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Quantum droplets in dipolar condensate mixtures with arbitrary dipole orientations
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Through considering a two-component dipolar Bose-Einstein condensate, we investigate the influence of the
angle between the polarization orientations of the two species on the ground states and show that the miscibility
between the two components can be adjusted not only by the inter-component contact interaction but also by
the polarization angle. Particularly, in the presence of an external confinement, the two species exhibit a
preference for splitting into multiple droplets separated from each other in the immiscible regime, featuring
a zig-zag-like profile. Furthermore, the number of separated droplets depends solely on the polarization angle.
This introduces a promising degree of freedom for exploring emergent states of matter in dipolar quantum gases.
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I. INTRODUCTION

In recent years, the dipolar Bose-Einstein condensate
(dBEC) has emerged as a promising platform for exploring
exotic states of matter led by long-range interactions and
quantum fluctuations. Initially, according to mean-field the-
ory, this system was thought to be unstable and prone to
collapse due to attractive interactions along the polarization
direction [1]. However, experimental observations have de-
fied this expectation, revealing that, rather than collapsing,
dBEC can be stabilized by quantum fluctuations, forming
what is known as an emergent self-bound state, namely, a
quantum droplet [2–4]. These beyond mean-field phenom-
ena highlight the significant effects of quantum fluctuations
in dBECs, often described by the Lee-Huang-Yang (LHY)
correction [5–12]. Moreover, beyond the single-droplet state
observed in free space [2–4,13–20], the interplay between
dipole-dipole interaction, quantum fluctuations, and external
confinement can give rise to a diverse range of novel states in
a single-component dBEC, including droplet arrays [17–36]
and supersolids exhibiting various symmetries [16,36–44].

The recent experimental realization of dipolar mixtures
[45] has opened avenues for investigating intriguing be-
yond mean-field physics in multicomponent systems with
long-range dipole-dipole interactions. Generally, the presence
of multiple species of atoms offers additional interaction
channels, potentially giving rise to a variety of unexpected
phenomena. Unlike non-dipolar mixtures where collapse
can also be suppressed by quantum fluctuations [46–56],
the interplay between inter- and intracomponent long-range
dipole-dipole interactions, combined with quantum fluctu-
ations, can result in more intricate behaviors, including
the tunable miscibility of two-component droplets [57–62]
and the emergence of supersolids with peculiar symme-
tries [62–69]. Furthermore, the polarization orientation of
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dipolar mixtures introduces a novel degree of freedom that
can be exploited to explore richer phenomena arising from the
competition between anisotropic long-range interactions and
quantum fluctuations. For instance, in contrast to the droplet
state observed in dipolar mixtures with parallel polarization
directions [57–60], theoretical predictions suggest the forma-
tion of droplet clusters when the polarization directions are
antiparallel in a two-component dBEC [61–64].

While remarkable phenomena such as tunable miscibility
and droplet clusters have been predicted in two-component
dipolar mixtures with both parallel and antiparallel polar-
izations, there remains a gap in understanding the related
physics when the polarization orientations of the two species
are adjusted beyond parallel and antiparallel configurations.
Therefore, we aim to delve deeper into the effect of the polar-
ization angle by investigating the corresponding ground-state
behaviors of a binary dipolar mixture. To this end, we initially
examine the dipolar mixture in free space and observe that
both components favor a single-droplet state. In comparison
with the parallel polarization case, we identify a miscible-
immiscible transition between the two species, wherein the
critical point depends not only on the intercomponent contact
interaction but also on the angle between the polarization di-
rections. Moreover, in the immiscible case, the mixture forms
two individual droplets composed of each component, which
are end-to-end linked with the same angle. Furthermore, upon
considering the dipolar mixture confined in an external trap,
we uncover that the ground state is altered by multidroplet
states separated by each component alternately in the immis-
cible regime. Notably, the number of split droplets is primarily
controlled by the polarization angle and remains independent
of the intercomponent contact interaction.

The rest of this paper is organized as follows. In Sec. II, we
introduce the binary dipolar mixture system considered here
as well as the corresponding theoretical model. In Sec. III,
we discuss the self-bound droplet states in free space. In
Sec. IV A, we present the phase diagram of ground states in
the presence of a trapping potential. In Sec. V, we explore the
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FIG. 1. Two-component dipolar mixtures with an arbitrary angle
α between their dipole orientations. Red and blue represent compo-
nent 1 and component 2, respectively.

quench dynamics of the confined dipolar mixture. Section VI
provides a conclusion.

