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Berezinskii-Kosterlitz-Thouless transitions in a ferromagnetic superfluid:
Effects of axial magnetization
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An easy-plane ferromagnetic spin-1 Bose gas undergoes two Berezinskii-Kosterlitz-Thouless transitions, asso-
ciated with mass and spin superfluidity, respectively. We study the effect of axial magnetization on the superfluid
properties of this system. We find that nonzero axial magnetization couples mass and spin superflow, via a
mechanism analogous to the Andreev-Bashkin effect present in two-component superfluids. With sufficiently
large axial magnetization mass and spin superfluidity arise simultaneously. The crossover to this phase provides
a finite-temperature generalization of the zero-temperature broken-axisymmetric to easy-axis transition. We
present analytic relations connecting mass and spin superfluidity with experimentally observable coherence of
the three spinor components and local magnetization.
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I. INTRODUCTION

Spinor Bose gases possess a variety of ground-state
phases that, in addition to global phase coherence, may ex-
hibit nematic or ferromagnetic order [1–4]. Consequently,
such gases provide a rich platform to study equilibrium
and nonequilibrium properties of both quantum and ther-
mal phase transitions [5–18]. In a two-dimensional (2D) gas,
thermal fluctuations preclude the formation of long-range
order [19,20]; however, systems may still exhibit Berezinskii-
Kosterlitz-Thouless (BKT) type transitions [21–23]. In spinor
Bose gases, the interplay between spin and gauge symmetry
can give rise to different BKT transitions and associated su-
perfluid phases [24–29].

A spin-1 Bose gas in the easy-plane ferromagnetic phase
exhibits distinct superflow of both mass and spin currents,
corresponding to U(1) gauge and SO(2) spin-rotational sym-
metries, respectively [30,31]. The BKT transitions of this
system have been studied previously; as temperature is
decreased one observes first the emergence of mass super-
fluidity, followed at lower temperature by the emergence of
spin superfluidity [28,29]. As the (conserved) axial mag-
netization is increased the local magnetization tilts out of
the plane; see Fig. 1. Ultimately, the gas becomes axially
magnetized, losing spin-rotational symmetry. Here, in the
easy-axis-ferromagnetic phase, superfluidity is akin to that
of a single-component superfluid, with any superflow corre-
sponding solely to the U(1) gauge symmetry. The nature of
the superfluidity as the system transitions from an easy-plane
through to an easy-axis-ferromagnetic system has not been
explored.

In this paper we investigate the effect of increasing
axial magnetization on the superfluid properties of a fer-
romagnetic 2D spin-1 Bose gas. We utilize a stochastic
Gross-Pitaevskii model [33–37], controlling the axial mag-
netization via the inclusion of a nonzero magnetic potential.
With nonzero axial magnetization, mass and spin superflu-
idity are no longer independent quantities due to spin-gauge
coupling [1,38]. This motivates the introduction of a third
superfluid quantity simultaneously describing superflow of
mass and spin currents, analogous to the superfluid drag
present in two-component superfluids [39–42]. We find that
the spin superfluid transition temperature increases with in-
creasing axial magnetization, eventually coinciding with the
mass superfluid transition temperature. This equality of mass
and spin superfluid transition temperatures occurs while the
gas possesses only partial axial magnetization. We connect su-
perfluidity with coherence in the individual spin components
and in the transverse spin, finding analytic relations between
superfluid densities and the algebraic decay of correlations.
Our results give insight into the rich superfluid behavior pos-
sible in spinor systems and pave the way for experimental
observation.

II. FORMALISM

A. System

We consider a 2D spin-1 Bose gas with low-energy macro-
scopically occupied modes described by a three-component
classical field � = [ψ1, ψ0, ψ−1]T. The components ψm de-
note the amplitudes of the m ∈ {1, 0,−1} magnetic sublevels.
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FIG. 1. Axial magnetization as a function of temperature T and
magnetic potential λ in a ferromagnetic spin-1 Bose gas, along with
schematics of corresponding zero-temperature phases. The transi-
tion from the broken axisymmetric to easy-axis phase occurs via a
second-order phase transition at zero temperature [32]; see Eq. (2).
This is modified at finite temperature [dashed lines, computed from
Eq. (12)], where an understanding of the phases requires study of the
system superfluid properties.

