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Stability and dynamics of atom-molecule superfluids near a narrow Feshbach resonance
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The recent observations of a stable molecular condensate emerging from a condensate of bosonic atoms and
related “super-chemical” dynamics have raised an intriguing set of questions. Here we provide a microscopic
understanding of this unexpected stability and dynamics in atom-molecule superfluids; we show one essential
element behind these phenomena is an extremely narrow Feshbach resonance in 133Cs at 19.849G. Comparing
theory and experiment, we demonstrate how this narrow resonance enables the dynamical creation of a large
closed-channel molecular fraction superfluid, appearing in the vicinity of unitarity. Theoretically, the observed
superchemistry (i.e., Bose-enhanced reactions of atoms and molecules) is found to be assisted by the formation
of Cooper-like pairs of bosonic atoms that have opposite momenta. Importantly, this narrow resonance opens the
possibility to explore the quantum critical point of a molecular Bose superfluid and related phenomena which
would not be possible near a more typically broad Feshbach resonance.
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I. INTRODUCTION

Pairing in ultracold quantum gases and the preparation of
quantum degenerate molecules have been long sought-after
goals [1–3] for some time in the cold atom community. It
provides access to new forms of many-body physics and
quantum metrology. Historically, experiments in pursuit of
such quantum degenerate ultracold molecules often have been
hindered by cooling challenges and collisional loss [1,2,4].
That said, there have been successes, more numerous for
fermionic systems [4–6]. Recently a stable 133Cs2 molecu-
lar condensate consisting of bosonic 133Cs atoms has been
reported [7,8]. Here pairing interactions were induced in an
atomic condensate based on a g-wave Feshbach resonance at
B0 = 19.849(2)G [8].

In this article we show that essential for observing this
molecular superfluid phase and a dynamically generated su-
perchemistry [8] is a narrow Feshbach resonance used in the
experiment to generate molecules [9]. This resonance of 133Cs
has a width �B = 8.3(5) mG [8], which is three to four orders
of magnitude smaller than typically considered in 7Li [10],
85Rb [11,12], and 39K [13,14]. See Table I (Here we use the
dimensionless resonance-width parameter from the so-called
many-body classification scheme [15].) This narrow reso-
nance provides an explanation for the much wider stability
regime and, importantly, enables access to the atom-molecule
quantum critical point (QCP) [16,17] near the Feshbach reso-
nance.

*Contact author: zqwang@uchicago.edu

Through a comparison between theory and experiment, we
demonstrate how a magnetic field quench, which sweeps an
atomic superfluid to near unitarity, leads to a superfluid hav-
ing a large closed-channel molecular fraction. Our theoretical
analysis identifies an important role for out-of-equilibrium,
noncondensed Cooper-like pairs, which are created by the
Feshbach coupling during a transient stage. These are nec-
essarily distinct from quantum depletion effects [18] that
arise due to repulsive background scattering. We find the
Feshbach-coupling-induced pairs fully participate in the co-
herent oscillations of the condensates that follow. That the
associated oscillation frequency scales with the number of
atoms reflects a coherent quantum chemical process stimu-
lated by Bose enhancement, i.e., superchemistry [19–21].

The theoretical framework we employ incorporates a
narrow Feshbach resonance and provides an integrated
description of both the equilibrated system and the nonequi-
librium dynamics. This narrow resonance ensures that the
molecules near unitarity are predominantly closed-channel
like, in contrast to the open-channel-dominated bound
states studied previously [11,13,22–24]. The narrowness
of the resonance, combined with a repulsive intermolec-
ular interaction [7], leads to the unexpected stability at
equilibrium [25–28].

To address this stability, we turn first to the theoretically
calculated phase diagram depicted in Fig. 1. The figure shows
that there are two superfluid phases: the atomic superfluid
(ASF), in which both atomic and molecular condensates co-
exist, and the molecular superfluid (MSF), where the atomic
condensate is missing [16,17]. We will return to this figure in
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TABLE I. Experimental parameters for Feshbach resonances in different Bose gases. In this table m1 is the atomic mass, B0 is the
experimental resonance point, �μm is the magnetic moment difference between a pair of atoms in the open channel and a molecule in the closed
channel, �B is the resonance width in magnetic field, abg is the atom-atom background scattering length, and n is the experimental number
density of atoms. In the last column, x ≡ (knr∗)−1 = |knabg|−1|�μm�B|/Ebg is the dimensionless resonance-width parameter introduced in
Ref. [15]. Here, kn = (6π 2n)1/3 and Ebg ≡ h̄2/(m1a2

bg). The data for 133Cs, 85Rb, and 39K are collected from Refs. [7,8], Refs. [11,43], and
Refs. [13,14], respectively. aB is the Bohr radius, and μB is the Bohr magneton.