II. DIPOLAR MIXTURE WITH ARBITRARY
POLARIZATION ORIENTATIONS

We consider a dipolar mixture composed of two species
of atoms, and we assume the atoms of the two components
are polarized in different directions with a relative angle α

(0 � α � π ) as depicted in Fig. 1. If α = 0, it reduces to
the usual scenario of parallel polarizations, which has been
extensively discussed in the typical Dy-Dy as well as Dy-Er
mixtures [57–60,65–69], while α = π corresponds to the case
of antiparallel polarizations [61–64]. For the sake of analysis,
we assume that the two species are both polarized in the xz
plane, and the angle between the z axis and the polarization
direction of each component is α/2 (see Fig. 1). Such a
setting can be realized by polarizing the two components in
their respective directions under strong magnetic fields and
then placing them together. Let us take the Dy-Dy mixture
as an example, one of the two species can be prepared in the
state |m = 8〉, while the other component is initialized in a
superposition of the hyperfine spin states [61,70]. Despite that
the stability of this configuration suffers from dipolar relax-
ation, which is likely to be suppressed by the development of
control techniques [71–73], we would like to pursue a deeper
understanding of the effect of the relative angle between the
polarization orientations in such a scenario.

In contrast to the configuration considered in Ref. [61],
where the dipole magnitudes of the two species continuously
vary in a wide range and thus correspond to either parallel or
antiparallel cases, the dipole magnitudes of the two compo-
nents are fixed in our setting, while the dipole orientation is
a continuous variable. In such a dipolar condensate mixture,
the atoms are subject to long-range dipole-dipole interactions,
which can be characterized by [1]

V σσ ′
dd (r) = μ0

4π

μσ · μσ ′ − 3(μσ · r̂)(μσ ′ · r̂)

r3
, (1)

FIG. 2. The variation of the intracomponent interaction (red line)
and the intercomponent interaction (green dashed line) along the z
axis, Vdd(z) vs α.

where the two species are indexed by σ, σ ′ = 1 and 2, μ0 rep-
resents the permeability of vacuum, μσ denotes the magnetic
dipole moment of each component, and r is the displacement
between two separated particles. Hereafter, our discussion
will focus on the Dy-Dy mixture, i.e., |μ1| = |μ2| = μ =
9.93 μB [2,3], with μB being the Bohr magneton. Subse-
quently, one can define the dipolar length add = μ0μ

2M
12π h̄2 ≈

131a0 [2,3], where a0 is the Bohr radius and M represents the
atomic mass of dysprosium. In the coordinate setting illus-
trated in Fig. 1, the intra- and intercomponent dipole-dipole
interactions can be rewritten as

V 11
dd (r)

V0
= 1

r3
− 3

x2 sin2 α
2 + z2 cos2 α

2 + xz sin α

r5
, (2a)

V 22
dd (r)

V0
= 1

r3
− 3

x2 sin2 α
2 + z2 cos2 α

2 − xz sin α

r5
, (2b)

V 12
dd (r)

V0
= cos α

r3
− 3

z2 cos2 α
2 − x2 sin2 α

2

r5
, (2c)

with V0 = 3h̄2add/M.
For the situation where two particles are aligned along

the z direction (i.e., r = |z|), these dipole-dipole interactions
simplify to

V 11
dd (z) = V 22

dd (z) = V0

|z|3
(

1 − 3 cos2 α

2

)
, (3a)

V 12
dd (z) = − V0

|z|3
(

1 + cos2 α

2

)
. (3b)

Figure 2 illustrates the variation of the above intracompo-
nent as well as the intercomponent dipole-dipole interactions
with respect to the angle α. It is noteworthy that the intracom-
ponent interaction V σσ

dd (z) switches between attraction and
repulsion as α increases from 0 to π , whereas the intercom-
ponent interaction V 12

dd (z) remains attractive throughout. Due
to such attractive long-range interaction along the z direction,
the two species are closely bound to each other even in the
immiscible scenario, forming either V-type binary droplets in
free space or multidroplet arrays with a zig-zag profile in the
presence of a trapping potential, the details of which will be
discussed in Secs. III and IV.
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To evaluate the dipolar potential, it is beneficial to express
the dipole-dipole interactions in Eq. (2) in momentum space
via Fourier transformation as below,

Ṽ 11
dd (k) = 4πV0

((
kz cos α

2 + kx sin α
2

)2

k2
− 1

3

)
, (4a)

Ṽ 22
dd (k) = 4πV0

((
kz cos α

2 − kx sin α
2

)2

k2
− 1

3

)
, (4b)

Ṽ 12
dd (k) = 4πV0

(
k2

z cos2 α
2 − k2

x sin2 α
2

k2
− cos α

3

)
, (4c)

which is a standard technique to simplify the convolution
calculation [see Eq. (5)].

