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Recently, the statistical effect of fermionic superradiance has been verified by a series of experiments both in
free space and in a cavity. The Pauli blocking effect can be visualized by a 1/2 scaling of the Dicke transition
critical pumping strength against the particle number Nat for fermions in a trap. However, the evidence for the
Fermi surface (FS) nesting effect, which manifests the enhancement of superradiance by Fermi statistics, is still
missing. Here we report a scheme for detecting FS nesting with the help of the trap-induced localization on
the trap edge. We find two scalings of the critical pumping strength as N−1.33

at and N−0.67
at for a moderate particle

number when localization enters and the Pauli blocking scaling 1/3 (two-dimensional case) in the Nat → ∞ limit
is unaffected. Further, we find the scaling of the critical pumping strength against the particle number increases
with the ratio between the recoil energy and the trap frequency in the direction orthogonal to the pumping
direction ER/ωz. The scaling larger than 1 can be identified as a result of the Fermi surface nesting effect. Thus,
we find a practical experimental scheme for visualizing the long-desired Fermi surface nesting effect with the
help of trap-induced localization in a two-dimensional Fermi gas in a cavity.

DOI: 10.1103/PhysRevA.110.013312

I. INTRODUCTION

In recent decades, the developments in achieving strong
coupling between atoms and light have led us to a new
platform for studying nonequilibrium open quantum systems
[1,2]. With these accumulations, the Dicke model, a typical
model of strong interactions between atoms and light has
finally been realized [3]. It ends the era of the Dicke transition
being purely theoretical [4,5]. The Dicke transition manifests
itself through the emergence of the steady-state superradi-
ance together with a checkerboard density order in atoms [6].
The spontaneity of the self-organized crystalline is verified
by the roton mode softening [7] and the critical behavior
of the dynamical structure factor [8–10]. Exotic phases like
density-ordered Mott insulators [11–14], as well as supersolid
breaking U(1) symmetry and translation symmetry [15–17],
are observed successively experimentally. Excited topics with
the combinations of quantum many-body systems and the
traditional presentation of an open quantum system—cavity
QED (quantum electrodynamics)—have been enlightened fol-
lowing these new advances [18].

Besides the developments in the superradiance of Bose
gases, there are also many interesting statistical effects in
fermionic superradiance. The most prominent signature of
a Dicke transition of degenerate Fermi gas is its density
dependence, namely, the Fermi surface (FS) nesting effect
and the Pauli blocking (PB) effect [19–21]. The FS nesting
effect is due to the resonance between pairs of nested states
on the FS whose momentum difference matches the cavity
photon momentum. It results in a sharp decrease of the critical
pumping strength at specific fillings. The PB effect, on the
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other hand, leads to a suppression of superradiance due to
both of the momentum states connected by photon absorption
being occupied. There are also further effects like a liquid-gas-
like transition for p-band filling [19] and statistical crossover
in interacting Fermi gases [22], etc. For a long time, these
studies of statistical effects in fermionic superradiance have
been only theoretical. In a recent experiment, a steady-state
superradiance of fermions has been realized in a cavity for
the first time [23,24]. A scaling law of the critical pumping
strength (CPS) as N−1/2

at against the particle number Nat at
the large Nat limit is verified in a three-dimensional trapped
fermion system [23]. This is in sharp contrast with the bosonic
Dicke transition whose scaling law is N−1

at . The PB effect in
free-space superradiance is also verified thereafter [25–27].
Unfortunately, contrary to the well-established PB effect, the
FS nesting effect, which shows the enhancement of superradi-
ance by Fermi statistics is still not verified in experiment. The
main difficulty is the presence of the trap makes density not
well-defined.

In this article, we offer a method to identify the FS nesting
effect for two-dimensional Fermi gases within a trap. We find
that, when trap and optical lattice are both presented, there
are localized states on the trap edge, which is similar to Stark
localization. As is shown in Fig. 1(b), when the on-site energy
difference outgoes the hopping strength on the trap edge, the
particle is localized in the x direction. These localizations
can result in one-dimensional fermion tubes on the trap edge,
where the FS nesting effect is prominent. Phenomenologi-
cally, we find for different cavity detunings �c, the CPS of
the Dicke transition as a function of the particle number Nat

falls into two typical functions. For small �c, the CPS shows
a scaling N−1

at for small Nat and N−1/3
at at a large Nat limit.

There is no scaling faster than N−1
at . Let us denote the scaling

as κ for a CPS scaling law N−κ

at to simplify our description.
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FIG. 1. In panel (a), we show the illustration of our setup. Two-
dimensional Fermi gases are put into a cavity with a harmonic trap
in the x and z directions. In panel (b), we show the mechanism for
localization on the trap edge. At the bottom of the trap, fermions
at neighbor sites are resonant, and thus the Bloch state is still a
good approximation. On the edge of the trap, the on-site energy
difference becomes larger than the hopping strength, which leads to
localization.