Atom m1 (atomic mass unit) B0 �μm �B abg n x = (knr∗)−1

133Cs 132.91 19.849 G 0.57 μB 8.3 mG 163 aB 2.9 × 1013 cm−3 10−1

85Rb 84.91 155 G −2.23 μB 11.06 G −450 aB 3.9 × 1012 cm−3 103

39K 38.96 402.7 G 1.5 μB 52 G −29 aB 5.1 × 1012 cm−3 102

more detail later, but note a central conclusion: that there is
only a narrow range of magnetic fields, mostly associated with
the region between the so-called QCP and the zero crossing of
the atomic scattering length, where instability is present.

Experimental background

Our experiments start with a Cs Bose-Einstein condensate
(BEC) of 23 000 atoms at 22 nK in a pancakelike harmonic
trap. The trap frequencies are (ωx, ωy, ωz) = 2π×(24, 13, 74)
Hz. To initiate the nonequilibrium dynamics in the atomic and
molecular channels, we quench the magnetic field to near the
g- wave Feshbach resonance. After a variable evolution time,
we decouple the atomic and molecular channels by quickly
switching the magnetic field far below the resonance so that
we can independently detect the population and temperature
in each channel by focused time-of-flight (ToF) imaging. In
this imaging molecules are first released into an isotropic
harmonic trap for a quarter trap period before being disso-
ciated above the Feshbach resonance. We also study molecule
dissociation dynamics. For these latter experiments, we first

FIG. 1. Ground-state stability phases for the g-wave resonance of
133Cs at B0 = 19.849 G with width �B = 8.3 mG. Plotted is a map of
the compressibility κ = ∂n/∂μ as a function of atomic density n and
magnetic field B, measured relative to B0. κ is normalized by κbg =
m1/(4π h̄2abg), with m1 the atomic mass and abg the background
scattering length. The atomic superfluid and molecular superfluid
phases are stable in the red region, unstable in the blue. Indicated
are the energy levels of atoms (blue circles) and molecules (green
pairs), which characterize the phases with the molecular energy νr

that is approximately ∝ (B − B0) [29]. The dashed line (cyan) is
the expected QCP, obtained without taking into account the stability
issue.

prepare a molecular condensate with a 23% BEC fraction
[7,30]. Then the magnetic field is quenched close to the
resonance and we monitor the atom number resulting from
dissociation. For more details about the ToF imaging and
experimental time line, see Appendix A.

II. THEORETICAL FRAMEWORK AND RESULTS

The narrowness of the resonance requires us to consider a
theoretical framework associated with “two-channel” physics,
in contrast to effective one-channel descriptions [31–39]. The
Hamiltonian Ĥ = Ĥ1 + Ĥ2 + Ĥ3 contains a kinetic energy
(Ĥ1) for the two species (open-channel atoms and closed-
channel molecules), the intraspecies repulsive interactions gσ

[7], and the Feshbach coupling α. Here,

Ĥ1 =
∑

k

2∑
σ=1

hσk a†
σkaσk, (1a)

Ĥ2 = 1

V

∑
ki

2∑
σ=1

gσ

2
a†

σk1
a†

σk2
aσ,k3 aσ,k1+k2−k3 , (1b)

Ĥ3 = − α√
V

∑
ki

(a†
1k1

a†
1k2

a2,k1+k2 + H.c.). (1c)

The subscripts σ = 1 and 2 represent open-channel atoms and
closed-channel molecules, respectively. V is the volume, and
V −1 ∑

k = ∫ 
 dk/(2π )3, where 
 is a cutoff, needed to regu-
larize an ultraviolet divergence. We assume three-dimensional
isotropy and ignore trap effects in our theory, as they do not
affect qualitative conclusions.

In Ĥ1, h1k = (h̄k)2/2m1 − μ and h2k = (h̄k)2/2m2 −
(2μ − ν), with m2 = 2m1, μ the chemical potential, and ν

the bare-molecule state detuning. We distinguish ν from the
detuning ν̄ ≡ �μm(B − B0) through a B-independent con-
stant; here, �μm > 0 is the difference in magnetic moments
of the two channels, and B0 is where the atomic two-body
scattering length diverges, as in experiment. The eigenenergy
of dressed molecules, denoted as νr in Fig. 1, is nearly equal
to ν̄ for the g-wave resonance of 133Cs at B0 = 19.849G,
except when |B − B0| � 1 mG [9,29]. The α in Ĥ3, given
by α =

√
(2π h̄2abg/m1)�μm�B/[1 − (2/π )abg
] (see de-

tails in Appendix D), is chosen such that it reproduces the
experimental resonance width �B in the two-body scattering
limit.
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TABLE II. Parameters used in the numerical simulation for
133Cs. In this table, kn = (6π 2n)1/3 and En = h̄2k2

n/2m1 with n =
2.9 × 1013 cm−3.


 α g1 g2

π kn 1.6 En/k3/2
n 3.15 En/k3

n 2.30 En/k3
n

To address both the statics and dynamics in a unified man-
ner, we adopt a variational wave function,

|�var (t )〉 = 1

N (t )
e
∑2

σ=1 �σ0(t )
√

V a†
σ0+

∑′
k

∑2
σ=1 χσk (t ) a†

σka†
σ−k |0〉.