Based on the above theoretical discussion about the dipole-
dipole interactions in such a dipolar mixture with an arbitrary
angle between the polarization orientations of the two species,
the dynamics of this two-component quantum gas can be
described by the following extended Gross-Pitaevskii equa-
tion (eGPE) [58–60]:

ih̄
∂

∂t
�σ (r, t ) =

[
− h̄2∇2

2M
+ U (r) +

∑
σ ′

gσσ ′ |�σ ′ (r, t )|2

+
∑
σ ′

∫
d3r′V σσ ′

dd (r − r′)|�σ ′ (r′, t )|2

+ μ
(σ )
LHY

]
�σ (r, t ), (5)

where �σ (r, t ) (σ = 1 and 2) represents the condensed wave
function of each component and is normalized to the parti-
cle number

∫ |�σ (r, t )|2d3r = Nσ , and gσσ ′ = 4π h̄2aσσ ′
s /M,

with aσσ ′
s being the s-wave scattering length. U (r) denotes

the external trapping potential. μ
(σ )
LHY = δELHY

δnσ
is the LHY cor-

rection describing the effect of quantum fluctuations, where
nσ = |�σ (r, t )|2 and

ELHY = 1

30
√

2π3

(
M

h̄2

) 3
2

×
∫ π

0
dθk

∫ 2π

0
dϕk sin θk

∑
λ=±

V
5
2

λ
(θk, ϕk ), (6)

with θk and ϕk being the spherical coordinates in k-space and

V±(θk, ϕk ) = η11n1 + η22n2

±
√

(η11n1 − η22n2)2 + 4η2
12n1n2. (7)

Here, we have defined ησσ ′ = gσσ ′ + Ṽ σσ ′
dd (k). It is worth

mentioning that the above LHY correction contains a small
imaginary part, which has been neglected in our simulation,
similarly to the usual practice in a single-component dipolar
gas [13,74,75] (see more details in the Appendix).

III. SELF-BOUND DROPLET STATES IN FREE SPACE

Let us start with the Dy-Dy mixture without any con-
finement (i.e., U = 0) and demonstrate the effect of the
polarization orientations by exploring the ground states in the
situation of equal particle numbers, i.e., N1 = N2. To obtain

the ground states we employ the imaginary time evolution
method. That is, we propagate the eGPE by replacing t → −it
and renormalize the wave function after each propagation
step. Eventually, it converges to the least damped state. As this
algorithm is sensitive to the initial state, it may converge to
either the ground state with the lowest energy or a metastable
state with local energy minima. Thus, to accurately determine
the ground state, we perform imaginary time evolution with
various initial states and subsequently identify the stationary
state with the lowest energy.

Utilizing this method, we conduct numerical investigations
into the ground states of such a balanced dipolar mixture
within the numerical domain (Lx,y is fixed at ∼4.2 µm, while
Lz = 4.2–28 µm, varying with the particle number) with 256
grid points along each direction. Figure 3 depicts an example
illustrating the variation of the ground states concerning the
polarization angle α and the intercomponent contact interac-
tion a12

s , while the particle number and the intracomponent
contact interaction are fixed to N1 = N2 = 1000 and a11

s =
a22

s = 60a0, respectively.
As can be seen from Fig. 3, both species exhibit a pref-

erence for a single-droplet state in free space, accompanied
by a miscible-immiscible transition. The miscibility is gov-
erned not only by the intercomponent s-wave scattering length
a12

s but also by the polarization angle α. At small polariza-
tion angles and weak intercomponent contact interactions, the
two components tend to immerse themselves into each other,
forming what is known as the miscible droplet state. However,
as a12

s increases, the dipolar mixture enters the immiscible
regime, where the two species spatially separate while re-
maining connected at the ends of the droplets. This behavior
is similar to that observed in the parallel polarization case,
where the miscible-immiscible transition is solely governed
by a12

s . Nevertheless, for a fixed a12
s , the miscible droplet can

be transformed into immiscible droplets by adjusting the angle
α. Moreover, when α is relevantly large (approaching π ),
no miscible droplets exist even if the short-range interaction
becomes weakly attractive (i.e., a12

s < 0). Additionally, unlike
the parallel case, the two droplets are no longer aligned with
each other but instead form a “V”-like structure. In the im-
miscible case, the angle of such a V-type structure is equal
to π − α; however, it noticeably deviates from π − α in the
miscible regime due to the strong attraction between the two
species.