For larger �c, however, we find a scaling κ > 1 (κ = 1.33)
in the intermediate particle number region. We also find a
crossover between these two typical CPS functions, which
is sharp within a very small window of �c. In the same
crossover �c region, we find the eigenstate on the FS turns
from an extended state to a localized state, which identifies
the mechanism. Further, κ → ∞ in the ωz/ER → 0 limit at a
specific Nat is obtained as a result of the FS nesting and this
tendency is verified numerically. Therefore, the measurement
of the critical pumping strength as a function of the particle
number Nat for different cavity detunings �c and different
trap frequencies can help us to identify the FS nesting effect.
We also stress that instead of being an obstacle, the presence
of the trap is vital in detecting the FS nesting effect. Even
more remarkably, we find the phenomenon is practical for
experimental observation and can be very possibly observed
in 6Li atoms in a harmonic trap of 2π × 260 Hz frequency
whose temperature is around kBT ∼ 0.04ER (ER is the recoil
energy of the 6Li atom in typical optical lattice).

II. MODEL

We consider spinless fermions trapped inside a high-Q
single-mode cavity within a harmonic trap (h̄ = 1 through-
out),

Ĥ = Ĥat − �câ†â, (1)

Ĥat =
∫

drψ̂†(r)(Ĥ0 + η(r)(â† + â) + U0(r)â†â)ψ̂ (r), (2)

Ĥ0 = −∇2

2m
+ VP(r) + 1

2
mω2r2. (3)

Here â is the annihilation operator of the cavity field, and ψ̂

is an annihilation operator of fermionic atoms. Here VP(r) =
VP cos2(k0x) is the optical lattice generated by the pump-
ing field, U0(r) = U0 cos2(k0z) is the cavity field self-energy,
and η(r) = η0 cos(k0x) cos(k0z) is the interference between
the pumping field and the cavity field. To be more specific,
VP = �2

p/�a, U0 = g2
0/�a, and η0 = g0�p/�a, where �a =

ωp − ωa is ac Stark shift (ωa is the excited-state energy),

and �c = ωp − ωc is the cavity detuning. Here the cavity in
consideration has a photon decay rate of κ . �p is the strength
of the pumping lasers, g0 is the single-photon Rabi frequency
of the cavity field, and k0 is the wave number of the pumping
field which is close to the wave number of the cavity field. The
recoil energy is defined by ER ≡ k2

0/2m.

III. MEAN-FIELD THEORY

Since the cavity photon is lossy, the equation of the cavity
photon field should follow the Lindblad equation,

i∂t â = [â, Ĥ ] + 2κLââ, (4)

where Lââ = â†ââ − 1
2 {â†â, â} is the Lindblad operator on

the cavity field operator â. Assume that the cavity field is in
a coherent state |α〉, such that 〈α|â|α〉 = α. Then the above
equation can be written as

∂tα = i[−η0� + (�′
c + iκ )α], (5)

where the effective detuning �′
c(α) = �c − ∫

drU (r)n(r)
and �(α) = ∫

drn(r)η(r)/η0. The fermionic density function
is n(r) ≡ 〈ψ̂†(r)ψ̂ (r)〉 = Tr[ψ̂†(r)ψ̂ (r)ρ̂(t )]. Here Tr is over
the atom’s Hilbert space and a coherent state of cavity field
is assumed. Here we assume the steady-state density matrix
of atoms is ρ̂st = e−βĤat (α)/Z [Z = Tr(e−βĤat (α) )], which is
justified by a full dynamical handling by the Keldysh contour
method. Here, Ĥat (α) is defined by replacing â in Ĥat with α.
In the steady state, ∂α/∂t = 0, we have

α = η0�(α)

�′
c(α) + iκ

. (6)

As α is complex, the above steady-state equation is indeed two
equations. If we assume the Dicke transition is a second-order
transition, then B = ∫

drU (r)n(r) ≈ U0N/2. The phase of α

is locked by κ . The other equation can be understood as a
minimization of the free energy Fα ,

Fα ≡ −β−1 ln Tr[e−βĤat (α)]. (7)

One can check η0� + α
∫

drU (r)n(r) = ∂Fα/∂α∗. Then the
steady-state equation becomes

∂Fα/∂α∗ − (�c + iκ )α = 0. (8)

Further in the second-order expansion of Fα , we
can find Fα = −η2

0χ (α + α∗)2 + Bα∗α, where χ =∫
drdr′〈δn(r)η(r)δn(r′)η(r′)〉/η2

0 is the static structure
factor, which characterizes the density fluctuation at
momentum ±k0ex + ±k0ez:

χ = 1

2η2
0

∑
n,n′

∣∣∣∣
∫

drφ∗
n (r)φn′ (r)η(r)

∣∣∣∣
2 nF (En) − nF (E ′

n)

En′ − En
. (9)

Here φn(r) is the eigenstate of Ĥ0, En is the corresponding
eigenenergy of state |n〉, and nF (ε) = 1/(eβ(ε−μ) + 1) is the
Fermi distribution function. As it is known that the Dicke
transition is a second-order transition [28], the critical pump-
ing strength (CPS) is obtained on the condition that �′

c +
4η2

0χ�′2
c /(�′2

c + κ2) = 0 for the second-order coefficient of
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α in Fα being zero. The CPS is∣∣∣∣∣V
cr

P (Nat )

ER

∣∣∣∣∣= −(
�′2

c + κ2
)
ER

4U0�′
cχ (Nat )

. (10)

In this paper, we focus on the scaling of V cr
P over Nat to identify

the statistical effect in fermionic superradiance transition at
zero temperature.

