ(x, y)

]
∂�

∂s

+ 3

[



2
+ κρ(x, y)

]2

� + g

2
ρ(x, y)�. (24)

B. Three-particle ground state

We seek a three-particle stationary state using the ansatz

�(x, y, s, t ) = e−iεt+ipsϕ(x, y), (25)

where p is the integer-valued winding number associated with
the center-of-mass OAM of the three particles. Substituting
the above ansatz into Eq. (24) yields

εϕ(x, y) = −
(

2
∂2

∂x2
+ 6

∂2

∂y2

)
ϕ + 3

[
p

3
− 


2
− κρ(x, y)

]2

ϕ

+ g

2
ρ(x, y)ϕ, (26)

where ε is the scaled energy of the three-particle system.
We solved Eq. (26) numerically for a range of parameters

using the imaginary-time method [19], in particular to ob-
tain the ground state ϕ(x, y) and associated scaled energy ε.
Figure 6 shows the numerical results for parameters 
 =
2, g = −0.7, κ = 0.05, and q = 50. Specifically, Fig. 6(a)
shows the scaled energy versus p and reveals that the ground
state occurs when p

N = 

2 , or p = 3 for this example, and

Fig. 6(b) shows a line plot of the ground state profile |ϕ(x, y)|2
versus x and y for p = 3.

C. Time-crystal-like dynamics from measurement

To proceed we first recognize that the ground state rep-
resented by the probability density in Fig. 6(b) does not
correspond to a localized state on the ring since |ϕ(x, y)|2
depends only on the Jacobi coordinates x and y and there
is no information concerning the c.m. position s of the par-
ticle. Again, since the ground state has a winding number
p �= 0, it does represents a persistent flow [20]. We can also
reconstruct the ground-state three-body wave function with
one coordinate fixed, say, θ3 = 0, and |�(θ1, θ2, θ3 = 0)|2
(at t = 0) is shown in Fig. 7(a). We note that the width (full
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FIG. 6. (a) Scaled energy ε versus c.m. winding number p and
(b) ground-state profile |ϕ(x, y)|2 for p = 3. Parameters are 
 =
2, g = −0.7, κ = 0.05, and q = 50.

width at half maximum) of this ground-state density profile
is w ∼ 1.4, which provides a characteristic scale for localized
three-particle states that may appear in the system.

A few words are in order about transforming from ϕ(x, y)
to �(θ1, θ2, θ3). First, we note that the Jacobi coordinates x

0 10 20 30

-2

0

2

-2 0 2

-2

0

2

FIG. 7. (a) Reconstructed ground-state probability density
|�(θ1, θ2, θ3 = 0)|2 and (b) simulation of the single-particle proba-
bility density p(θ1, t ) for a measurement with n = 50 that localizes
particle 3 with an uncertainty �θ ∼ 0.34. This example has �θ/w =
0.24 and does not display time-crystal-like behavior. Parameters are
the same as in Fig. 6.

and y can be reexpressed as

x = θ ′
1 − θ ′

2, y = θ ′
1 + θ ′

2, (27)

where θ ′
1,2 = θ1,2 − θ3. This means that, for a given θ3, the

transformation between ϕ(x, y) in the Jacobi coordinates x
and y and �(θ ′

1, θ
′
2) in the coordinates θ ′

1 and θ ′
2 can be per-

formed using a 45◦ rotation. We note that at this point the wave
function �(θ ′

1, θ
′
2) should be symmetrized if needed. One can

then transform from �(θ ′
1, θ

′
2) to �(θ1, θ2, θ3) using simple

linear displacements θ1,2 = θ ′
1,2 + θ3.

We next extend the measurement model to the case with
N = 3 particles. In particular, we assume that the position of
particle 3 is measured yielding a value θ

(0)
3 but allow for the

measurement to be imprecise, so that the wave function for
the remaining particles may be written as

ψ (θ1, θ2, t = 0) = �
(
θ1, θ2, θ

(0)
3

)
=

∫ π

−π

dθ3 G
(
θ3 − θ

(0)
3

)
�(θ1, θ2, θ3), (28)

where the function G(θ3 − θ
(0)
3 ) reflects the uncertainty of the

position measurement and we again use the model in Eq. (12).
After the measurement the wave function ψ (θ1, θ2, t = 0)
(suitably normalized) for the remaining particles is given by
Eq. (28), and subsequent time development is governed by the
two-particle Schrödinger equation

i
∂ψ

∂t
= −

(
∂2

∂θ2
1

+ ∂2

∂θ2
2

)
ψ + 2i

(



2
+ κρ

)(
∂

∂θ1
+ ∂

∂θ2

)
ψ

+ 2

(



2
+ κρ

)2

ψ + g

2
ρψ, (29)

where ρ = η(θ1 − θ2) is the scaled density for the two remain-
ing particles.