To quantitatively characterize the angle between the two
droplets of each component, we first examine the size
of a single droplet l (n) along an arbitrary direction n =
(sin θ cos ϕ, sin θ sin ϕ, cos θ ) as the following:

l (n) =
√

〈[(r − 〈r〉) · n]2〉
= (�x2 sin2 θ cos2 ϕ + �y2 sin2 θ sin2 ϕ

+ �z2 cos2 θ + �xy sin2 θ sin 2ϕ

+ �yz sin 2θ sin ϕ + �xz sin 2θ cos ϕ)1/2, (8)

with �a2 ≡ 〈a2〉 − 〈a〉2, �ab ≡ 〈ab〉 − 〈a〉 〈b〉 (a, b =
x, y, z), and 〈·〉 being the average value. And then we define
the direction (θm, ϕm), along which l (n) attains its maximum
value, as the orientation of the droplet. For the scenario
considered here, it is straightforward to notice that the
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FIG. 3. Ground states in free space with fixed atom number N1 = N2 = 1000. The isosurface corresponds to 5% of the peak density for
each component. All the states are drawn in the same size scale.

droplets are oriented in the xz plane, and thus ϕm = 0. In such
a case, Eq. (8) can be simplified to

l =
√

A cos (2θ − φ) + B, (9)

where A =
√

1
4 (�z2 − �x2)2 + (�xz)2, B = �z2−�x2

2 , and

φ = arctan2(�xz, �z2−�x2

2 ). According to Fig. 3, the po-
lar angle orientation of each droplet is in the range
of [0, π ], and thus we can identify the following polar
angle:

θm = φ

2
+ H(−φ)π, (10)

with H(x) being the Heaviside step function, which allows
Eq. (9) to reach its maximum. Subsequently, one can qual-
itatively define the relative angle between the two droplets
formed by each component as �θ = |θ1

m − θ2
m|. Figure 4

shows the variation of the relative angle �θ between the two
droplets across the miscible-immiscible transition point while
(a) the polarization angle is fixed at α = π/3 or (b) the inter-
component s-wave scattering length is fixed at a12

s = 40a0. As
can be seen from Fig. 4(a), in the immiscible case at relevantly
large a12

s , �θ retains a constant of 2π/3 (i.e., π − α), which
is consistent with the above estimation from Fig. 3. As a12

s

decreases, accompanied by the mixing of the two components,
�θ eventually approaches π in the miscible regime; however,
the directions of the two components cannot become fully
parallel due to the finite polarization angle. The linear relation
�θ = π − α for the immiscible droplets is also well justified
when tuning the polarization angle α beyond a certain thresh-
old for a fixed a12

s as presented in Fig. 4(b). Nevertheless,
the droplet angle �θ converges to π at small α where the
two species enter the miscible regime. From Fig. 4, one can
also notice that there is a transition area where the relative
angle �θ takes an intermediate value. This is because the two
components partially bend into each other as displayed by the
subplot. The profile of each component in such a region is
not cigar-shaped, and thus the above Eq. (10) is no longer a
good estimation for the droplet orientation. Such behavior also
manifests that the miscible-immiscible transition is a gradual
rather than an abrupt variation process.

IV. GROUND STATES OF A CONFINED
DIPOLAR MIXTURE

In this section we turn to the confined Dy-Dy mixture by
adding a harmonic trap along the x axis, i.e., U (r) = 1

2 Mω2x2,
and explore the ground states in the case of balanced particle
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(a)

(b)

FIG. 4. The angle between the two components �θ vs a12
s for

α = π/3 (a) and α for a12
s = 40a0 (b). The isosurfaces correspond

to 10% and 0.8% of the peak density for each component. All
the three-dimensional plots are drawn in the same size scale. The
section profile of the miscible state in the y = 0 plane is displayed as
well, from the red (component 1) and blue (component 2) contours of
which one can notice a small separation between the two components
led by the finite α.

numbers, i.e., N1 = N2. In the following, we first present the
phase diagram in Sec. IV A and then discuss the phase transi-
tion characteristics in Sec. IV B.