IV. LOCALIZATION ON THE TRAP EDGE

In previous calculations for fermions in a trap, we have
assumed that the fermions’ states are more close to plane
waves. However, on the edge of the trap, the interplay between
the pumping lattice and the trap can lead to localization. Here
we show the mechanism in a two-dimensional noninteracting
fermion in a two-dimensional trap. Let us consider the Hamil-
tonian of atoms:

Ĥ0 = − ∂2
x

2m
+ VP(x) + mω2

0

2
x2 − ∂2

z

2m
+ mω2

0

2
z2. (11)

Assume the pumping strength is not small, we can construct
Ĥ0 by the Wannier wave function. First we factorize out
the eigenstate in the z direction and we label the state as
| j, nz〉, where j is the site index in the x direction and nz

is the quantum number of the harmonic trap in the z di-
rection. φnz (z) is the eigenstate of the harmonic trap, and
its eigenenergy is nzω0. h̄ = 1. Here we assume u1,kx (x) is

the lowest-band Bloch wave function of − ∂2
x

2m + VP(x); thus,

[− ∂2
x

2m + VP(x)]u1,kx (x) = εkx u1,kx (x). Then a Wannier basis
can be constructed as

w j (x) =
∫

dkxe−ikx jd u1,kx (x), (12)

where j is the site index, and d = π
k0

. Then we take the
complete basis 〈x, z| j, nz〉 = w j (x)φnz (z) as our representa-
tion basis, the Hamiltonian Ĥ0 can be written as

Ĥ0 = − ∂2
x

2m
+ 1

2
mω2x2 + VP cos2(k0x) − ∂2

z

2m
+ mω2

0

2
z2

=
∑

j,nz ; j′,n′
z

| j′, n′
z〉〈 j′, n′

z|Ĥ0| j, nz〉〈 j, nz|

=
∑

j

μ j | j〉 〈 j| + t | j〉 〈 j+1| + t | j〉 〈 j−1| + · · ·

+
∑

nz

nzω0|nz〉〈nz|, (13)

where t = ∫
dxwi(x)[− ∂2

x
2m + Vp cos2(k0x)]w∗

i+1(x), and μi =∫
dy|wi(x)|2 1

2ω2x2. The omitted terms are next-to-nearest-
neighbor hopping terms that are not explicitly shown in the
formula.

One can check that when |μ j+1 − μ j | > t , the eigenstate
is localized because the resonance condition between sites
is broken down. Here we employ the wave packet width to
quantitatively characterize the localization degree of these
eigenstates for different eigenenergies. The width of a state
is defined as

�(En) =
√

〈x2〉n − 〈x〉2
n, (14)

FIG. 2. The width �(E ) of different eigenstates of Ĥy for differ-
ent values of V0. � = π

k0
is the lattice spacing. The black dashed line

represents the typical Fermi energy in our setup.

where 〈x2〉n = ∫
dxx2|φn(x)|2 and 〈x〉n = ∫

dxx|φn(x)|2. In
Fig. 2, we show �(En) as a function of the excitation energy
En for different pumping lattice strengths for fixed trap fre-
quency. A clear sign for the mobility edge is shown, and the
high-energy states cannot be approximated as extended states.
In the following, we explore the physical consequences of the
trap-edge localization.

V. SCALING OF THE CRITICAL PUMPING STRENGTH

Following Eqs. (9) and (10), together with the calculation
of eigenstate |n〉 = |nx, nz〉, we can obtain the numerical result
for V cr

P for different values of �c and particle numbers Nat.
Here we have fixed ωx = ωz = ER/50. One can find when
�′

c is larger the CPS is larger; thus the localization effect at
the trap edge is larger. The numerical results for the CPS of
the particle number Nat for different values of �′

c are given
in Fig. 3(a). One can find for smaller �′

c, the log-log plot
of V cr

P (Nat ) up to a multiplier constant factor falls into one
universal curve. The initial scaling of V cr

P against Nat is −1,
then it crosses over to −0.66 and finally it crosses over to
−0.35 in the large Nat limit. The scaling reduction is due
to the Pauli blocking effect. One can also find there are no
scalings larger than 1, which means we only observe the
suppression of superradiance due to the Fermi statistics. The
situation suddenly changes when �′

c > 0.5 MHz. We find due
to localization on the trap edge, the CPS function V cr

P (Nat )
falls into a new universal curve. In this new universal curve,
the initial small Nat scaling and the large particle number
scaling are the same as those of the previous universal curve.
Furthermore, a scaling being larger than 1 emerges around the
middle range Nat. This middle range Nat matches the fermion
density for the FS nesting effect. We compared the crossover
region of the universal critical pumping strength curve and
the localization effect shown by the typical width of the wave
function φnx (x) at the Fermi level. We find these two regions
coincide with each other. Here we define L1.33 as the length of
V cr

P (Nat ) whose particle number scaling is 1.33. Therefore, we
conclude that the Pauli blocking scaling 0.34 is not affected
by localization and a new scaling of 1.33 emerges due to the
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FIG. 3. We fix κ = 1 MHz and U0 = −100 Hz. In panel (a), we
show the critical pumping strength of the Dicke transition as a func-
tion of Nat for different values of �c. In panel (b), the dashed line
shows the packet width of state near the Fermi surface, and the solid
line represents the length with a gradient of 1.33 in panel (a).

localization effect. Thus, we find the evidence of the FS nest-
ing effect can be magnified by the localization effect induced
by the trap.