The system energy is [1,2]

E =
∫

dr

[
�†

(
− h̄2∇2

2M
1 + q f 2

z

)
� + gn

2
n2 + gs

2
|F|2

]
,

(1)
where M denotes the atomic mass and q describes a uni-
form quadratic Zeeman shift arising from an external field
along the z-spin axis [43]. The interactions are comprised
of both density (n = �†�) and spin (F = �†f�) dependent
terms, with respective 2D coupling constants gn > 0 and gs.
Here f = ( fx, fy, fz ) denotes the vector of spin-1 matrices.
We consider ferromagnetic interactions gs < 0, as realized in
ultracold gases of 87Rb [44,45] and 7Li [46]. A linear Zeeman
shift p has been omitted from Eq. (1), as this can be removed
via the transformation � → e−ip fzt/h̄�.

The total energy is invariant under both the global phase
shift � → eiθ� and z-spin rotation � → ei fzα�. The cor-
responding conserved quantities are particle number N =∫

dr �†� and z magnetization Mz = ∫
dr �† fz�, with asso-

ciated chemical and magnetic potentials μ and λ, respectively.
The zero-temperature phases of the system in the mean-field
regime are the ground states of Eq. (1). Here we focus on the
ferromagnetic phases, which are shown in Fig. 1 [32]. With
λ = 0 and 0 < q < 2|gs|n the axial magnetization is zero.
Here, in addition to the breaking of U(1) gauge symmetry,
the ground state breaks the SO(2) spin-rotational symmetry
via the development of local magnetization transverse to the
applied external field (“easy plane”). The effect of 0 < λ < q
is the development of an axial component Fz of the local
magnetization, which depends on λ and q as [32]

Fz

n
= λ(λ2 − q2 + 2|gs|nq)

2|gs|nq2
. (2)

The axial magnetization increases with λ until λ = q, at which
point the system undergoes a second-order phase transition to
the easy-axis ferromagnetic phase. For λ � q the ground state
is axially magnetized Fz = n. The discontinuity in ∂〈Fz〉/∂λ at
λ = q is smoothed at finite temperature; see Fig. 1.

Although thermal fluctuations preclude symmetry breaking
at nonzero temperature, quasi-long-range order below a BKT
transition is still possible. In the easy-plane ferromagnetic gas
(λ = 0) quasi-long-range order can be present in both global
phase and transverse spin, arising via distinct BKT transitions.
Consequently, this system exhibits superfluid flow of both
mass and spin currents. In this paper we detail the superfluid
properties of the ferromagnetic spin-1 Bose gas as λ is varied,
determining the effects of nonzero axial magnetization.

B. Theory of superfluidity with axial magnetization

The superfluid properties of the spin-1 Bose gas may be
evaluated by considering the system response to the combined
global phase twist and z-spin rotation

� → eiκnn̂·rei fzκsn̂·r�. (3)

Here n̂ is a unit vector defining the twist direction. This
transformation modifies the kinetic energy of the gas while
leaving the remaining energy terms unchanged. The transfor-
mation (3) acting on an equilibrium gas transforms the free
energy to

F = F0 +
∫

dr

(
ρnn

h̄2κ2
n

2M
+ ρss

h̄2κ2
s

2M
+ ρns

h̄2κnκs

M

)
, (4)

with F0 the free energy prior to the transformation. In a system
of dimensions L × L one has

ρi j ≡ M

h̄2L2

∂2F

∂κi∂κ j

∣∣∣∣
κi=κ j=0

, i, j ∈ {n, s}. (5)

The coefficients ρnn and ρss define the mass and spin super-
fluid densities, respectively.

The coefficient ρns = ρsn arises from interdependence of
mass and spin currents in the presence of nonzero axial mag-
netization 〈Fz〉. To elucidate this, we write the free energy (4)
as a function of the superfluid velocities vi(r) = (h̄κi/M )n̂.
Taking functional derivatives of the free energy with respect
to these velocities, one obtains the equilibrium superfluid cur-
rents as [47]

〈jn〉 = δF

δvn
= ρnnvn + ρnsvs, 〈js〉 = δF

δvs
= ρssvs + ρnsvn.

