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Thermal-energy atom scattering at a surface under grazing incidence conditions is an innovative method for
investigating dispersive atom-surface interactions with potential application in quantum sensing interferometry.
The complete establishment of this technique requires a detailed peak analysis, which is yet to be achieved. We
examine peak-width fluctuations in atomic and molecular beams diffracted by a grating under grazing incidence
conditions. Careful measurements and analyses of the diffraction patterns of He atoms and D2 molecules from
three square-wave gratings with different periods and radii of curvature enable the identification of factors
influencing the peak-width variations as a function of incidence angle. The effects of macroscopic surface
curvature, grating magnification, and beam emergence are substantial under these conditions but negligible for
incidence angles close to the normal. Our results shed light on the phenomena occurring in grazing incidence
thermal-energy atom scattering.
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I. INTRODUCTION

X-ray, electron, neutron, and atom diffraction techniques
are well-established methods for studying the crystal struc-
tures of materials and their changes over time. In diffraction
experiments, the width of the diffraction peak, along with its
intensity and position, is a critical parameter for sample anal-
ysis. For example, peak-width analysis has been employed to
estimate crystallite or grain sizes and crystal strains in x-ray
powder diffraction [1–4] and in grazing incidence x-ray scat-
tering [5,6]. In thermal-energy atom scattering (TEAS), the
broadening of peak widths provides insights into temperature-
induced alterations in surface morphology [7] and the density
of defects such as steps on a crystal surface [8,9].

The design of optical elements such as mirrors and
gratings for x-ray and matter-wave optics also necessitates
a comprehensive investigation of the widths of scattering
peaks. X rays have been focused efficiently using cylindri-
cal concave mirrors by minimizing peak-broadening effects
[10–12]. Recently, this endeavor has also been extended
to He atoms [13]. Furthermore, understanding wavelength-
dependent peak-width broadening is essential for atom
monochromators [14]. Thus, analyzing peak widths is crucial
for developing new methodologies and technologies based on
wave diffraction.

Grazing incidence thermal-energy atom scattering
(GITEAS) at a surface offers a unique approach that can
complement conventional TEAS, akin to the relationship
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between x-ray scattering and grazing incidence x-ray
scattering. The lower effective energy and longer wavelength
toward the surface for GITEAS make it more sensitive to
weak interactions and less responsive to surface roughness.
As a result, GITEAS has become valuable for studying
the dispersive interaction of atoms with a surface [15–17].
Furthermore, microstructure-grating interferometry with
GITEAS can be applied for quantum sensing in conjunction
with monolithic atom interferometry using TEAS [18].

The versatile applications of GITEAS necessitate a pre-
cise peak-width analysis. However, under grazing incidence
conditions, the peak widths are strongly influenced by an
infinitesimal curvature (curvature radius of a few kilometers)
and the diffraction direction near a surface, which results in
unusual variations in peak widths. The presence of abnormally
wide or narrow peaks further complicates the analysis. Fur-
thermore, the traditional peak-width analysis scheme used in
TEAS is insufficient for GITEAS, which highlights the need
for a more sophisticated approach.

In this article we report a comprehensive analysis of peak
widths for GITEAS. By adjusting the grating and incident-
beam properties, we investigate various factors contributing
to peak-width variations, such as the macroscopic surface
curvature, grating magnification, incident-beam divergence,
and angular dispersion. He atoms (D2 molecules), with mean
de Broglie wavelengths λ of 330 or 140 pm (140 pm), are
diffracted at grazing incidence angles up to 30 mrad by three
gratings of different periods and macroscopic curvatures. By
comparing the measured peak widths with calculated widths,
we identify the dominant factors influencing the variations in
peak width. This resolves any potential ambiguities in the data
analysis caused by extraordinary peak widths.
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FIG. 1. Schematic of the experimental setup. The distances be-
tween the components are not drawn to scale. The incidence and
detection angles θin and θ , respectively, are measured with respect
to the grating surface. The inset illustrates a grating with d and a
representing its period and strip width, respectively.

II. EXPERIMENTAL SETUP

A. Atomic- and molecular-beam apparatus

Our atom optics apparatus is characterized by a tightly
collimated incident beam and high-angular-resolution detec-
tor and enables precise peak-width measurements. Further
details of the setup can be found in Refs. [16,19]. Here we
focus on the aspects of the apparatus pertinent to the data
analysis presented in this study. A continuous beam of He or
D2 is formed by supersonic expansion of the corresponding
pure gas from a source cell.