In the exponent the k sum is over half of k space. �σ0 and χσk
are complex variational parameters, which are time-dependent
(-independent) for our study of dynamics (statics). |0〉 is the
vacuum that is annihilated by all aσk. N (t ) is the normaliza-
tion factor. Here, in the spirit of generalized Bogoliubov the-
ory, only pairwise correlations are included in the exponent of
the variational wave function, which can be generally justified
by the experimental observation [8] of undamped coherent
oscillations of the populations which persist to long times.

The many-body dynamics associated with Ĥ can be
approximated through the variables �σ0(t ) and χσk(t ),
which in turn are derived from the action [40–42]
S[�∗

σ0(t ), �σ0(t ), χ∗
σk(t ), χσ k(t )] = ∫

dt 〈�var (t )|(ih̄)∂t

�var (t )〉 − 〈�var (t )|Ĥ |�var (t )〉. Minimizing S with respect
to {�∗

σ0, �σ0, χ
∗
σk, χσk} leads to the following dynamical

equations [30]:

ih̄
d

dt
�σ0 = (hσk=0 + gσ |�σ0|2 + 2gσ nσ )�σ0 + gσ �∗

σ0xσ

− δσ,2 α
(
x1 + �2

10

) − δσ,1 2α�∗
10�20, (2a)

ih̄
d

dt
xσk = 2[hσk + 2gσ (|�σ0|2 + nσ )]xσk

+ [
gσ

(
xσ + �2

σ0

) − δσ,1 2α�20
]
(2nσk + 1),

(2b)

where δσ,σ ′ , with {σ, σ ′} = {1, 2}, is the Kronecker delta.
We relegate detailed derivations of these equations to Ap-
pendix C. In the above �σ0 ≡ 〈aσ0〉/

√
V , the “Cooper pair”–

like correlation [43] xσk ≡ 〈aσkaσ−k〉 = χσk/(1 − |χσk|2),
nσk ≡ 〈a†

σkaσk〉 = |χσk|2/(1 − |χσk|2), xσ = V −1 ∑
k 
=0 xσk,

and nσ = V −1 ∑
k 
=0 nσk. Here, 〈· · · 〉 ≡ 〈�var| · · · |�var〉. xσk

is the expectation value of the (Cooper-like) pairing field
for atoms or molecules. Note that both xσk and nσk are not
independent. To obtain the dynamics we solve Eq. (2) together
with the constraint n = (|�10|2 + n1) + 2(|�20|2 + n2).

An advantage of working with the variational scheme is
that the statics at equilibrium can be addressed simultaneously
with the dynamics. At equilibrium, one minimizes the trial
ground-state energy 〈Ĥ〉 instead of S with respect to the same
set of variational variables, leading to a set of self-consistent
conditions that are nearly identical to Eq. (2) except that the
time derivatives in the latter are set to zero.

For all figures presented here, we use parameters for
133Cs based on Refs. [7,8] (provided in Tables I and II),
which have been chosen to reproduce the experimental res-
onance width �B and the atom-atom background scattering
length abg. Knowing the density n, kn ≡ (6π2n)1/3, and En =

h̄2k2
n/(2m1), we can calibrate the units of time in our dy-

namical calculations in terms of milliseconds (ms) and thus
compare theory directly with experiment.

Solving the static version of Eq. (2) together with the
number density constraint, we obtain the equilibrium values
of �σ0, xσ , nσ , μ, etc. as a function of both the detuning
ν̄ and the total density n. To establish stability in the two-
channel system, we numerically compute the compressibility
κ = ∂n/∂μ.

Depending on whether κ is positive (stable) or negative
(unstable), the phase diagram in Fig. 1 can be divided into
three regimes: stable MSF phase, stable ASF phase, and an
unstable regime near ν̄ = 0. Stability in the MSF phase de-
pends on an intermolecule repulsion, g2 > 0. The stable MSF
phase can persist to a regime well within the resonance width
�B around unitarity, and just to the left of the presumed QCP.
This is a unique and important characteristic of a narrow
resonance as compared with a wide resonance. In the latter
case the MSF-unstable phase boundary in Fig. 1 is pushed to
the far left and is well separated from the QCP [44].

We turn next to our theoretical results for quenched dy-
namics, obtained from Eq. (2). We start with a pure atomic
condensate, abruptly change the detuning to final values on
either the positive or negative side of resonance, and then
monitor the subsequent dynamical evolution of each compo-
nent. The results presented in Fig. 2 show, after the quench,
how the initially large atomic condensate contribution is
quickly converted into a closed-channel molecular conden-
sate (orange) as well as noncondensed pairs (blue). The most
notable features are persistent oscillations in all components,
seen for B − B0 � 1 mG, which are most pronounced near
unitarity. While the pairs and atomic condensate oscillate out
of phase, the molecular condensate and pairs are nearly in
phase. The pairs lead to very little dephasing on the molecular
side, but above resonance for B − B0 � 1 mG, the oscillations
are completely damped.