(6)

Motivated by Eq. (6) we interpret ρns as the portion of mass
(spin) superfluid density that simultaneously contributes to
spin (mass) superflow. Note F − F0 � 0 irrespective of κn and
κs; hence ρns � √

ρnnρss. The coupling arises due to the inter-
dependence of the two symmetry transformations, whereby
spin rotations affect mass current and global phase rotations
affect spin current. A quantity analogous to ρns arises in two-
component superfluids, where it is termed the superfluid drag;
this describes entrainment between the two components due
to current-current coupling, known as the Andreev-Bashkin
effect [39]. Note ρns is distinct from the effect termed “spin
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drag” in Ref. [29], which describes the tendency for compo-
nent currents to entrain due to the spin exchange energy.

The total instantaneous mass and spin currents in the spinor
system are, respectively [48],

Jn = h̄

M
Im(�†∇�), Js = h̄

M
Im(�† fz∇�). (7)

At zero temperature the total and superfluid currents are iden-
tical. Applying the transformation (3) to the spatially uniform
ground state and evaluating Eq. (7) we identify

ρnn = n,

ρss = |ψ1|2 + |ψ−1|2 (zero temperature),

ρns = Fz. (8)

At zero temperature, the superfluid densities ρnn and ρns

are distinct in the broken-axis symmetric phase λ < q, but
become equal in the easy-axis phase λ � q, where |ψ0|2 =
|ψ−1|2 = 0 and Fz = n.

C. Model and simulation details

We consider a 2D spin-1 Bose gas confined to a box of di-
mensions L × L, coupled to a grand-canonical reservoir with
chemical potential μ, magnetic potential λ, and temperature
T . For a given quantity O equilibrium expectation values are
given by

〈O〉 = 1

Z

∫
D� O[�]e−(E [�]−μN[�]−λMz[�])/kBT , (9)

where Z = ∫
D� exp[−(E − μN − λMz )/kBT ] is the sys-

tem partition function. In practice, we evaluate Eq. (9) from
stationary solutions of the stochastic spin-1 Gross-Pitaevskii
equation, which sample the grand-canonical ensemble [36]
(also see Refs. [49,50]). This equation is [33–37]

ih̄ d� = (1 − iγ )[L{�} − (μ + λ fz )�]dt + ih̄ dW. (10)

The nonlinear operator

L{�} =
(

− h̄2∇2

2M
+ q fz + gnn + gs

∑
ν

Fν fν

)
� (11)

describes time evolution due to kinetic energy, quadratic Zee-
man shift, density-dependent interactions, and spin-dependent
interactions (ν ∈ {x, y, z}). The dimensionless parameter γ

describes the coupling strength between � and the grand
canonical reservoir; stationary solutions are independent of γ .
The components of dW = [dw1, dw0, dw−1]T are circularly
symmetric Gaussian-distributed complex noise with correla-
tions 〈dw∗

m(r)dwm′ (r′)〉 = (2γ kBT/h̄)δ̃(r, r′)δm,m′dt , where δ̃

is a delta function in the space of macroscopically occupied
modes [36].

We perform simulations with periodic boundary condi-
tions. We expand the field � in a plane-wave basis, with the
constituent modes determined by our N × N point numeri-
cal grid. At large momenta interactions are unimportant, so
that a mode of wave number k will have occupation Nk ≈
2MkBT/h̄2k2. Motivated by this we set 
x = L/N = λth

with λth =
√

2π h̄2/MkBT the thermal de Broglie wavelength.
This ensures occupation of at least order unity for all modes

after adjusting for our use of a square grid [51]. We take
μ as an energy scale with associated length xμ = h̄/

√
Mμ

and compute dependence of equilibrium properties on the
scaled temperature T = MgnkBT/h̄2μ and magnetic potential
λ/μ. The scaled temperature T captures the dependence of
thermodynamic properties on both temperature and chemical
potential [52,53]. Hereon, the remaining parameters are fixed
as Mgn/h̄2 = 0.15, gs = −0.1gn, q = 0.1μ, and γ = 0.1, un-
less otherwise stated.