The beam is collimated using two slits (S1 and S2) po-
sitioned 100 cm apart as shown in Fig. 1. The widths of
these slits, WS1 and WS2, are 20 µm, except for one set of
data, referred to as tight collimation, where WS1 = 10 µm and
WS2 = 15 µm. The incident and scattered beams are detected
by precisely rotating a mass spectrometer with electron-
bombardment ionization. The rotational axis of the detector
is located 40 cm downstream from S2. A third slit (S3) with
a width of WS3 = 25 µm is positioned just before the detector.
The distance between the rotational axis and S3, referred to as
the grating-detector distance, is L = 38 cm.

B. Velocity distributions of atomic and molecular beams

The source temperature T0 and pressure P0 influence the
particle velocity distributions. We use three sets of source
conditions, viz., gas species, T0, and P0: (He, 9.0 K, 0.5 bar),
(He, 52 K, 26 bars), and (D2, 52 K, 2 bars). For each set of
conditions, we observe a velocity distribution, from which
the mean velocity v, full width at half maximum (FWHM)
�v, and corresponding mean de Broglie wavelength λ are
determined (see Fig. 2). Accordingly, we obtain three corre-
sponding sets of incident-beam properties, including v, �v,
and λ, i.e., (304 m/s, 2.3 m/s, 330 pm), (733 m/s, 5.9 m/s,
140 pm), and (736 m/s, 79 m/s, 140 pm), respectively, which
are used to explore the effects of λ and �v separately. The
ratios v/�v for the He atom beams are 133 and 124 at
the two different T0 values, which are similar. In contrast, for
the D2 molecular beam v/�v = 9.3.
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FIG. 2. Measured velocity distributions of He (red squares) and
D2 (blue circles) at (a) T0 = 9 K and (b) T0 = 52 K. The intensity is
scaled to the peak values. The mean velocities are found to be (a) 304
m/s and (b) 730 m/s. For P0 = 0.5 and 26 bars at T0 = 9 and 52 K,
respectively, the FWHM values for the He atom beams are 2.28 and
5.9 m/s. In contrast, the velocity width of the D2 molecular beam is
79 m/s at T0 = 52 K.

C. Fabrication and characterization of the diffraction gratings

We employ three square-wave gratings with varying pe-
riods d and strip widths a: G1 with d = 1 µm and a =
0.25 µm, G20 with d = 20 µm and a = 10 µm, and G400 with
d = 400 µm and a = 200 µm. Although nominally a plane,
the grating surfaces exhibit small circular curvatures. Under
grazing incidence conditions the curvature in the direction
perpendicular to the incident plane affects the peak width
only negligibly [20,21]. Therefore, we consider the gratings
as cylindrical with their curvature radii R. For concave and
convex gratings, R > 0 and R < 0, respectively. The estimated
R values of G1, G20, and G400 are 30, −210, and 1800 m,
respectively.

Gratings G1 and G20 are microstructured arrays, each mea-
suring 56 mm in length, consisting of 110-nm-thick chromium
strips that are 5 mm in length and are deposited on a 2-mm-
thick quartz surface. In contrast, G400 is an array featuring
parallel photoresist strips with a thickness of 1 µm, a width of
200 µm, and a length of 4 mm. These strips are located on a
commercial gold mirror (Thorlabs PFSQ20-03-M03), which
is 6 mm thick and has a surface area of 50.8 × 50.8 mm2.
Only the strips were exposed to the incident atomic beam for
all the angles of incidence examined in this study. Table I
provides a summary of the properties of these gratings that are
pertinent to variations in peak width, including their period d
and radius of curvature R.

III. RESULTS

Figure 3 shows angular spectra for the three gratings
measured at different experimental conditions for various inci-
dence angles. The graphs represent the He+ or D2

+ signal as a

TABLE I. Grating properties relevant to the peak-width variation.

Grating Period d (µm) Curvature radius R (m)

G1 1 30
G20 20 −210
G400 400 1800
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FIG. 3. Measured angular spectra of matter-wave beams of (a)–(d) He and (e) D2 diffracted by gratings (a) G1, (b) G20, and (c)–(e) G400

at incidence angles θin of (a) 5.77, (b) 4.41, (c) 1.29, (d) 0.89, and (e) 0.88 mrad and mean de Broglie wavelengths λ of (a)–(c) 330 pm and
(d) and (e) 140 pm. The horizontal bar near the specular peak indicates the corresponding width win of the beam with no grating installed. In
(a) and (b) the first-order peak is magnified for clarity.

function of the detection angle θ . Here θin and θ are measured
with respect to the grating surface. Numbers n indicate the
diffraction order assigned to each peak. The peak positions θn

and FWHM values wn of the nth-order diffraction beams are
determined by fitting each peak to a single Gaussian function.
Similarly, we determine the FWHM win of the incident-beam
spectrum when the grating is removed from the beam path.