To go further, we now present a theoretical effective the-
ory to understand why the Pauli blocking effect is immune
to the localization effect in the large Nat limit and whether
the scaling 1.33 can be interpreted as the FS nesting effect.
Before we give our analysis, we first give our conclusion. The
predictions of our effective theory are (i) the large Nat limit of
V cr

P is V cr
P ∝ N−1/3 and it is not changed by the localization

effect, and (ii) there is a kink at some middle range Nat, and
the CPS scaling of Nat becomes divergent before the kink in
the ωz → 0 limit. The second phenomenon is a signature of
the FS nesting effect.

Now we present the assumptions of our effective theory.
First of all, φnz (z) is approximated by its large nz asymp-
totic expression: φnz (z) ∼ cos(

√
(2nz + 1/2)ωzz) for even nz

and sin(
√

(2nz + 1/2)ωzz) for odd nz. Although the original
approximation is only correct at the large nz limit, here we
take an approximation for every nz. Furthermore, we drop the
constant 1/2 and employ k2

z = 2nzωz. Thus,
∑

nz
= ∫ |kz |

mωz
dkz

and φnz (z) = cos(kzz) or sin(kzz). Second, in the x direction, if
φnx (x) is localized at x0, then φnx (x) = δ(x − x0). If the wave
function is not localized, we apply a local density approxima-
tion and φnx (x) is characterized by both the position x0 and the
wave vector kx. The eigenenergy is εx0,kx = 2t cos kx + 1

2ωxx2
0.

Here we introduce xMob as the mobility edge in the x direction.
For x < xMob, the wave function φnx (x) is extended, and for
x > xMob, the wave function is localized.

∑
nx

is approximated
as a phase space integral

∫
dkxdx0. With all these approxi-

mations, Eqs. (9) and (10) can be calculated analytically and
we find V cr

P ∝ N−1/3
at at the large Nat limit irrelevant to the

position of xMob. The detailed calculations are given in the
Appendices [29] and the theoretical prediction is shown in
Fig. 4(a) as the solid black curve. A kink at the FS nesting
atom number can be observed.

FIG. 4. In panel (a), we show the critical pumping strength as a
function of the particle number for different ωz/ER. �c is taken in
the localized region. One can find that, when ER/ωz becomes bigger,
the slope in the nesting region increases. The gray solid line is the
theoretical prediction that we expect as the ER/ωz → ∞ limit of the
universal critical pumping strength curve. In panel (b), we show the
slope as a function of ER/ωz. The increase of the slope is found
to be faster than the power law increasing. As a result, we expect
κNest→∞ as ωz/ER → 0.

Here we would like to add some comments on whether
the localization in the x direction gives us one-dimensional
tubes of fermions which can be automatically seen as several
one-dimensional systems. A short answer is no. There are, in
general, two reasons. One reason is that the density of states,
especially the low-energy density of states, is modified by the
harmonic trap. The second reason is the cavity-mode-induced
off-diagonal terms between nz and n′

z are not completely delta
functions with momentum conservation like they are in free
space. The broadening of the off-diagonal terms weakens
the FS nesting signal as well. Because of these two reasons,
we cannot treat the localized quasi-one-dimensional tubes as
completely one-dimensional fermions. Thus, the final result
is more like a dimension crossover between one-dimensional
and two-dimensional systems.

Since the approximation in the z direction deviates from
reality, we find the approximation is better when ER/ωz � 1.
Therefore, we expect the critical pumping strength scaling
of Nat in the middle range Nat will increase when ωz/ER is
decreasing. Thus, this prediction can be numerically checked
by numerics. Interestingly, we find except for scaling around
the Fermi surface nesting atom number, other scalings of
the critical pumping strength are invariant for different val-
ues of ωz. The scaling of the critical pumping strength
ln(|V cr

P /Er |)/ ln Nat is increasing when ωz is decreasing. We
are restricted by the system size and the particle number in a
numerical calculation; therefore, we can only prove that the
scaling is increasing when ωz becomes smaller. A finite-size
scaling is carried out, and a divergent scaling is obtained in the
ωz → 0 limit. All of the present data analysis can be equally
done for experimental data. These signatures in the critical
pumping strength can then be identified as the FS nesting
effect.
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FIG. 5. The critical pumping strength V cr
P as a function of the

fermion atom number Nat . The trap frequency is fixed at ER/ω =
50, �c = −2 MHz, U0 = −100 Hz, and κ = 1 MHz. The circle data
are the lowest-temperature line where kBT/ER = 0.01. The square
data are for the temperature kBT/ER = 0.04. The triangle data are
the high-temperature data for kBT/ER = 0.5. For the temperature
kBT/ER = 0.04, we can still see the signature for the FS nesting.
However at high temperature, the slope kink in the critical pumping
strength gradually disappears.

VI. FINITE-TEMPERATURE RESULT
AND EXPERIMENTAL RELEVANCY

In the previous sections, we took an ideal situation to
study to simplify the problem. Here we are going to give
an analysis for experimental accessing. Here we suppose the
fermion atom is 6Li. The pumping laser’s wavelength is taken
as λp = 1064 nm. Then the recoil energy ER/h̄ can be ob-
tained as 2π × 2.9 kHz. The harmonic trap frequency is taken
as ωx = ωz = ω0 = 2π × 290 Hz. Thus, we have ER/h̄ω =
(h2/2mλ2

p)/h̄ω = 100. The interacting strength between the
atoms and light is taken as U0 = −100 Hz, κ = 1 MHz, and
the cavity detuning is taken as �c = −2 MHz. Here we
consider the Nat atoms are trapped in the two-dimensional
harmonic trap at temperatures kBT/ER ∼ 0.01, 0.04, and 0.5.
The low-temperature kBT/ER is accessible. The Nat atoms
range from 10 to 600. Under this setup, we can carry out
the theoretical calculation by replacing the zero-temperature
Fermi-Dirac distribution to finite-temperature distribution.
The critical pumping strength as a function of atom in a ln-ln
plot is shown in Fig. 5. From the critical pumping strength
data of different temperatures, we find the slope kink in the
critical pumping strength as the function of Nat gradually dis-
appears. There is a clear signal for the slope being larger than
1 at the finite temperature kBT/ER = 0.04. Therefore, this
phenomenon could very possibly be observed in the present
setup of fermionic superradiance.