We obtain stationary solutions of Eq. (10) by evolving an
initial state � = 0 for time t ∼ 105h̄/μ, observing saturation
of the zero momentum mode population to verify equili-
bration is reached. Following this, we obtain Ns ∼ 5 × 104

samples �i at intervals of 10h̄/μ and compute thermal expec-
tation values via

〈O〉 ≈ 1

Ns

Ns∑
i=1

O[�i]. (12)

Validity of this stochastic Gross-Pitaevskii model requires
that all modes within � have occupation of at least order unity
and that � contains all interacting modes (those with wave
number |k| � x−1

μ ). These requirements may be simultane-
ously satisfied only if kBT � μ. For this reason we restrict
our computations to temperatures T � 0.05. We note this
condition on T is equivalently stated as λth � xμ; as we take

x = λth, this ensures resolution of the length scale xμ.

III. NUMERICAL RESULTS

A. Superfluid phases in the presence of axial magnetization

We first explore the change in superfluid properties of
the system as the scaled temperature T and magnetic po-
tential λ are varied. Recent works [28,29] focusing on the
unmagnetized case, λ = 0, found that this system exhibits two
distinct BKT transitions as it is cooled. It first transitions at
temperature Tn to a phase exhibiting only mass superfluidity,
before transitioning again at a lower temperature Ts to a phase
where both spin and mass superfluidity coexist. The difference
between Tn and Ts was found to relate to the energy difference
between mass and spin vortices, with Ts approaching Tn for
small q/μ and approaching zero for q → q0 [29].

The superfluid densities ρnn, ρss, and ρns, defined in Eq. (5),
can be extracted from equilibrium current-current correlations
(see the Appendix for details). The dependence of these su-
perfluid densities on both T and λ is shown in Figs. 2(a)–2(c).
We observe three distinct superfluid phases. At low magneti-
zation, the system behaves similarly to the λ = 0 case: there
is first a transition to a mass superfluid (ρnn > 0) at critical
temperature Tn [panel (a)], followed by a second transition
at a lower critical temperature Ts, where spin superfluidity
(ρss > 0) also emerges [panel (b)]. As λ is increased, the cou-
pling ρns between the two superfluids grows [panel (c)]. The
spin superfluid density ρss also grows with λ until it coincides
with ρnn for λ > λc(T ), defining a third superfluid region.
Here λc(T ) is the curve demarcating ρnn > ρss [λ < λc(T )]
from ρnn = ρss [λ � λc(T )]. This crossover generalizes the
zero-temperature transition from the broken axisymmetry to
the easy-axis phase. We therefore denote the region where
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FIG. 2. Superfluid densities (a) ρnn, (b) ρss, and (c) ρns for
varying temperature T and magnetic potential λ. (d) We identify
three superfluid phases: first, a mass superfluid phase, with ρnn > 0
and ρss = 0. Second, a mass and spin superfluid phase, with ρnn >

ρss > 0. Third, an easy-axis superfluid phase, with ρnn = ρss = ρns.
Black and red circles denote approximate mass and spin superfluid
transition temperatures, respectively, identified via the conditions
ρnn, ρss > 0.05μ/gn. Purple dashed line denotes the curve λc(T ),
identified via the condition ρnn − ρss < 0.05μ/gn. All results are
computed with N = 256.

ρnn = ρss an “easy-axis superfluid.” The superfluid phase dia-
gram is summarized in Fig. 2(d).

The zero temperature value of λc corresponds to the tran-
sition from the broken axisymmetry to the easy-axis ground
state [32], i.e., λc(0) = q; see Fig. 2(d). At finite temper-
ature, we find that λc(T ) < λc(0) and the gas has only
partial axial magnetization. In particular, at T = Tn we find
λc is determined by the condition that the component den-
sities n1 = 〈|ψ1|2〉 and n0 = 〈|ψ0|2〉 are equal. In Fig. 3(a)
we plot the difference n1 − n0; the intersection of the curve
n1 = n0 (blue dotted line) with Tn (black circles) occurs
at λ ≈ λc(Tn). Approximating n0 and n1 by their broken-
axisymmetric ground-state values gives an accurate analytic
estimate for λc(Tn) [54]; see Fig. 3. We have performed addi-
tional calculations of the phase diagram for (gs/gn, q/μ) =

FIG. 3. Role of component densities in determining λc(Tn).
(a) Density difference n1 − n0. Black and red circles and purple
dashed line are as in Fig. 2(d). The mass and spin superfluid
transitions coincide at λ = λc(Tn) (orange circle). Dotted blue line
is the curve n1 = n0, which coincides with λc(Tn) at T = Tn.
(b) Dependence of λc(Tn) on quadratic Zeeman energy for gs =
−0.1gn. (c) Dependence of λc(Tn) on |gs| with q = 0.5μ. In (b) and
(c) blue lines are analytic estimates obtained from setting n1 = n0

in the ground state, while orange markers are numerical results
with (gs/gn, q/μ) = (−0.1, 0.1) (circle), (−0.1, 0.01) (square), and
(−0.5, 0.5) (triangle). All results are computed with N = 256.