A peak-width analysis reveals unexpected irregular hierar-
chies of wn for the five cases of Fig 3: (a) w0 > w1 > win,
(b) w1 > w0 > win, (c) w−1 > win ≈ w1 > w0, (d) win >

w1 > w0 > w−1, and (e) w−1 > win > w1 > w0. Generally,
in TEAS, diffraction peak widths increase with |n| owing to
the angular dispersion [22,23], and an increase of the specular
width w0 with respect to win can be attributed to surface
defects [24]. Therefore, the unexpected hierarchies could lead
to misinterpretation of the underlying physics and errors in
peak assignment.

To study the peak-width variations systematically, we plot
wn as a function of θin for the five experimental conditions
in Fig. 4. Each graph includes horizontal dotted lines indicat-
ing win and vertical dashed lines representing the Rayleigh
incidence angle of negative-first-order diffraction-beam emer-
gence (θR,−1). When θin = θR,−1, the negative-first-order

diffraction beam emerges from the grating and propagates
parallel to its surface; in this case, θ−1 = 0 [25,26].

The relationship between wn and θin varies under different
experimental conditions and for individual diffraction orders.
Furthermore, the inconsistent hierarchies among w0, w1, and
w−1 change with θin. Several factors contribute to these varia-
tions: (i) the macroscopic curvature of the grating surface, (ii)
grating magnification, (iii) diffraction-beam spread resulting
from the divergence of the incident beam, and (iv) angular
dispersion due to the nonmonochromatic nature of the beam.
Among these factors, (i) pertains to a property of the grating,
(ii) results from the diffraction principle, and (iii) and (iv) are
determined by the incident-beam properties.

The macroscopic curvature of the grating surface accounts
for the variation in w0 shown in Fig. 4. The magnitude of
|R| directly influences the steepness of the decrease in w0.
Additionally, when R > 0 (R < 0), w0 increases (decreases)
asymptotically toward win with θin as illustrated in Fig. 4(a)
[Fig. 4(b)]. Furthermore, the steep increase in w−1 with de-
creasing θin in Figs. 4(a) and 4(e) is attributed to angular
dispersion. Finally, the hierarchical order of w1 > w0 > w−1

shown in the inset of Fig. 4(d) results from the grating
magnification.
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FIG. 4. Angular FWHM of the nth-order diffraction peak wn as a function of the incidence angle θin for (a) G1 of R = 30 m, (b) G20 of
R = −210 m, and (c)–(e) G400 of R = 1800 m. The experimental conditions are the same as those in Fig. 3. The vertical dashed line denotes
the Rayleigh incidence angle of the negative-first-order diffraction beam, referred to as θR,−1, where the negative-first-order diffraction beam
emerges from the grating surface. The horizontal dotted line represents the width of the incident beam win. In (b), pale colored symbols within
the range of θin from 0.5 to 5.5 mrad illustrate data obtained with tight collimation, resulting in a narrower win of 0.081 mrad (horizontal thick
dotted line). The insets in (c)–(e) show sevenfold magnifications of the corresponding data series.
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IV. PEAK-WIDTH MODEL

Factors (i)–(iv) contribute to wn differently depending
on n, λ, and θin, which can be formulated by the approx-
imate equation for a linear width Wn = Lwn, i.e., Wn =√

[W (1)
n ]2 + [W (2)

n ]2 + [W (3)
n ]2 + [W (4)

n ]2 + [W (5)]2, where

W (1)
n =

(
1

o
+ 1

L
− 1

fn

)
LWG

sin θn

sin θin
, (1)

W (2)
n = 2.355

4

WS1

o
L

sin θin

sin θn
, (2)

W (3)
n = 0.884

λ

WS2
L

sin θin

sin θn
, (3)

W (4)
n =

( |n|λ
d

)
�v

v

1

sin θn
L, (4)

and

W (5) = 2.355

4
WS3. (5)

In these equations, o = 1.4 m represents the object distance,
fn denotes the focal length of the nth-order diffraction beam,
and WG denotes the width of the incident beam at the cen-
ter of the grating. We determine WG from the width of the
incident beam at the third slit S3, Win. The latter is derived
from the observed angular width as Win = Lwin. Because S1
constrains the effective source size of the matter-wave beam,
we approximate the object as a Gaussian distribution with
a standard deviation of WS1/4. Similarly, the boxcar-shaped

function defined by S3 is approximated as a Gaussian function
with a standard deviation of WS3/4.