A. Phase diagram

By fixing the intracomponent contact interactions to a11
s =

a22
s = 60a0 and tuning the polarization angle α as well as

the intercomponent s-wave scattering length a12
s , we inves-

tigate the ground states of the dipolar mixture confined in
the trap with a frequency of ω = 2π × 400 Hz. Referring
to the phase diagram illustrated in Fig. 5, it is evident that
the ground states undergo a miscible-immiscible transition as
well. Within the miscible regime, both components form a
single droplet bound to each other, exhibiting a small angle
similar to that observed in the free space scenario. However, in
the immiscible region, the ground state no longer maintains a
single droplet for each component. Instead, it adopts a config-
uration where both species split into multidroplets, arranged
alternately and displaying a typical zig-zag profile reminiscent
of similar structures often observed in trapped ions [76–78].

Since the dipolar mixture is confined only in the x di-
rection, the resulting end-to-end linked multidroplet states

(a)

(b)

FIG. 5. Phase diagram for a dipolar mixture composed of 164Dy
atoms confined in the trap with a frequency of ω = 2π × 400 Hz.
Here we consider the case of balanced particle numbers, e.g.,
(a) N1 = N2 = 5 × 104 and (b) N1 = N2 = 104. The red line rep-
resents the miscible-immiscible transition boundary fitted from the
numerical results, while the green dashed line corresponds to the
critical point predicted by Bogoliubov spectrum analysis. ND refers
to the number of separated droplets in one of the two components.
The corresponding density profiles of the ground states at the points
�, �, and � are plotted respectively.

are self-bound along the bisector of the polarization angle α

(i.e., the longitudinal z direction of the zig-zag droplet chain),
owing to the attractive intercomponent dipole-dipole interac-
tion (see Fig. 2). If α < π/2, such immiscible multidroplet
states emerge as the ground state when a12

s exceeds a certain
threshold (indicated by the red line in Fig. 5). Conversely, the
miscible droplet state is entirely suppressed when α > π/2
even in the case of weak attractive contact interaction between
the two components (i.e., a12

s < 0), which is similar to the be-
havior observed in free space. Furthermore, one can also find
that the number of the separated droplets of each component
remains independent of a12

s and varies with the polarization
angle α. To elucidate this behavior, we analyze the ground-
state profiles in the xz plane by integrating the density over
the y axis, i.e., nσ (x, z) = ∫ |�σ (r)|2dy. Figure 6 exhibits an

FIG. 6. The ground-state density profiles in the xz plane for
N1 = N2 = 5 × 104 at a11

s = a22
s = 60a0. Here the density has been

integrated over the y axis, i.e., nσ (x, z) = ∫ |ψσ (r)|2dy. The other
relevant parameter (α, a12

s ) of each state is indicated by the corre-
sponding marks �, �, and � in Fig. 5(b).
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example for N1 = N2 = 5 × 104. In the immiscible regime,
the overlap of the two components is minimal, whereas in the
miscible case, the two components are nearly superimposed.
Additionally, the orientation of the separated droplets of each
component is identical to that of the individual droplets in
free space (see Sec. III), both aligned with their corresponding
dipole direction. Due to the nearly vanishing density overlap
between the two species in the immiscible case, the contri-
bution of the intercomponent contact interaction to the total
energy is negligible. Consequently, the number of separated
droplets keeps constant as a12

s varies beyond the threshold.
Instead, it is feasible to manipulate the droplet number by
tuning the polarization angle. Notably, the droplet number
reaches its maximum at ∼π/2 and decreases as α goes down
(up) towards 0 (π ). In addition, by comparing Figs. 5(a) with
5(b), it is also noteworthy that the transition point between the
miscible and the immiscible regions is not contingent on the
total particle number, while the droplet number can be lifted
up by increasing the particle number.