(−0.1, 0.01) and (gs/gn, q/μ) = (−0.5, 0.5). In both cases
results are qualitatively similar to Fig. 2, with λc(Tn) in agree-
ment with the analytic estimate; see Figs. 3(b) and 3(c).

B. Phase coherence and correlations

Superfluidity in two dimensions is associated with alge-
braic decay of correlations, signifying quasi-long-range order.
In a spinor system, such order may be present in component
ψm and spin F⊥ = (Fx, Fy ) correlations

Gm(r) = 〈ψ∗
m(r)ψm(0)〉, G⊥(r) = 〈F⊥(r) · F⊥(0)〉. (13)

At low temperature the behavior of these correlations is dom-
inated by long-wavelength gapless modes [11]. This system
exhibits two such modes, corresponding to the two sym-
metries in Eq. (3) [55,56]. Excitations of these modes are
described via the energy functional

E = h̄2

2M

∫
dr(ρnn|∇θ |2 + ρss|∇α|2 + 2ρns∇θ · ∇α),

(14)
where θ (r) and α(r) are the spatially varying global phase
and transverse spin angle, respectively. The effect of these
excitations on the large |r| behavior of the correlations (13)
can be evaluated analytically from Eq. (9) using standard
techniques [57,58]. Within the mass and spin superfluid phase
the result is

Gν (r) ∝ |r|−ην , ν ∈ {1, 0,−1,⊥}, (15)

with

η0 = MkBT

2π h̄2ρnn

1

1 − R2
, η⊥ = MkBT

2π h̄2ρss

1

1 − R2
,

η±1 = η0 + η⊥ ∓ MkBT

π h̄2√ρnnρss

R
1 − R2

, (16)
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with R = ρns/
√

ρnnρss. Note that η1 + η−1 = 2η⊥ + 2η0 and
hence only three of the four exponents in Eq. (16) are inde-
pendent. Equation (16) can be written concisely as

η = MkBT

2π h̄2 ρ−1, (17)

where we have defined

η =
[

η0 −η̄

−η̄ η⊥

]
, ρ =

[
ρnn ρns

ρns ρss

]
, (18)

with η̄ = (η−1 − η1)/4.
In the easy-axis superfluid phase R = 1 and the expres-

sions (16) are invalid. Rather, we note that with ρnn = ρss =
ρns Eq. (14) reduces to E = (h̄2/2M )

∫
drρns|∇(θ + α)|2,

i.e., the energy reduces to that of a single-component field
with fluctuations in the phase θ + α. Correspondingly, the
only relevant correlation function is G1(r) ∝ |r|−η1 with de-
cay exponent satisfying

η1 = MkBT

2π h̄2ρns
(easy-axis superfluid). (19)

Similarly, in the mass superfluid phase ρss = ρns = 0 and
Eq. (14) reduces to E = (h̄2/2M )

∫
dr ρnn|∇θ |2. The rele-

vant correlation function is then G0(r) ∝ |r|−η0 with decay
exponent

η0 = MkBT

2π h̄2ρnn
(mass superfluid). (20)

These results connect quasi-long-range order with
superfluidity.

We have numerically determined the correlation func-
tions (13) using Eq. (12). In the distinct mass and spin
superfluid phase all Gν exhibit algebraic decay. In the easy-
axis superfluid phase only G1 exhibits algebraic decay. In
the mass superfluid phase only G0 exhibits algebraic decay.
Example correlations are shown in Figs. 4(a) and 4(b). We
have also computed the long-range behavior of Gν from the
superfluid densities using Eq. (15) with decay exponents as
in Eqs. (16), (19), and (20). This agrees with the correla-
tions determined directly within the long-wavelength region
10λth < |r| < 0.2L. The upper bound of 0.2L is imposed as
finite-size effects become significant for |r| > 0.2L.