The macroscopic curvature of the grating represented by
R is relevant to its focal length. Under grazing incidence
conditions, the object distance o and image distance in of the
nth-order beam satisfy the thin lens equation 1/o + 1/in =
1/ fn. The term in large parentheses of Eq. (1) then represents
the focusing error εn and the product εnLWG is the width of
the (de)focused incident beam at the detection plane [27].
Image distance, focal length, and focusing error vary with R
and θin, as detailed in the Appendix. Specifically, f0 can be
expressed as f0 = R sin θin/2 [10,13]; therefore, in (or εn) can
be determined based on the values of R and θin, as illustrated
in Fig. 6.

The grating magnification given by Mn = sin θn/ sin θin,
also known as anamorphic magnification, represents the ratio
of the width of a collimated diffracted beam to that of a
collimated incident beam [28]. When considering a collimated
beam (o → ∞) incident on a flat grating ( fn → ∞), W (1)

n
characterizes the grating magnification.

The width W (2)
n describes the effect of the geometrical

incident-beam divergence of approximately WS1/o on the
diffraction-beam spread �θn. When WS1 = 20 µm, W (2)

n =
3.2 µm for the specular peak, which is negligible. In contrast,
W (2)

n becomes significant when θn<0 → 0, as happens when
θin approaches the Rayleigh angle of beam emergence θR,n.

Slit diffraction at S2 contributes additional incident-beam
divergence �θin,SD, which is responsible for W (3)

n . In the
Fraunhofer limit, �θin,SD = 0.844λ/WS2. Similar to W (2)

n , this
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The five columns correspond to the experimental conditions as in Fig. 5, respectively. Here G1, G20, and G400 are assumed to be cylindrical
mirrors with curvature radii of R = 30, −210, and 1800 m, respectively. These graphs are plotted as functions of the incidence angle θin. The
horizontal dotted line in (a) indicates the grating-detector distance L = 0.38 m.

contribution becomes pronounced only for an emerging peak
close to the Rayleigh condition.

The width W (4)
n accounts for diffraction peak broadening

resulting from angular dispersion due to the beam’s finite
velocity spread �v. This effect is absent in the specular peak.

Finally, the finite size of the detector entrance slit S3 also
contributes to the observed diffraction peak widths by the term
W (5) of Eq. (5). This contribution is a constant 15 µm for all
experimental conditions.

V. DISCUSSION

To assess the relative contributions of these five terms
to Wn, we compare the measured Wn (symbols) with the
corresponding calculated values for Wn, W (1)

n , W (2)
n , W (3)

n ,
W (4)

n , and W (5) (lines) in Fig. 5. The theoretical curves are
determined considering the grating’s macroscopic curvature
radius R as the sole adjustable parameter. The angular widths
wn presented in Figs. 4(a)–4(e) are converted to linear widths
Wn and presented in the five columns of Fig. 5, respectively.

For G20 the second data set measured at small inci-
dence angles θin < 5.5 mrad with tight beam collimation

(WS1 = 10 µm and WS2 = 15 µm) [pale colored symbols in
Fig. 4(b)] is characterized by a reduced angular width of win =
0.081 mrad. This corresponds to linear widths Win = 30.8 µm
and WG = 21.2 µm. Figures 5(d)–5(f) include the correspond-
ing calculations.

The breakdown of Wn into its five constituent terms in
Fig. 5 highlights the dominant factors in each case. For G1,
for instance, the observed steep decays of Wn with incidence
angle can be attributed to different factors for n = 0, 1, and
−1. As illustrated in the graphs in Figs. 5(a)–5(c), at θin < 10,
5, and 30 mrad, W (1)

0 , W (1)
1 (red dashed curves), and W (4)

−1
(blue dotted curve) predominantly influence the respective
Wn values. Notably, the grating magnification is unity for the
specular beam, which makes ε0 the key determinant for W (1)

0 .
Conversely, ε1 varies by less than 33% in the given range
of incidence angles, while the grating magnification term M1

decreases tenfold [see Figs. 6(c i) and 6(d i)]. Therefore, the
principal contributors to the steep decline in Wn for n = 0, 1,
and −1 are the macroscopic curvature, grating magnification,
and angular dispersion, respectively.