Figure 7(b) shows a simulation of the quantum dynamics
according to Eq. (29) following a precise measurement for
which we set θ (0)

3 = 0 without loss of generality and n = 50 so
that �θ ∼ 0.34 [full width at half maximum of |G(θ )|2]: As
for the N = 2 case, we chose n = 50 as this approaches a pre-
cise measurement as closely as possible within our nonlocal
model with q = 50 in Eq. (12). In particular, Fig. 7(b) shows
a color-coded plot of the single-particle probability density for
measuring a second particle,

p(θ1, t ) =
∫ π

−π

dθ2|ψ (θ1, θ2, t )|2. (30)

In this case the uncertainty is much less than the expected
width w ∼ 1.4 for a three-particle localized state, so the
measurement is expected to be very disruptive. We note that
although the probability density appears to be varying period-
ically in time with period 2π , for t > 4π the profile is seen
to deviate significantly from this periodicity. Moreover, as ex-
pected for a strong measurement, the initial localized solution
evident in the single-particle probability density p(θ1, t = 0)
becomes rapidly distorted as time increases, not simply dis-
placed as expected for a time crystal, so this example does not
display time-crystal-like behavior. This is in perfect keeping
with the findings of SKS that too precise a position measure-
ment of one particle can produce a localized state initially but
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FIG. 8. Simulation of the single-particle probability density
p(θ1, t ) for an imprecise measurement with n = 1 and an uncertainty
�θ ∼ 2.3 that couples the remaining two particles after the mea-
surement of particle 3 to the two-particle limit of the chiral soliton.
This example has �θ/w = 1.63 and does display time-crystal-like
behavior. Parameters are the same as in Fig. 6.

it will rapidly disperse before the initial localized solution can
exhibit even a single rotation around the ring.

For time-crystal-like behavior what is required is that the
center of the initial localized state basically translates in time
and persists in shape for several rotations around the ring.
We may use our previous estimate for the magnitude of the
scaled rotation rate |v| � 2|p|

N , or |v| � 2 for the current exam-
ple. Figure 8 shows an example of time-crystal-like behavior
using n = 1 and �θ ∼ 2.3, which means a much weaker
measurement than in Fig. 7(b). In this case the uncertainty is
greater than the expected width w ∼ 1.4 for a three-particle
localized state, so the measurement is expected to be less
disruptive. Figure 8 shows that the initial localized solution
remains largely intact while it rotates with velocity v ∼ −1
[24] and that it persists over >10 rotations around the ring.
This example therefore exhibits time-crystal-like behavior to
a good approximation.

To summarize, we deduce that the initial measurement of
particle 3 leads to spontaneous formation of a localized state
that is a two-particle analog of a mean-field chiral soliton
[17] and that this two-particle soliton can continue rotating
largely intact over several rotation periods. This can happen
here since we consider a weak measurement as opposed to the
precise measurement that leads to the decay of the rotating
soliton [see Fig. 7(b)].

D. Role of the measurement strength

The results in Figs. 7 and 8 show the extremes of strong
and weak measurements, respectively, and how they impact
the quantum dynamics for N = 3 particles as reflected in the
probability density p(θ1, t ) of the system. We next provide
some details of how the strength of the measurement impacts
whether time-crystal-like behavior is present or not.

TABLE I. Data on measurement strength.

n �θ/w tc/2π

1 1.63 >50
2 1.16 1.7
3 0.96 4 0.7
4 0.83 0.2
5 0.74 0.2
6 0.68 0.2

Turning first to the case with a strong measurement in
Fig. 7(b) with n = 50 and �θ/w = 0.24, we note that the
single-particle probability density p(θ1, t ) is no longer peri-
odic in time. This is the case since the quantum dynamics after
the measurement is now governed by the two-dimensional
Schrödinger equation (29), which will have a more complex
eigenmode spectrum than the linear equation (13) for the case
of N = 2 particles. As a result, the wave-packet dynamics for
the case of N = 3 particles can be far richer. In particular, the
contrast C(t ) defined in Eq. (17) can now get progressively
smaller as time increases, although recurrences may still occur
in general. Indeed, SKS [7] defined the lifetime tc of the
revolving solution as the first time for which the normalized
contrast C(tc)/C(0) = 0.5 drops to one half its initial value.
We adopt this approach here, and for the example in Fig. 7(b)
tc 	 0.2, meaning that the initial localized solution executes
only a fraction of a revolution of the ring that takes time 2π .
In contrast, in Fig. 8 with n = 1 and �θ/w = 1.63, time-
crystal-like behavior is clear over the duration t = [0, 80] of
the simulation, which is greater than tc/2π > 10 revolutions
of the ring, and the normalized contrast remains >0.9 through-
out. We limited the maximum time to 80 only so the features
in Fig. 8 were resolvable. Indeed, for times over which we
can maintain numerical accuracy, which amounts to more
than tc/2π > 50 revolutions, the normalized contrast remains
well above 0.5. Within numerical accuracy it is therefore
legitimate to claim that this N = 3 example clearly shows
time-crystal-like behavior, although we cannot claim that it
persists indefinitely.