Similarly, we have extracted the decay exponents ην from
correlations computed via Eq. (12) [59] and compared these
with the predictions (16), (19), and (20); see Figs. 4(c)
and 4(d). We find agreement for all applicable temperatures.
Interestingly, in the distinct mass and spin superfluid phase,
where all Gν exhibit algebraic decay, we find the decay expo-
nents ην may exceed 1/4. This is in contrast to the maximal
decay exponent of a single-component 2D superfluid [60].

Conversely, we may express the superfluid densities in
terms of the decay exponents. In the easy-axis and mass su-
perfluid phases this is achieved directly via Eqs. (19) and (20).
In the mass and spin superfluid phase, inverting Eq. (17) gives

ρnn = MkBT

2π h̄2η0

1

1 − E2
, ρss = MkBT

2π h̄2η⊥

1

1 − E2
,

ρns = MkBT

2π h̄2√η⊥η0

E
1 − E2

, (21)

FIG. 4. Top row: algebraically decaying correlations G1 (purple),
G0 (black), G−1 (green), and G⊥ (red), at T ≈ 0.2 with (a) λ =
0.06μ and (b) λ = 0.08μ. Lines are obtained from evaluation of
Eq. (13). Circles are obtained from Eq. (15) with decay exponents
as in Eqs. (16), (19), and (20) and superfluid densities computed
numerically from equilibrium current-current correlations. Bottom
row: comparison of decay exponents ην extracted from fitting to
correlations (13) (lines) and decay exponents computed from su-
perfluid densities (16), (19), and (20) (circles), with (c) λ = 0.06μ

and (d) λ = 0.08μ. Colors are as in (a) and (b). Background colors
indicate superfluid phases from Fig. 2(d). All results are computed
with N = 512.

with E = η̄/
√

η⊥η0. In Fig. 5 we compare superfluid den-
sities extracted from equilibrium current-current correlations
(circles) to those computed from Eqs. (19)–(21), with decay
exponents extracted from fits to correlations (13) (dots). We
find agreement at all temperatures for multiple values of λ.
The relations (21) illustrate the effect of ρns on the mass and
spin superfluid densities. In particular, the emergence of ρns

results in a two-step transition in the mass superfluidity; see
Figs. 5(b) and 5(c). These steepen with increasing system size,
see Fig. 6 in the Appendix, and resemble the universal jump in
superfluidity that occurs in single-component systems [23,60].
Future work could investigate in more detail the finite-size
scaling of these to verify their behavior in the thermodynamic
limit.

IV. CONCLUSION

In this paper we investigated the effect of axial magneti-
zation on the superfluid properties of a ferromagnetic spin-1
Bose gas in two dimensions. This system supports superfluid-
ity of both mass and spin currents, arising via respective BKT
transitions. We find that the spin superfluid transition temper-
ature increases with increasing magnetic potential, ultimately
coinciding with the mass superfluid transition temperature.
We thus identify three superfluid regimes: one with only mass
superfluidity, one with distinct mass and spin superfluidity,
and one with identical mass and spin superfluidity.

We have quantified the interdependence of mass and spin
currents at nonzero magnetic potential via the introduction
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FIG. 5. Temperature dependence of superfluid densities ρnn

(black), ρss (red), and ρns (blue) at (a) λ = 0, (b) λ = 0.06μ, (c) λ =
0.08μ, and (d) λ = 0.1μ. Circles are evaluated via the procedure
described in the Appendix. Dots are evaluated via decay exponents
ην extracted from fits to algebraically decaying correlations Gν (see
text). Zero temperature points are computed via Eq. (8). Background
colors indicate superfluid phases from Fig. 2(d). All results are com-
puted with N = 512.

of a third superfluid quantity, ρns. This quantity is analogous
to the superfluid drag present in binary superfluids which,
as with the system considered here, exhibit a U(1) × U(1)
symmetry. However, we note an important distinction: the two
superflows exhibited by the binary fluid correspond directly to
transport of the individual fluid components, with superfluid
drag describing entrainment between them. Contrarily, the
two superflows exhibited by the broken-axisymmetric spin-
1 Bose gas are associated with transport of mass and axial
magnetization, with ρns quantifying the extent to which these
superflows are identical; the mass and spin superfluid currents

FIG. 6. Attainment of mass superfluid density at λ = 0.06μ.
(a) Wave-number dependence of transverse response function χT

nn

(gray dots). Red lines are fits used to extract the k → 0 limit. Green
squares indicate values computed via squared momentum expec-
tations; see text. (b) Temperature dependence of mass superfluid
density obtained with system sizes N = 64, 128, 256, and 512. Note
the two-step transition in ρnn, which steepens with increasing system
size.

do not correspond to flow of distinct “mass” and “spin” fluid
components.