Similar to G1, the decreases in W0 and W1 for G20 are pri-
marily determined by the macroscopic curvature and grating
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magnification, respectively [see Figs. 5(d), 5(e), 6(c ii), and
6(d ii)]. However, unlike G1, the 20-fold larger period of G20

diminishes the effect of angular dispersion [see Eq. (4)]. As
a result, the influence of curvature on the reduction of W−1

becomes dominant.
For G400 the primary factor is W (1)

n (red dashed line) in
most cases. Exceptions occur for W−1 at the Rayleigh condi-
tions of θin = θR,−1. At these conditions, θ−1 approaches 0,
leading to large values for W (2)

−1 , W (3)
−1 , and W (4)

−1 .
Even though G400 is nearly flat with R = 1800 m, given

the extreme grazing incidence conditions, the curvature still
affects the peak-width variations. As can be seen in Figs. 4(c)–
4(e), all three peak widths w1, w0, and w−1 can be narrower
than the incident-beam width win resulting from beam focus-
ing due to the concave curvature of the grating (refer to the
graphs for W0 and W1 for G400 in Fig. 5).

In addition, the width hierarchy w1 > w0 > w−1 visible
in Fig. 4(d) presents a clear example for peak widths be-
ing dominated by grating magnification; the closer a beam
propagates to the surface, the smaller its width. This trend
is less clear in Figs. 4(c) and 4(e) where w−1 is not con-
sistently the smallest width at the given incidence angles.
Specifically, for incidence angles slightly larger than the
negative-first-order Raleigh angle θR,−1, w−1 exceeds both
w0 and w1.

As shown in Figs. 5(i), 5(l), and 5(o), the larger contribu-
tions of the terms W (2)

−1 , W (3)
−1 , and W (4)

−1 compared with W (1)
−1

lead to broadening of W−1. The small θ−1 close to Rayleigh
conditions boosts these three terms. Interestingly, as shown
in these graphs, W (2)

−1 and W (3)
−1 were the dominant factors for

the He atom beams with two different λ, whereas W (4)
−1 was

the crucial factor for the D2 molecular beam. This behavior
can be attributed to the 13-times-larger velocity spread �v of
the D2 beam compared with that of the He beam at identical
velocity v.

VI. CONCLUSION

Our combined experimental and theoretical investigations
of diffraction peak widths in GITEAS revealed the primary
factors that induce variations in peak widths. Notably, the
primary factor governing the width of diffraction beams varies
depending on diffraction order, incidence angle, and grat-
ing period. Our study revealed the effects of macroscopic
curvature, emerging beams, and grating magnification, which
usually do not play a role in other scattering techniques, such
as TEAS. Thus, our findings address potential ambiguities in
interpreting diffraction data such as those presented in Fig. 3.

The comprehensive peak-width analysis conducted in this
study lays the groundwork for extending the applicability of

GITEAS to investigate the unique characteristics of dispersive
interactions between atoms and thin-layer surfaces such as
graphene sheets or few-layer hexagonal boron nitride, known
for their flexibility. While recent theoretical investigations
[29] have delved into these interactions, limited experimental
studies are available. Additionally, this analysis can guide the
design of atom optical components. Although both w1 at θin =
3 mrad and w−1 near θR,−1 in Fig. 4(a) are sufficiently broad
for monochromator applications, only the negative-first-order
diffraction beam is suitable for this purpose. This is because
wavelength-dependent angular dispersion and wavelength-
independent grating magnification primarily influence w−1

and w1, respectively. Furthermore, peak-width analysis will
become critical in atom interferometry using GITEAS.
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APPENDIX

For a cylindrically concave mirror with a curvature radius
R, the object distance o and image distance in of the nth-order
beam satisfy the following equation under grazing incidence
conditions:

θ+
in − α/2

o − Rα
+ θ+

n + α/2

in + Rα
= 2

R
+ (θ−

in − θ−
n ) + (θ+

in − θ+
n )

WG/θin
.

(A1)
Here θ+

in and θ−
in represent the outermost values of the in-

cidence angles that result in θ+
n and θ−

n , respectively. The
incident beam spreads over a distance of WG/ sin θin on the
surface. This chord subtends an angle of 2α with respect
to the center point of the grating’s curvature, making α ap-
proximately equal to WG/2R sin θin. Consequently, in varies
as a function of θin, as depicted in Fig. 6(a) for the five
experimental conditions. When in = L, a diffraction beam is
focused on the detection plane. Equation (6) transforms into
the thin-lens equation 1/o + 1/i0 = 1/ f0 for a specular beam
of n = 0 with f0 = R sin θin/2 � Rθin/2 under grazing inci-
dence conditions. Generally, 1/o + 1/in = 1/ fn, with which
we obtain fn using in [see Fig. 6(b)]. Then εn = 1/L − in.
Figure 6(c) shows |εn| for the five experimental conditions.
To elucidate the contributions of the focusing error εn and the
grating magnification Mn to W (1)

n , we plot Mn in Fig. 6(d).
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