To explore how the time-crystal-like behavior varies with
the strength of the measurement we performed simulations
for a range of different values of n in Eq. (12), and some
results are given in Table I. The left column gives n, the
middle column gives the corresponding value for �θ/w, and
the right column gives tc/2π , which provides an estimate
of the number of revolutions executed by the solution be-
fore it decays. We see that for n � 4 the solution executes
only a fraction of a revolution, which is consistent with
the fact that these correspond to strong measurements with
�θ/w < 1. In contrast, for n = 2, 3, for which �θ/w 	 1,
the solution executes roughly one to two revolutions before
decaying. Finally, for n = 1 and �θ/w = 1.63 we have the
example shown in Fig. 8, where the lifetime increases dra-
matically to >50, indicative of a divergence. This apparent
divergence in the lifetime signals that the time-crystal-like
behavior can persist for a large number of revolutions of
the ring.
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V. SUMMARY AND CONCLUSIONS

In 2019 we proposed a mean-field chiral soliton model for
a quantum time crystal [8], and this proposal met with some
criticism in the literature [7,9–12]. The goal of the present
paper was to examine a few-boson (N = 2, 3) limit of our
previous chiral soliton model to numerically assess whether
time-crystal-like behavior is possible in the context of the
type of calculation in Ref. [7]. In particular, we initialized
the system in the N-boson ground state, performed a position
measurement of one particle, and determined whether sponta-
neous formation of the resulting (N − 1)-boson localized state
(soliton for N = 3) can persist over several revolutions of the
ring as required for time-crystal-like behavior. We found that
for an imprecise or weak position measurements time-crystal-
like behavior is possible in our chiral soliton model, whereas
for a precise measurement quantum fluctuations cause the
soliton to decay in accordance with the results in [7].

One feature of our model from the simulations is that
quantum ground state of the system can carry orbital angular
momentum h̄p = N (h̄
/2), with p the c.m. winding number.
This means that the lowest energy state can be a persistent
flow [20]. The point is that the presence of a ground state
that is a persistent flow appear to be key requirements for
time-crystal behavior to be a possibility in our model, with
the imprecise measurement facilitating transfer of the orbital
angular momentum to the c.m. momentum of the localized
soliton. Estimates for the rotation rates were given, but the
details of this process remain to be elucidated.

Clearly, the small particle numbers and parameters used
here are not compatible with experiments but are, rather,
intended to show that time-crystal-like behavior is not ruled
out in our model. We remark that the same behavior could
be seen for other combinations of parameters as long as a
weak measurement is employed, with �θ/w > 1. Restricting
ourselves to a few bosons allowed for numerical simulations
to be performed for our chiral soliton model without undue
approximations, but our conclusions may still be relevant in
the more general case with large N . According to the Wilczek
model analyzed in Ref. [7], the soliton lifetime tc is expected
to scale with N . If this scaling also applies to our chiral
model, then if N = 3 can show time-crystal-like behavior, it

0 1 2 3 4 5 6
1

1.1

1.2

1.3

1.4

1.5 N=2

N=3

FIG. 9. The normalized root-mean-square width W (t )/W (0) af-
ter a weak measurement (n = 1) versus t for N = 2 and N = 3 for
κ = 0.2 and g = −2.0.

should be expected for larger N as the lifetime increases. To
explore the scaling of the lifetime with N we calculated the
root-mean-square width W (t ) of the evolving solution after a
weak measurement (n = 1) over the time range t = [0, 2π ],
and Fig. 9 shows W (t )/W (0) for N = 2 and N = 3 for κ =
0.2 and g = −2.0 (similar results were found for parameters
κ = 0.05 and g = −0.7). In particular, Fig. 9 shows that the
width W (t ) initially grows more slowly for the case with
N = 3 compared to that with N = 2, and this adds some cred-
ibility to the statement that the soliton lifetime tc is expected
to scale with N . The reversal of the initial increase in W (t )
is a consequence of the recurrence that occurs due to the
periodic boundary conditions imposed by the ring, leading to
the fact that for N = 2 the solution must be strictly periodic in
time with period 2π . In future publications we plan to extend
this initial numerical study to larger particle numbers, both
numerically and analytically, and thereby move the project
towards experimentally accessible parameter ranges.
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