The calculation shows a substantial generation of atom
pairs and molecules only within a narrow range of the Fes-
hbach resonance. This can be understood as deriving from
many-body entanglement generated in the dynamics, as near
resonance the system is most strongly correlated. A quench
can thus spread this entanglement over a larger portion of
Hilbert space, thereby generating more correlated pairs and
molecules near unitarity.

Also notable is an asymmetry (see also Appendix E) in
the pair production between negative and positive detunings,
which can be understood using the energy-level diagram of
Fig. 1. For sweeps to the molecular side of resonance, energy
conservation requires that the energy loss in a conversion from
an atomic to molecular condensate be compensated by making
more atom-pairs appear at higher energies.

Our results show rather good agreement with the follow-
ing features of the experimental observations in Refs. [7,8].
We see a rapid relaxation toward a quasi-equilibrated phase
where oscillations persist. These oscillations have a strong
density dependence (associated with quantum “superchem-
istry”), which will be addressed in more detail below. As
will also be evident, the bulk of the closed-channel molecule
production takes place over a relatively narrow range of fields
roughly within the resonance width of �B ∼ 8 mG.
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FIG. 2. Calculated coherent atom-molecule dynamics near resonance, obtained after a quench of a pure atomic condensate (at t = 0) to
the four indicated magnetic fields B − B0. Shown are atomic condensate fraction f0 = |�10|2/n (green), atomic pair fraction f1 = n1/n (blue),
and molecular condensate fraction fm = 2|�20|2/n (orange) vs time t . Noncondensed molecules are negligible. Here the total particle density
is set to the experimental value of n = 2.9 × 1013cm−3 [30].

III. COMPARISON BETWEEN THEORY AND
EXPERIMENT

Specific plots illustrating the atomic and closed-channel
molecule populations are presented in Figs. 3(a) and 3(b),
respectively, with the top panels for theory and bottom for
experiment. These are to be associated with the dynamics after
a quench of an atomic condensate to different final detunings
ν̄. We note that comparing curves with the “same” values of
magnetic field in Fig. 3, a field recalibration might be consid-
ered, as we will see in Fig. 4(a) that there is a small offset
in B − B0 of the order of 2 mG between where the molecular
fraction reaches a maximum in the theory as compared with
experiment. One can also see from Fig. 3 that a more signifi-
cant difference between theory and experiment is associated
with the initial large overshoot, particularly of the molec-
ular contribution, which is absent in the experiment. This

difference is likely due to inelastic particle-loss processes,
which are most prevalent in the molecular channel. Another
contributing factor to the difference is the fact that there is a
non-negligible delay in transitioning the magnetic fields in the
experiment, which can partially obscure or interfere with the
early time measurements where the overshoot is observed in
theory. At late times t � 1 ms, the experimentally observed
oscillations of atoms and molecules in Figs. 3(a) and 3(b) are
not completely out of phase (see also Fig. 3(a) of Ref. [8]).
This hints that there exists some small loss process that is
coherent and persistent. Such a coherent loss process, which
is absent in our theoretical simulations, will be investigated in
future work.

The current narrow resonance of 133Cs provides a unique
opportunity to probe new issues which are not present in
the moderately wide resonances typically used [11,13,22–24].

FIG. 3. Coherent atom-molecule dynamics, in theory (top panels) and experiment (bottom). Curves with the same color should be
compared. Panels (a) and (b) respectively denote atomic and molecular channels, when an atomic condensate is quenched to different values
of B − B0 (in mG) near the resonance. n0 = |�10|2, m0 = 2|�20|2, m1 = 2n2. (For definitions of �10, �20, n1, and n2 see text.) Plotted on the
vertical axis in (c) is the fraction of molecules dissociated when a molecular condensate is quenched to different B − B0 values. Solid lines
(bottom panels) are fits to the data following the procedure in Ref. [8]; error bars represent one standard deviation from the mean. The particle
density n = 2.9 × 1013cm−3 [30].
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FIG. 4. (a) Closed-channel molecule fraction obtained as a time
average after t ≈ 1 ms [30], for the state reached after a quench as
in Figs. 2, 3(a), and 3(b). The red open squares are experimental
data for n = 2.9 × 1013 cm−3; the red dashed line is a guide to the
eye. (b) Density n dependence of the oscillation frequency ω near
unitarity. The blue circles (with the blue line a power-law fit) are from
previous experiments [8] compared with theory (black solid line).

In particular, we can consider the postquench dynamics for
systems near unitarity, which are initially prepared as a
molecular superfluid state. Theory predicts that the steady-
state molecule dissociation fraction, reached after a transient
stage, will increase with the final detuning ν̄ as |ν̄| → 0.
It is also interesting to note that a residual steady-state os-
cillation is observed in experiments which appears robustly
in theory, provided a very small atomic condensate “seed”
is introduced to the initial molecular superfluid state. In-
deed, both these observations can be verified through a direct
comparison between theory and experiment in Fig. 3(c),
where the agreement is quite reasonable.