VII. CONCLUSION

To summarize, we find the Fermi surface nesting effect
in the fermionic superradiant transition in a cavity can be
verified with the help of trap-induced localization. We find
when the harmonic trap depth is effectively changed, there
are two typical curves for the superradiant transition critical
pumping strength as a function of the particle number. For a
shallow trap without the localization effect (x direction), there
are no signs of FS nesting, and for a tight trap with the lo-
calization effect, there is a FS nesting signal which manifests
as κ > 1 for κ = ln(|V cr

P /Er |)/ ln Nat. We also verified the
tendency for κ → ∞ in a limit when the trap frequency in
the z direction becomes zero. We find the interplay between
trap or localization and superradiance is quite interesting, and
the statistical effect can be magnified and thus benefits the
generation of superradiance.
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APPENDIX A: CALCULATION OF THE OFF-DIAGONAL
MATRIX ELEMENT 〈n| cos(k0z)|n′〉 IN EQ. (8)

The transition matrix element 〈n| cos(k0z)|n′〉 =∫
dzφ∗

n (z)φn′ (z) cos(k0z), φn′ (z), where φn(n′ )(z) is the
eigenstate of the harmonic trap in the z direction. Ĥz|n〉 =
[−∂2

z /2m + (mωzz2)/2]φn(z) = ωz
nφn(z), ωz

n = (n + 1/2)ωz,
and h̄ = 1 is employed. Here we introduce

fnn′ = 〈n|eik0z|n′〉, (A1)

and then we can find that∫
dzφ∗

n (z)φn′ (z) cos(k0z) =
∫

dzφ∗
n (z)φn′ (z)Re(eik0z )

= Re(〈n|eik0z|n′〉) = Re( fnn′ ).

(A2)

Since the transition element is just the real part of fnn′ , we
focus on calculation of fnn′ in the following. Here we present
an algebraic method involving the annihilation and creation
operators. Let us introduce â =

√
mωz

2 z +
√

1
2mωz

∂z and â† =√
mωz

2 z −
√

1
2mωz

∂z; then we have z =
√

1
2mωz

(â + â†) and

Ĥz = ωz(â†â + 1
2 ). Then eigenstate |n〉 = (â†)n/

√
n!|0〉. We

find

fnn′ = 〈n|eik0z|n′〉 = 1√
n!n′!

〈0|ânei k0√
2mωz

(â+â† )(â†)n′ |0〉. (A3)

Let us introduce ϑ = k0/
√

2mωz, and then we have

fnn′ = 〈n| eik0z |n′〉 = 1√
n!n′!

〈0|âneiϑ (â+â† )(â†)n′ |0〉

= 1√
n!n′!

〈0|eiϑ (â+â† )e−iϑ (â+â† )âneiϑ (â+â† )(â†)n′ |0〉. (A4)
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Making use of the Baker-Hausdorff formula, we find

e−iϑ (â+â† )âneiϑ (â+â† )

= (e−iϑ (â+â† )âeiϑ (â+â† ) )n

=
(
â − iϑ[â + â†, â] +

∞∑
�=2

(−iϑ )�

�!
[. . . , [â + â†, â], . . .]

)n

= (â + iϑ )n. (A5)

Therefore,

fnn′ = 1√
n!n′!

〈0|eiϑ (â+â† )(â + iϑ )n(â†)n′ |0〉

= 1√
n!

〈0|eiϑ (â+â† )
∑

�

C�
n (iϑ )n−�â�|n′〉. (A6)

Here we assume n � n′, and then we have â�|n′〉 =
(
√

n′!/(n′ − �)!)|n′ − �〉. Notice e−iϑ (â+â† )|0〉 is a coherent
state, denoted as | − iϑ〉; 〈0|eiϑ (â+â† ) = 〈−iϑ |; and

fnn′ = 1√
n!

∑
�

C�
n (iϑ )n−�

√
n′!

(n′ − �)!
〈−iϑ |n − �〉

= 1√
n!

∑
�

C�
n (iϑ )n−�

√
n′!

(n′ − �)!

√
1

(n′ − �)!

× 〈−iϑ |(â†)n′−�|0〉

=
√

n′!√
n!

∑
�

C�
n (iϑ )n−� 1

(n′ − �)!
((−iϑ )∗)n′−�〈−iϑ |0〉.