In Fig. 5, the miscible-immiscible transition boundary
shown by the red line is fitted from the numerical result.
Alternatively, such a critical line can also be approximately
estimated via the Bogoliubov excitation spectrum [61]. Let
us assume a homogeneous dipolar mixture in the miscible
regime, the Bogoliubov excitation spectrum of which reads

E2
±(k) = ε2

1 + ε2
2

2
±

√√√√(
ε2

1 − ε2
2

2

)2

+ n1n2

(
η12h̄2k2

M

)2

,

(11)
where nσ represents the density of each component, and

ε2
σ = h̄2k2

2M

(
h̄2k2

2M
+ 2ησσ nσ

)
(12)

is the single-component dispersion. Here, we have neglected
the LHY correction in deriving the above analytical excita-
tion spectrum. While this approach is not entirely rigorous, it
serves as a useful tool for qualitatively grasping the underlying
physics in a straightforward manner. If the miscible mixture
is stable, it is imperative that both the Bogoliubov excita-
tion spectrum, Eq. (11), and the single-component dispersion,
Eq. (12), remain purely real as k → 0. To meet this condition,
one can readily get the following constraint through some
algebra in the case of equal densities n1 = n2:

a12
s � aσσ

s − (1 − cos α)aσσ
dd , (13)

beyond which the miscible dipolar mixture is bound to be-
come unstable [61]. The miscible-immiscible critical point
predicted by Eq. (13) is plotted in Fig. 5 as well (see the
green dashed line). It presents a good agreement with the
numerical result at small α; however, a significant deviation
between them turns up as the polarization angle increases.
Such a discrepancy may, on the one hand, be due to the
dipolar mixture with a finite particle number not being entirely
homogeneous or, on the other hand, be due to the lack of
LHY correction in the Bogoliubov excitation spectrum. Since
the LHY correction behaves akin to contact repulsion, which
tends to enhance the stability of the miscible mixture, the

(b)

(c) (d)

(a)

FIG. 7. The overlap χ12 (a, b) and the peak densites (c, d) vs
a12

s for N1 = N2 = 104. Here the intracomponent s-wave scattering
length is a11

s = a22
s = 60a0. The polarization angle is fixed at α =

π/4 (a, c) and π/10 (b, d), respectively.

analytical critical line outlined above would likely be shifted
towards the numerical result. Additionally, it is worth point-
ing out that the above miscible-immiscible transition point
is independent of the density due to the balanced configura-
tion considered here (i.e., n1 = n2, a11

s = a22
s , and a11

dd = a22
dd).

This implies that the transition point scarcely varies with the
particle number, agreeing with the almost identical boundary
shown in Figs. 5(a) and 5(b).

B. Miscible-immiscible transition

As depicted in Fig. 6, the density profile of the dipolar
mixture undergoes a significant change during the miscible-
immiscible transition. To quantitatively characterize the
overlap between the two species, we employ the following
quantity [59,60]:

χ12 = 1√
N1N2

∫
d3r|�∗

1 �2|, (14)

which can serve as an indicator for the miscible-immiscible
transition. χ12 = 0 (1) represents that the two components
of the dipolar mixture are completely separated (mixed). As
shown in Fig. 7(a), for the fixed polarization angle α = π/4,
χ12 retains unity at small a12

s in the miscible regime. However,
once a12

s exceeds the critical point 41a0, χ12 gradually de-
creases and eventually approaches 0 as a12

s becomes relevantly
large, indicating the typical characteristic of the immiscible
droplet states. In the case of a smaller polarization angle, for
instance, α = π/10, χ12 experiences a steeper decline around
the critical point and rapidly diminishes with increasing a12

s ,
which manifests that the transition region between the misci-
ble and fully immiscible regimes contracts as the polarization
angle α decreases.

In addition to analyzing the overlap between the two
species, we have also investigated the variation of the peak
density around the transition point. As displayed in Figs. 7(c)
and 7(d), both the total peak density of the mixture, npeak,
and the peak density of one of the two components (e.g.,
npeak

1 ) decrease as a12
s goes up within the miscible regime.

Beyond the critical point, the total peak density smoothly
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(a2)(a1) (a3) (a4) (a5) (a6)

(b2) (b3) (b4) (b5) (b6)(b1)

FIG. 8. Snapshots of the density distributions nσ (x, z). The upper
and the lower panels represent components 1 and 2, respectively.

converges to a constant value. In contrast, the peak density
of each component initially experiences a rapid rise before
saturating to the same constant value as the total peak density.
Upon comparison of Figs. 7(c) and 7(d) with Figs. 7(a) and
7(b), one can notice that the miscible-immiscible transition
point revealed by the overlap χ12 and by the peak density
demonstrates remarkable consistency.