We turn to another comparison in Fig. 4(a) that addresses
[45] the question at what range of magnetic fields, after a
quench, is there an appreciable production of closed-channel
molecules. Figure 4(a) plots the corresponding fraction, which
is for the quasi-steady state associated with a time where
the molecular fraction saturates, as in Figs. 3(a) and 3(b).
From the figure one sees that in both theory and experiment,
not only is the fraction largest in the near vicinity of reso-
nance, but the maximum in both is between 20% and 30%.
It is interesting to observe that this maximum closed-channel

molecular fraction (which has been a topic of interest both
for dynamically generated [46] and equilibrated superfluids)
is significantly lower than found for Fermi superfluids [47].

The phenomenon of “quantum superchemistry” [8,19–21]
is of particular interest to explore, as it is reflected in a depen-
dence of the oscillation frequency ω on the density n. Such a
density dependence, indicative of a many-body Bose enhance-
ment of chemical reactions, can be quantified as a power law
ω ∝ nγ when B = B0. Experiments find that γ ≈ 1.7, while
in the present theory γ ≈ 0.9. Results from both theory and
experiment are shown in Fig. 4(b) (see also Appendix F),
although a more systematic comparison would require the
inclusion of trap effects in the theory. Despite the fact that
the exponents show some differences, what is important here
is the observation of a Bose-enhanced chemistry even in the
presence of Cooper-like pair excitations at finite momenta.
While one might have expected these pairs to undermine or
dissipate the oscillations, they appear to participate fully and
maintain their coherence.

To interpret the superchemical oscillations, two phe-
nomenological Hamiltonians, associated with two-body and
three-body models, were used in Ref. [8], which contemplated
only two modes, the atomic (�10) and molecular conden-
sates (�20). We emphasize that even though the present
two-channel Hamiltonian in Eq. (1) only contains Feshbach
coupling and pairwise density-density interactions, it can in-
duce the three-body processes discussed in Ref. [8]. These
arise through scattering events that are of higher order than
linear in the Feshbach coupling constant. This should not be
surprising, since the Hamiltonian in Eq. (1) has been used in
the literature [48] to discuss three-body recombination and
related Efimov physics.

IV. CONCLUSIONS

In conclusion, in this paper we have shown that for
the particular narrow g-wave Feshbach resonance at B0 =
19.849(2)G in 133Cs the ground-state phase diagram around
the predicted quantum critical point is interrupted only by a
narrow region of instability. In the future one can study this
QCP from the molecular side, which is in contrast to the
situation for a typical “wide” resonance where this critical
point is inaccessible [44].

We have also addressed the postquench dynamics around
this resonance, primarily focusing on the coherent oscillations
introduced by the quench. We have shown that for such an
extremely narrow Feshbach resonance an appreciable fraction
of closed-channel molecules can be produced from quench-
ing an atomic BEC. Here, we provide comparisons between
theory and experiment for the postquench dynamics, which
involves three constituents that participate in the quasi-steady-
state oscillations: two condensates along with correlated pairs
of atoms. We caution that this paper is not focused on arriv-
ing at a precise quantitative agreement between theory and
experiment, as various inelastic scattering processes such as
three-body loss, atom-molecule, and molecule-molecule col-
lisional losses are not included in the theoretical modeling.
It is well known that these loss processes are extremely chal-
lenging to address for Bose gases near unitarity, in both theory
and experiment.
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Our work here emphasizes that the experimentally ob-
served, quench-induced coherent oscillations [8] are con-
sistent with the existence of noncondensed pairs, which
importantly, do not undermine the highly collective nature
of the observed superchemistry. This follows because the
pairs participate fully along with both atom and molecule
condensates in the coherent dynamics. In the future it will
be interesting to look for more direct evidence of these pairs,
using either pair-pair correlations as in Ref. [49] or matter-
wave jet emissions as in Ref. [50].

We end by noting that our current studies of the g-wave
resonance in 133Cs, which provide an observation of a molec-
ular BEC consisting of bosonic atoms, suggest an important
role for our paper, as it serves to guide and encourage future
efforts in other atomic gases with narrow resonances such as
23Na [51], 87Rb [52], 168Er [53], where many of these same
conclusions should apply.
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APPENDIX A: PREPARATION AND DETECTION
OF ATOMIC AND MOLECULAR BECS

The procedure to prepare a Cs BEC in the lowest hyperfine
ground state at 19.5 G for the quench experiments shown in
Figs. 3(a) and 3(b) is the same as that in Ref. [8], where atoms
are in a pure optical trap without a magnetic field gradient
for levitation. The atomic BECs have 23 000 atoms with a
BEC fraction of 80%. We detect the remaining atoms after the
quench dynamics by absorption imaging the atoms back at
the off-resonant field value 19.5 G. We detect the created Cs2

molecules, in the g-wave state | f = 4, m f = 4; � = 4, m� =
2〉, by first blowing away the remaining atoms using the atom
imaging light pulse, releasing molecules into a weak horizon-
tal harmonic trap with ωx = ωy = 2π × 15 Hz, and waiting
for a quarter trap period tq = 17 ms. Finally, we image the
molecules by jumping the field up to 20.4 G to dissociate them
into atoms within 0.1 ms in the optical trap and then image
the atoms from the dissociation [7,8]. We normalize both the
atomic and molecular population by the initial total atom num-
ber during the quench dynamics as shown in Figs. 3(a) and
3(b). The missing fraction is due to various loss processes. We
extract the asymptotic molecular fraction in the quasi-steady
state, as presented in Fig. 4(a), by averaging data in the time
window between 1 and 3 ms in the dynamics.