(A7)

In the last line of above equation, we have used 〈−iϑ |â† =
(−iϑ )∗〈−iϑ |. Finally, we have

fnn′ =
√

n′!n!
n∑

�=0

(iϑ )n−�(iϑ )n′−�

�!(n − �)!(n′ − �)!
〈−iϑ |0〉. (A8)

The factor 〈−iϑ |0〉 can be calculated as

〈−iϑ |0〉 = 〈0|eik0z|0〉

= 1√
πmωz

∫
dze−mωzz2

eik0z

= e− k2
0

4mωz = e− 1
2 ϑ2

. (A9)

The final result is

fnn′ =
√

n!n′!
n∑

�=0

(iϑ )n−�(iϑ )n′−�

�!(n − �)!(n′ − �)!
e− 1

2 ϑ2
. (A10)

FIG. 6. ϑ = √
50 is fixed, and we show | fmn|2 more clearly by

the matrix density diagram. Deep color means a nonzero value. As
shown in the figure, when m and n are large, only a small number
of points are nonzero, which behave like a dirac function. The black
line is the result calculated by approximation (B6).

If n′ < n, we find

fnn′ =
√

n!n′!
n′∑

�=0

(iϑ )n−�(iϑ )n′−�

�!(n − �)!(n′ − �)!
e− 1

2 ϑ2
. (A11)

In Fig. 6, we show the matrix element of | fnn′ | as a function of
n and n′. Meanwhile, in the main text, we approximate |n〉 as
1
2 (|kz〉 ± | − kz〉), and then fnn′ = 1

2 (δk′
z,kz+k0 + δk′

z,kz−k0 ). We
show the solid line as the δ function between kz and k′

z.

APPENDIX B: PREDICTIONS
OF THE EFFECTIVE THEORY

Considering the fermions in a trap with the optical lattice
in the x direction, the eigenstates are classified into two types.
One type is the itinerate wave function and another is the lo-
calized one. When the excitation energy is above the mobility
edge, then the localized eigenstate is labeled by its position
in the x direction and nz in the z direction. The energy of
eigenstate | j, nz〉 is

ε j,nz = 1
2 mω2

x ( ja0)2 + nzωz, (B1)

where a0 = π/k0 is the lattice length unit. On the other hand,
if the eigenenergy is smaller than the mobility edge, then we
can approximate the excited-state energy by the local density
approximation. ε j,kx,nz = 1

2 mω2
x ( ja0)2 + nzωz + 2t cos(kxa0),

where t is the hopping strength in the x direction. From this
dispersion relation, we can obtain the relation between the
chemical potential and the particle number Nat. Here we are
going to focus on the case when the localized states are the
major states (this is true when Nat is large):

Nat =
∑
j,nz

nF (ε j,nz − μ)

= 2

a0

∫ √
2μ

mω2
x

0
dx

∫ μ− 1
2 mωx x2

ωz

0
dnz

= 4

3πωxωz

√
2k2

0

m
μ3/2. (B2)
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FIG. 7. We show |V cr
P (Nat )/ER| more clearly by this figure, from

the above calculation, we can see that the shape of this universal
curve is independent of ωz, ωx , and �′

c.

In above, we use
∑ j=J

j=−J = 1
a0

∫ Ja0

−Ja0
dx. Then we can see μ ∝

N2/3
at . More explicitly,

μ =
(

3πωxωz

8
√

ER
Nat

)2/3

. (B3)

Now we are going to check the critical pumping strength as
a function of the chemical potential μ, and then equivalently
we get the critical pumping strength as a function of Nat from
the above relation. From Eq. (10), we know

∣∣∣∣∣V
cr

P (Nat )

ER

∣∣∣∣∣= −(
�′2

c + κ2
)
ER

4U0�′
cχ (Nat )

, (B4)

where the susceptibility χ is

χ = 1

2η2
0

∑
n,n′

∣∣∣∣
∫

drφ∗
n (r)φn′ (r)η(r)

∣∣∣∣
2 nF (En) − nF (E ′

n)

En′ − En
.

(B5)

Note that the quantum number n represents all the
quantum numbers of the eigenstate, including j, kx,
and nz. Inspired by the asymptotic representation
of hermite polynomials, H2nz (z) = (−1)nz 2nz (2nz −
1)!!ez2/2[cos (

√
4nz + 1z) + O( 1

n1/4
z

)] and H2nz+1(z) = (−1)nz

2nz+1/2(2nz − 1)!!ez2/2√2nz + 1[sin (
√

4nz + 3z) + O( 1
n1/4

z
)],

we can take following approximations for large nz,

〈z|2nz〉 ≈ 1

2
√

Lkz

(〈z|kz〉 + 〈z| − kz〉)θ
(
L2

kz
− z2

)
,

〈z|2nz + 1〉 ≈ 1

2
√

Lkz

(〈z|kz〉 − 〈z| − kz〉
)
θ
(
L2

kz
− z2

)
(kz > 0),

(B6)

where |kz〉 is a momentum state 〈z|kz〉 = eikzz, Lkz = π |kz |
4mωz

, and

k2
z /2m = nzωz. The range in the z direction is due to the wave

function being only obviously nonzero within the trap range.
Here the plus sign is for nz being even and the minus sign
is for nz being odd. This approximation is good when nz is
large, but we take this approximation for all nz. Under such an
approximation, we have

〈2nz|eik0z|2n′
z〉 = 1

4
√

Lkz Lk′
z

∫ min(Lkz ,Lk′
z

)

−min(Lkz ,Lk′
z

)

× dz(〈kz| + 〈− kz|)|z〉eik0z〈z|(|k′
z〉+ | − k′

z〉).
(B7)