We have presented the relationship between the relevant
correlations and superfluidity in the presence of axial mag-
netization. Recent work on spatially resolved measurement
of collective spin observables and the associated correlation
functions in quasi-1D spin-1 gases [16,17] should be appli-
cable to the 2D regime considered here. Axial magnetization
will affect the nature of vortices in this system [61–63]; ex-
ploring this in the context of the BKT transitions identified in
this work would be an interesting area to explore.
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APPENDIX: COMPUTING SUPERFLUID DENSITIES

To compute the definitions (5) we consider the free energy
F = −kBT ln Z , where the partition function

Z =
∫

d� exp [−(E − μN − λMz )/kBT ] (A1)

is evaluated over states � satisfying periodic boundary condi-
tions, with the effect of the phase twist (3) incorporated into
the state energy via the transformation

E = E0 +
∑
i, j

h̄2κiκ j

2M
Ni j + h̄

∫
dr(κnJn + κsJs) · n̂. (A2)

Here E0 is the energy prior to the transformation (1), Ni j =∫
dr �†AiAj�, An = 1, As = fz, and Ji are the total cur-

rents (7). Substituting Eq. (A2) into Eq. (A1) and computing
Eq. (5) from the free energy gives

ρi j = ni j − M

kBT L2

∫
dr

∫
dr′n̂ · 〈Ji(r)J j (r′)〉 · n̂, (A3)

where ni j = 〈Ni j〉/L2 and Ji(r)J j (r′) denotes the outer prod-
uct of Ji(r) and J j (r′). Note that the mass and spin momenta
are Pi = M

∫
dr Ji · n̂ and hence Eq. (A3) can also be written

as [64]

ρi j = ni j − 〈PiPj〉
ML2kBT

. (A4)

In the infinite system size limit the current-current correlation
function 〈Ji(r)J j (r′)〉 depends only on the separation r − r′.
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With this one may express Eq. (A3) as

ρi j = ni j − lim
L2→∞

∫
dk 
(k)[n̂ · χi j (k) · n̂], (A5)

where 
(k) ≡ ∫
dr 1

4π2 eik·r and

χi j (k) ≡ M

kBT L2
〈J̃i(k)J̃∗

j (k)〉, (A6)

with J̃i(k) = ∫
dr e−ik·rJi(r).

The function 
(k) approaches a delta function in the infi-
nite system size limit L2 → ∞. However, the way in which
this limit is taken is of critical importance. Consider the
fluid to be confined within a rectangular box of dimensions
Ln × Lm with walls oriented along perpendicular directions
n̂ and m̂. To probe superfluidity, one must take the limit
Ln → ∞ first (see, for example, Ref. [65]). The function 
(k)
then acts to ensure the integration is performed over k ⊥ n̂,
so that n̂ · χi j (k) · n̂ = χT

i j (|k|) gives the transverse response.
Alternatively, taking first Lm → ∞ results in integration over

k ‖ n̂ so that n̂ · χi j (k) · n̂ = χL
i j (|k|) gives the longitudinal

response, satisfying χL
i j (0) = ni j . With these considerations

one obtains

ρi j = lim
|k|→0

[
χL

i j (|k|) − χT
i j (|k|)]. (A7)

We compute superfluid densities via Eq. (A7). Away from
transition temperatures a quadratic fit to the response func-
tions χL

i j (|k|) and χT
i j (|k|) is sufficient to extract the |k| → 0

limit; see Fig. 6(a). However, near transition temperatures the
response function χT

i j (|k|) changes rapidly near k = 0 and the
fitting procedure becomes unreliable. We therefore compute
the |k| → 0 limit via lim|k|→0 χT

i j (|k|) → 〈PiPj〉/ML2kBT ;
cf. Eq. (A4).

We have computed superfluid densities on N × N point
numerical grids with N = 64, 128, 256, and 512. Example
results are shown in Fig. 6(b). System-size dependence is
observed near superfluid transition temperatures.
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