To create pure molecular samples used for the experiments
shown in Fig. 3(c), we first make evaporatively cooled ultra-

(a)

(b)

FIG. 5. Molecule number and molecular BEC fraction prepared
at different temperatures. (a) Number of molecules created by associ-
ating atoms in ultracold atomic gases at different temperatures. The
black (purple) data points are from 16.7 ms focused time-of-flight
(ToF) (in situ) measurement. Lower detection efficiency in the ToF
measurement is due to inelastic molecular collision-induced loss
during the additional time of flight compared to the in situ imaging.
(b) Molecular BEC fraction measured from the focused ToF imaging
of the molecular density nm, which shows bimodal distribution at
sufficiently low temperature. The inset shows example images of
molecules at 44 and 302 nK, respectively. The two panels next to the
images show line cuts through the image centers, and the blue (red)
solid lines represent BEC (thermal) components from a bimodal fit.

cold atomic gases at 20.22 G, where the magnetic field is
calibrated in situ by atomic microwave spectroscopy. Then
we switch to 19.89 G and ramp through the narrow g-wave
Feshbach resonance to 19.83 G in 1.5 ms to associate atoms
into molecules. After that, we quench the magnetic field to
19.5 G and apply a resonant light pulse to blow away the
residual atoms. The resulting molecular temperature and pop-
ulation are characterized and shown in Fig. 5(a), where fewer
and colder molecules are created from initial atomic gases at
lower temperature and population. When the temperature is
low enough, the molecular density after the focused time of
flight starts to develop a bimodal distribution, from which we
do fitting to extract the molecular BEC fraction [see Fig. 5(b)].
We choose to use molecular BECs at 27 nK with a BEC
fraction of 23(1)% as the initial condition for the experiments
shown in Fig. 3(c). After the magnetic field quench and a
variable hold time, the atoms from molecule dissociation are
imaged in situ for higher detection efficiency.
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APPENDIX B: QUANTIFYING THE RESONANCE WIDTH

Early experiments on a bosonic Feshbach resonance by
Donley and Claussen et al. [11,22] have focused on coherent
oscillations between different Bose condensates below but
near resonance. However, the Feshbach resonance employed,
that of 85Rb atoms at magnetic field B0 = 154.9G, is very
wide.

Using the many-body classification of resonance width in
Ref. [15] [see Scheme (B) in their Eq. (4)], we estimate the di-
mensionless resonance-width parameter to be x = (knr∗)−1 ∼
103 � 1 for 85Rb. For details, see Table I. Here, kn =
(6π2n)1/3 with n the total atomic number density, and r∗ is
a length scale defined from the experimental resonance width.
As a consequence of the extremely large x, the closed-channel
molecular fraction near unitarity in these wide resonances is
negligible [54]. In addition, the observed coherent oscillations
in Refs. [11,22] are best interpreted as that between atomic

and “molecular”-bound states, the latter of which are made up
of open-channel atoms [35,39,54,55] and should be contrasted
with the actual closed-channel molecules.

In contrast, the 133Cs g-wave resonance used in Refs. [7,8]
is extremely narrow. A simple estimate shows that x ∼ 0.1 �
1, in agreement with the significant fraction of closed-channel
molecules observed near unitarity in the experiments. The
successful observation of molecules in this resonance not
only enables us to explicitly study dissociation of molecular
superfluids, but also provides us an opportunity to explore the
role of the molecular superfluid component in postquench dy-
namics, starting with an initial state of open-channel (atomic)
superfluid condensate. Theoretically, the inherent narrowness
of the resonance requires us to consider a fully two-channel
formulation in order to treat the dynamics adequately.

In Table I we present the relevant experimental parameters
that we have used to estimate the resonance width for 133Cs,
85Rb, and 39K.

APPENDIX C: DERIVATION OF EQ. (2) IN THE MAIN TEXT

In this section we give detailed derivations of Eq. (2) in the main text. We start with the time-dependent trial wave
function [35],

|�var (t )〉 = 1

N (t )
exp

⎧⎨
⎩

2∑
σ=1

�σ0(t )
√

V a†
σk=0 +

∑
k 
=0

′
2∑

σ=1

χσk(t ) a†
σka†

σ−k

⎫⎬
⎭|0〉, (C1)

where the prime sign in
∑′

k 
=0 indicates the sum is only over half momentum space such that each {k,−k} pair is counted only
once, where

N (t ) = exp

(∑
σ

|�σ0(t )|2V/2

) ∏
k 
=0

′ ∏
σ

(1 − |χσk(t )|2)−1/2 (C2)

is the normalization factor. In the exponent of Eq. (C1), �σ0 and χσk are (complex) variational parameters, which are
time-dependent for the study of dynamics.