Let us denote Lzmin = min(Lkz , Lk′
z
) and Lzmax =

max(Lkz , Lk′
z
). Then we have

〈2nz|eik0z|2n′
z〉 = sin((k0 + k′

z − kz )Lzmin)

(k0 + k′
z − kz )(2

√
LzmaxLzmin)

+ sin((k0 + k′
z + kz )Lzmin)

(k0 + k′
z + kz )(2

√
LzmaxLzmin)

+ sin((k0 − k′
z − kz )Lzmin)

(k0 − k′
z − kz )(2

√
LzmaxLzmin)

+ sin((k0 − k′
z + kz )Lzmin)

(k0 − k′
z + kz )(2

√
LzmaxLzmin)

. (B8)

Notice that in the ωz → 0+ limit, Lzmin → ∞, such that sin(kLzmin)/k ≈ δ(k). It is easy to check that 〈2nz|e−ik0z|2n′
z〉 =

〈2nz|eik0z|2n′
z〉, 〈2nz| cos(k0z)|2n′

z + 1〉 = 〈2nz + 1| cos(k0z)|2n′
z〉 = 0, and 〈2nz + 1|eik0z|2n′

z + 1〉 = 〈2nz + 1|e−ik0z|2n′
z + 1〉.

What we really need is |〈2nz|eik0z|2n′
z〉|2; we have

∣∣〈2nz| cos(k0z)|2n′
z〉

∣∣2 = (〈2nz|eik0z|2n′
z〉)2

≈
(

sin[(k0 + k′
z − kz )Lzmin]

(k0 + k′
z − kz )(2

√
LzmaxLzmin)

)2

+
(

sin[(k0 + k′
z + kz )Lzmin]

(k0 + k′
z + kz )(2

√
LzmaxLzmin)

)2

+
(

sin[(k0 − k′
z − kz )Lzmin]

(k0 − k′
z − kz )(2

√
LzmaxLzmin)

)2

+
(

sin[(k0 − k′
z + kz )Lzmin]

(k0 − k′
z + kz )(2

√
LzmaxLzmin)

)2

≈ (
δkz,k′

z+k0 + δ−kz,k′
z+k0 + δkz,−k′

z+k0 + δ−kz,k′
z+k0

)
/(4Lzmax). (B9)
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In the first ≈ in the above equation, we dropped the cross terms. In the second ≈, we employed limLzmin→∞[sin(kLzmin)/k]2 ≈
Lzminδ(k). Meanwhile when we replace nzωz by k2

z /2m, the summation over nz is replaced by

∑
nz

=
∫ ∞

0
dkz

kz

mωz
. (B10)

By approximation all the eigenstates are localized, and the susceptibility can be written as

χ (μ) = 1

2

∑
j,nz ; j′,n′

z

|〈 j, nz| cos(k0z) cos(k0x)| j′, n′
z〉|2

ε j,nz − ε j′,n′
z

[θ (μ − ε j′,n′
z
) − θ (μ − ε j,nz )]

= 1

2

∑
ε j′,n′

z
〈μ,ε j,nz 〉μ

|〈 j, nz| cos(k0z) cos(k0x)| j′, n′
z〉|2

ε j,nz − ε j′,n′
z

+ 1

2

∑
ε j′,n′

z
>μ,ε j,nz <μ

|〈 j, nz| cos(k0z) cos(k0x)| j′, n′
z〉|2

ε j,nz − ε j′,n′
z

=
∑

ε j′,n′
z
>μ,ε j,nz <μ

|〈nz| cos(k0z)|n′
z〉|2|〈 j| cos(k0x)| j′〉|2

ε j′,n′
z
− ε j,nz

=
∑

ε j,nz <μ;n′
z

|〈nz| cos(k0z)|n′
z〉|2

ε j,n′
z
− ε j,nz

θ (ε j,n′
z
− μ). (B11)

Where | j〉 represents the state localized in the jth site, now we introduce x = ja0. Then
∑

j = 1
a0

∫
dx. In these approximations,

χ (μ) = 1

a0

∫ √
2μ

mω2
x

−
√

2μ

mω2
x

dx
∫ √

2m(μ−1/2mω2
x x2 )

−
√

2m(μ−1/2mω2
x x2 )

|kz|dkz

2mωz

∫ |k′
z|dk′

z

2mωz

|〈nz| cos(k0z)|n′
z〉|2

(n′
z − nz )ωz

θ

(
n′

zωz + mωxx2

2
− μ

)

= 1

a0

∫ √
2μ

mω2
x

−
√

2μ

mω2
x

dx
∫ √

2m(μ−1/2mω2
x x2 )

−
√

2m(μ−1/2mω2
x x2 )

dkz|kz|
2mωz

∫ |k′
z|dk′

z

2mωz

(
δkz,k′

z−k0 + δkz,−k′
z−k0 + δ−kz,k′

z−k0 + δ−kz,−k′
z−k0

)
4Lzmax

(
k′2

z /2m − k2
z /2m

)

× θ

(
k′2

z

2m
+ mω2

x x2

2
− μ

)

= 1

a0

∫ √
2μ

mω2
x

−
√

2μ

mω2
x

dx
∫ √

2m(μ−1/2mω2
x x2 )

−
√

2m(μ−1/2mω2
x x2 )

|kz|dkz

2mωz

∫ |k′
z|dk′

z

2πmax(|kz|, |k′
z|)