V. QUENCH DYNAMICS

To experimentally observe the transition between different
states, one standard approach is first preparing the dipolar
mixture in one phase and then letting the system evolve after
a sudden change of the relevant parameters. Here we con-
sider the quench dynamics of the Dy-Dy mixture by tuning
the intercomponent scattering length a12

s . Figure 8 presents
an example of the dynamics of the dipolar mixture with
N1 = N2 = 10 000 particles at α = π/3, a11

s = a22
s = 60a0,

and ω = 2π × 400 Hz. The dipolar mixture is initialized in
the miscible regime at a small a12

s = 5a0, i.e., � in Fig. 5(b),
and then a12

s is abruptly lifted up to 10a0 in order to migrate
the mixture into the immiscible regime.

As shown in Fig. 8, due to the increase of intercomponent
repulsion, the initial single-droplet state is no longer stable
and tends to split into multidroplets. This gradual fission
reaches equilibrium after ∼8.64 ms. In comparison with the
ground state composed of two separated subdroplets at the
same point a12

s = 10a0 (see Fig. 5), this equilibrium state
presents more domains, which is probably caused by the nona-
diabatic evolution across the transition boundary [59].

VI. CONCLUSION

In this work, we considered a particle-number-balanced
Dy-Dy dipolar mixture, where the angle α between the po-
larization orientations of the two species ranges from 0 to π ,

surpassing the parallel (α = 0) and antiparallel (α = π ) cases
investigated in prior research [57–63,65–69]. This configu-
ration can be achieved by preparing one of the components
in spin superposition states. Although the lifetime of such
superposition states in dipolar atoms is typically short due to
dipolar relaxation [20], recent experiments have shown that
the dipolar relaxation effect can be significantly mitigated
through subtle design of control manners [72,73]. Such devel-
opment offers a promising pathway for realizing our proposal
in the near future.

By numerically investigating the ground states of such a
dipolar mixture, we unveil emergent phenomena by adjust-
ing the polarization angle. Comparing with the scenario of
parallelly polarized dipolar mixtures in free space, we show
that varying the polarization angle can induce a miscible-
immiscible transition for the dipolar mixture. In addition, a
finite polarization angle notably shifts the critical point to-
wards smaller a12

s . Remarkably, when α > π/2, even with
weakly attractive intercomponent contact interaction, the mis-
cible region is entirely suppressed. In the immiscible regime,
the droplets formed by each component are connected at one
end, displaying a V-type profile with an angle equal to π − α.

Furthermore, when an external trap is present, we demon-
strate a modification in the ground state within the immiscible
scenario, resulting in multidroplet states. Specifically, the two
species segregate from each other and organize into an array
of droplets exhibiting a characteristic zig-zag structure. The
number of separated droplets for each component attains its
maximum at α = π/2 and remains unchanged with variations
in a12

s . Moreover, we find that the transition boundary between
miscible and immiscible phases is unaffected by the total
atom number in the particle-number-balanced configuration
considered here. In addition, we also present that the dipolar
mixture can evolve into equilibrium multidroplet states after a
quench of the intercomponent contact interaction.

These emergent phenomena underscore the profound
impact of polarization orientations in dipolar mixtures, intro-
ducing a fresh avenue for exploring exotic states of matter
in dipolar quantum gases. Investigating novel phenomena as-
sociated with polarization orientations in different scenarios,
such as Dy-Er mixtures [45,59] or unbalanced dipolar mix-
tures, promises to be an intriguing task for future research.
And it is also worthy to benchmark the eGPE approach against
other numerical methods, e.g., quantum Monte Carlo simula-
tions [79–81].
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APPENDIX: IMAGINARY PART OF LHY ENERGY

To calculate the Lee-Huang-Yang (LHY) correction, we
have utilized the local density approximation, a common
technique employed in previous studies [8–12,57,82–84].
This approximation allows for the analytical formulation of
the LHY correction, offering a straightforward approach to
comprehend the primary physics associated with quantum
fluctuations. However, the LHY term obtained using this
method is inherently complex, possessing a finite imaginary
component. Typically, the imaginary part is disregarded, a
reasonable practice in single-component [13,74,75] as well
as parallel binary dipolar gases [59], where the imaginary
component is relatively negligible compared to the real part.
Nonetheless, it remains uncertain whether neglecting the
imaginary component of the LHY corrections is appropriate
for dipolar mixtures with arbitrary polarization angles as con-
sidered in this study. Hence, we scrutinize the energy of the
LHY correction as follows. According to Eq. (6), the energy
contributed by quantum fluctuations can be rewritten as