∑′
k 
=0 = (1/2)V

∫ 
 dk/(2π )3, with V the volume and 
 a cutoff, needed to avoid
ultraviolet divergence. |0〉 is the vacuum that is annihilated by all aσk.

Assuming that the two-channel system, even when it is out of equilibrium, can be always approximated by |�var (t )〉, one maps
the underlying quantum dynamics, described by the exact Heisenberg equation with the Hamiltonian Ĥ , to that of a classical
system. The latter is derived from the action [40–42]

S[�∗
σ0(t ), �σ0(t ), χ∗

σk(t ), χσk(t )] =
∫

dt{〈�var (t )|(ih̄)∂t�var (t )〉 − 〈�var (t )|Ĥ |�var (t )〉} (C3)

≡
∫

dtL[�∗
σ0(t ), �σ0(t ), χ∗

σk(t ), χσk(t )]. (C4)

Using �var (t ) and the Hamiltonian in Eq. (1) of the main text, we evaluate the two terms on the right-hand side of Eq. (C3) as
follows (for brevity we suppress all the time dependences in the following):

〈�var|(ih̄)∂t�var〉 =
√

V
∑

σ

[
(ih̄)

d

dt
�σ0

]
〈a†

σk=0〉 +
∑
k 
=0

′ ∑
σ

[
(ih̄)

d

dt
χσk

]
〈a†

σka†
σ−k〉 + (ih̄)

d

dt
lnN−1, (C5)

= V
∑

σ

ih̄

2

(
�∗

σ0
d

dt
�σ0 − �σ0

d

dt
�∗

σ0

)
+

∑
k 
=0

′ ∑
σ

1

1 − |χσk|2
ih̄

2

(
χ∗

σk
d

dt
χσk − χσk

d

dt
χ∗

σk

)
, (C6)

where we have introduced the shorthand notation 〈· · · 〉 ≡ 〈�var| · · · |�var〉. The other term on the right-hand side of Eq. (C3) is
given by

〈�var|Ĥ |�var〉 = hσk=0V |�σ0|2 + gσ

2
V |�σ0|4 − αV ((�∗

10)2�20 + c.c.) +
∑
k 
=0

∑
σ

(
hσk + 2gσ |�σ0|2 + gσ nσ

)
nσk

+
∑
k 
=0

∑
σ

gσ

2
((�∗

σ0)2xσk + c.c.) +
∑

σ

gσ

2
V |x|2 − α

∑
k 
=0

(�20x∗
1k + c.c.). (C7)
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In arriving at Eqs. (C6) and (C7), we have used

�σ0 ≡ 〈aσ0〉/
√

V , (C8a)

xσk ≡ 〈aσkaσ−k〉 = χσk/(1 − |χσk|2), (C8b)

nσk ≡ 〈a†
σkaσk〉 = |χσk|2/(1 − |χσk|2), (C8c)

xσ = V −1
∑
k 
=0

xσk, nσ = V −1
∑
k 
=0

nσk. (C8d)

xσk is the expectation value of the (Cooper-like) pairing field
for atoms (σ = 1) or molecules (σ = 2).

Minimizing S with respect to {�∗
σ0, χ

∗
σk} leads to the fol-

lowing Euler-Lagrange equations:

∂L

∂�∗
σ0

− d

dt

∂L

∂ (∂t�
∗
σ0)

= 0 (C9)

⇒ V (ih̄)
d

dt
�σ0 = ∂

∂�∗
σ0

〈Ĥ〉, (C10)

∂L

∂χ∗
σk

− d

dt

∂L

∂ (∂tχ
∗
σk )

= 0 (C11)

⇒ 1

(1 − |χσk|2)2
(ih̄)

d

dt
χσk = ∂

∂χ∗
σk

〈Ĥ〉. (C12)

From Eq. (C12) and its complex conjugate, we then derive

ih̄
d

dt
xσk = ih̄

(1 − |χσk|2)2

(
dχσk

dt
+ χ2

σk
dχ∗

σk

dt

)
(C13)

= ∂

∂χ∗
σk

〈Ĥ〉 − χ2
σk

∂

∂χσk
〈Ĥ〉, (C14)

where we have used Eq. (C8b). Substituting the expression of
〈Ĥ〉 from Eq. (C7) into Eqs. (C10) and (C14) leads to

ih̄
d

dt
�10 = (h1k=0 + g1|�10|2 + 2g1n1)�10 + g1�

∗
10x1 − 2α�∗

10�20, (C15a)

ih̄
d

dt
�20 = (h2k=0 + g2|�20|2 + 2g2n2)�20 + g2�

∗
20x2 − α

(
x1 + �2

10

)
, (C15b)

ih̄
d

dt
x1k = 2[h1k + 2g1(|�10|2 + n1)]x1k + [

g1
(
x1 + �2

10

) − 2α�20
]
(2n1k + 1), (C15c)

ih̄
d

dt
x2k = 2[h2k + 2g2(|�20|2 + n2)]x2k + g2

(
x2 + �2

20

)
(2n2k + 1). (C15d)