×
(
δkz,k′

z−k0 + δkz,−k′
z−k0 + δ−kz,k′

z−k0 + δ−kz,−k′
z−k0

)
(k′2

z /2m − k2
z /2m)

θ

(
k′2

z

2m
+ mω2

x x2

2
− μ

)

= 1

a0

∫ √
2μ

mω2
x

−
√

2μ

mω2
x

dx
∫ √

2m(μ−1/2mω2
x x2 )

−
√

2m(μ−1/2mω2
x x2 )

|kz|dkz

2mωz

|kz + k0|
2πmax(|kz|, |kz + k0|)

θ
( (kz+k0 )2

2m + mω2
x x2

2 − μ
)

(kz + k0)2/2m − k2
z /2m

+ 1

a0

∫ √
2μ

mω2
x

−
√

2μ

mω2
x

dx
∫ √

2m(μ−1/2mω2
x x2 )

−
√

2m(μ−1/2mω2
x x2 )

|kz|dkz

2mωz

|kz + k0|
2πmax(|kz|, |kz + k0|)

θ
( (kz+k0 )2

2m + mω2
x x2

2 − μ
)

(kz + k0)2/2m − k2
z /2m

+ 1

a0

∫ √
2μ

mω2
x

−
√

2μ

mω2
x

dx
∫ √

2m(μ−1/2mω2
x x2 )

−
√

2m(μ−1/2mω2
x x2 )

|kz|dkz

2mωz

|kz − k0|
2πmax(|kz|, |kz − k0|)

θ
( (kz−k0 )2

2m + mω2
x x2

2 − μ
)

(kz − k0)2/2m − k2
z /2m

+ 1

a0

∫ √
2μ

mω2
x

−
√

2μ

mω2
x

dx
∫ √

2m(μ−1/2mω2
x x2 )

−
√

2m(μ−1/2mω2
x x2 )

|kz|dkz

2mωz

|kz − k0|
2πmax(|kz|, |kz − k0|)

θ
( (kz−k0 )2

2m + mω2
x x2

2 − μ
)

(kz − k0)2/2m − k2
z /2m

= 2

a0

∫ √
2μ

mω2
x

−
√

2μ

mω2
x

dx
∫ √

2m(μ−1/2mω2
x x2 )

−
√

2m(μ−1/2mω2
x x2 )

|kz|dkz

2mωz

|kz + k0|
2πmax(|kz|, |kz + k0|)

θ
( (kz+k0 )2

2m + mω2
x x2

2 − μ
)

(kz + k0)2/2m − k2
z /2m

+ 2

a0

∫ √
2μ

mω2
x

−
√

2μ

mω2
x

dx
∫ √

2m(μ−1/2mω2
x x2 )

−
√

2m(μ−1/2mω2
x x2 )

|kz|dkz

2mωz

|kz − k0|
2πmax(|kz|, |kz − k0|)

θ
( (kz−k0 )2

2m + mω2
x x2

2 − μ
)

(kz − k0)2/2m − k2
z /2m

.
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Notice that when we change kz to −kz the integral function does not change, so we just need to consider kz > 0:

χ (μ) = 8

a0

∫ √
2μ

mω2
x

0
dx

∫ √
2m(μ−1/2mω2

x x2 )

0

kzdkz

2mωz

kz + k0

2πmax(kz, kz + k0)

θ
( (kz+k0 )2

2m + mω2
x x2

2 − μ
)

(kz + k0)2/2m − k2
z /2m

+ 8

a0

∫ √
2μ

mω2
x

0
dx

∫ √
2m(μ−1/2mω2

x x2 )

0

kzdkz

2mωz

|kz − k0|
2πmax(kz, |kz − k0|)

θ
( (kz−k0 )2

2m + mω2
x x2

2 − μ
)

(kz − k0)2/2m − k2
z /2m

.

The calculation is carried out in the following three cases: μ/ER < 1/4, 1/4 < μ/ER < 1, and μ/ER � 1.
For μ < 1/4ER, the θ function in χ is always satisfied:

χ (μ) = 4
√

μER

π2ωzωx

⎡
⎣−1 + 1

√
−1 + ER

4μ
arctan

⎛
⎝1/

√
−1 + ER

4μ

⎞
⎠

⎤
⎦. (B12)

For 1/4 < μ/ER < 1,

χ (μ) = −4μ

π2ωxωz

⎡
⎣0.5 sin

⎛
⎝2 arcsin

√
1 − ER

4μ

⎞
⎠ + arcsin

√
1 − ER

4μ

⎤
⎦ + 4

π2ωxωz

√
ERμ

√
1 − ER

4μ

+ 2
√

ERμ

ωxωzπ2

⎡
⎢⎣−2 −

√
1 − ER

4μ
log

⎛
⎜⎝1 −

√
1 − ER

4μ

1 +
√

1 − ER
4μ

⎞
⎟⎠

⎤
⎥⎦. (B13)

For μ � ER,

χ (μ) ≈ 4

π2ωxωz

√
μER. (B14)

Apply critical condition �′
c + 4χ�′2

c /(�′2
c + κ2) = 0, and we get

∣∣V cr
P /ER

∣∣ ≈ �′2
c + κ2

16�′
cU0

(
π2ωxωz/E2

R

)(3πωxωz

8E2
R

Nat

)− 1
3

∝ N−1/3
at . (B15)

In Fig. 7, we show the critical pumping strength as a function of atom number Nat by Eq. (B4) and the susceptibility given by
Eq. (B11).
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