ELHY = n
5
2

30
√

2π3

(
M

h̄2

) 3
2

×
∫ π

0
dθk

∫ 2π

0
dϕk sin θk

∑
λ=±

V
5
2
λ

(θk, ϕk ), (A1)

with

V±(θk, ϕk ) = η11γ + η22(1 − γ )

±
√

[η11γ − η22(1 − γ )]2 + 4η2
12γ (1 − γ ). (A2)

Here, γ = n1/n describes the fraction of component 1 in
the total density of n = n1 + n2. Therefore, the ratio of the
imaginary part to the real part of the LHY energy reads

Im(ELHY)

Re(ELHY)
=

Im
[∫ π

0 dθk
∫ 2π

0 dϕk sin θk
∑

λ=± V
5
2
λ

(θk, ϕk )
]

Re
[∫ π

0 dθk
∫ 2π

0 dϕk sin θk
∑

λ=± V
5
2
λ

(θk, ϕk )
] .

(A3)

It is worth noting that the above ratio is entirely independent
of the total density but is primarily determined by the occu-
pancy fraction of the two components.

In Fig. 9 we plot the ratio of the imaginary part to the real
part of the LHY energy as a function of the occupancy fraction
γ for different a12

s and α. In order to keep consistency with
the discussions in Secs. III and IV, the intracomponent s-wave
scattering length is fixed to a11

s = a22
s = 60a0. When γ = 0 or

γ = 1, it reduces to the situation of a single-component dipo-
lar gas, where the ratio Im(ELHY )

Re(ELHY ) approaches 0. This manifests
the reasonability of neglecting the imaginary part in such a
case.

(a) (b)

(c) (d)

FIG. 9. The ratio of the imaginary part to the real part of the LHY
energy for α = 0 (a), π/3 (b), 2π/3 (c), and π (d). Here, we have
fixed the intracomponent s-wave scattering length at a11

s = a22
s =

60a0. The corresponding value a12
s of each line is indicated at the

top of the figure.

However, the amplitude of Im(ELHY )
Re(ELHY ) increases as γ ap-

proaches 0.5, where the two species of the dipolar mixture
have identical density and | Im(ELHY )

Re(ELHY ) | attains its maximum.

For example, | Im(ELHY )
Re(ELHY ) |max ≈ 0.15 when α = 0 and a12

s = 0.
Clearly, it is not entirely appropriate to ignore the imagi-
nary part in this scenario. Nevertheless, the peak value of
| Im(ELHY )

Re(ELHY ) | drops with increasing a12
s and becomes less than

0.05 when a12
s > 40a0. Thus, it remains reasonable to neglect

the imaginary part at a large a12
s for a parallelly polarized

dipolar mixture, which has been successfully used to un-
derstand the miscible-immiscible transition in binary dipolar
mixtures [58–60]. Similar behaviors can also be observed for
a small angle, e.g., α = π/3 shown in Fig. 9(b). Moreover,
the maximum value of | Im(ELHY )

Re(ELHY ) | becomes smaller than that
at α = 0, allowing for the omission of the imaginary part of
the LHY correction for both miscible and immiscible binary
dipolar mixtures in the case of a small polarization angle.

In contrast, | Im(ELHY )
Re(ELHY ) | is significantly lifted up while α >

π/2, as can be seen from Figs. 9(c) and 9(d). In comparison
with the case of a small angle discussed above, this ratio
increases with a12

s and can even exceed 0.5 around γ = 0.5
at sufficiently large a12

s . It appears that ignoring the imaginary
part of the LHY correction at large α beyond π/2 may no
longer be valid. However, under such conditions, the dipolar
mixture actually resides in the immiscible regime, where the
two components are almost completely separated from each
other. That is, in fact, there exist atoms of only one component
within each individual subdroplet (see Fig. 6), corresponding
to either γ = 0 or γ = 1, where | Im(ELHY )

Re(ELHY ) | remains negligible.
Therefore, we can conclude that neglecting the imaginary part
of the LHY correction remains a reasonable approximation in
the scenario considered in this work.
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