We emphasize that in evaluating the partial derivative,
∂〈Ĥ〉/∂χ∗

σk, to obtain the last two equations, we have to in-
clude contributions from terms in 〈Ĥ〉 [Eq. (C7)], both at k
and −k, as each {k,−k} pair shares the same variational pa-
rameter χσk in the exponent of our variational wave function
[see Eq. (C1)]. Otherwise, the dxσk/dt obtained will differ
from the above expressions by a factor of 2.

An alternative derivation

In this section we sketch an alternative derivation for
Eq. (C15), which shows more explicitly in what sense the
quantum dynamics can be mapped to the classical-dynamics
described by the action S in Eq. (C3). It may also help us to
better understand when the classical equations derived from S
will become inadequate in future applications, although such a
potential breakdown is not of the major concern to our current
paper.

In this alternative approach, we start with the exact Heisen-
berg equation for a generic operator Ô(t ) ≡ eiĤt/h̄Ôe−iĤt/h̄:

dÔ(t )

dt
= i

h̄
[Ĥ, Ô(t )]. (C16)

Within our current variational wave-function scheme, Ô can
be either aσk=0 or aσkaσ−k. Next, we make the following
central approximation:

d

dt
〈Ô(t )〉 ≈

〈
dÔ(t )

dt

〉
= i

h̄
〈[Ĥ , Ô(t )]〉. (C17)

From this equation we then derive Eq. (C15) as an approxi-
mation to the exact Heisenberg quantum dynamics.

First, consider Ô = aσk=0. From Eq. (C17) one can show
that

V (ih̄)
d

dt
�σ0 = ih̄

√
V

d

dt
〈aσk=0〉 ≈

√
V 〈[Ô, Ĥ ]〉

= ∂

∂�∗
σ0

〈Ĥ〉. (C18)

Apart from the approximate sign, this equation is identical to
Eq. (C10). Similarly, it follows that for the Cooper-like pairing
field Ô = aσkaσ−k,

ih̄
d

dt
xk = ih̄

d

dt
〈aσkaσ−k〉 ≈ 〈[Ô, Ĥ ]〉

= ∂

∂χ∗
σk

〈Ĥ〉 − χ2
σk

∂

∂χσk
〈Ĥ〉, (C19)

which is essentially identical to Eq. (C12). The remaining
derivations leading to Eq. (C15) are the same as in the pre-
vious section.

APPENDIX D: REGULARIZATION AND
RENORMALIZATION

Because we have used contact interactions in the Hamil-
tonian Eq. (1) in the main text, solving Eq. (C15) requires
a proper regularization to avoid ultraviolet divergences in
integrals over k. The regularizations can be determined by
matching the equilibrium version of Eq. (C15) with the
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corresponding Lippmann-Schwinger equation in the two-
body scattering limit as done in Ref. [56].

For the open-channel atoms, a correct renormalization con-
dition, that is compatible with the definition of Ĥ in Eq. (1) of
the main text, is given as follows [54]:

g1 = ḡ1�, (D1a)

α = ᾱ�/
√

2, (D1b)

ν = ν̄ +
√

2βαᾱ, (D1c)

with

ḡ1 = 4π h̄2abg

m1
, (D2a)

β = m1


2π2h̄2 . (D2b)

� = 1

1 − βḡ1
, (D2c)

ᾱ2 = ḡ1�μm�B, (D2d)

ν̄ = �μm(B − B0). (D2e)

In these equations, quantities denoted with a bar atop rep-
resent the renormalized (or physical) ones that are directly
related to experimental observables, while those without the
bar are bare ones whose value depends on the cutoff 
. abg is
the atom-atom background scattering length. B is the applied
external magnetic field in experiments, and B0 corresponds
to the resonance point where the atom-atom scattering length
diverges. �B is the resonance width measured in magnetic
fields, and �μm is the magnetic moment difference between a
pair of atoms in the open channel and a molecule in the closed
channel.

One can also derive the regularization and renormalization
relations in Eq. (D1) directly from Eq. (C15) by considering
the zero-density limit of the latter. In this limit we ignore
the dynamics of �20 and x1k in Eq. (C15), integrate them
out, incorporate their effects into the equation for ih̄d�10/dt ,
and cast the obtained results into a form of Gross-Pitaevskii
equation for �10, with the following effective atom-atom in-
teraction parameter:

g1,eff = g1

1 + g1β
− 2α2/(1 + g1β )2

ν − 2β α2

1+g1β

. (D3)

This g1,eff is identified with 4π h̄2as/m1, where as is the ν-
dependent atom-atom scattering length. Comparing this result
with the definition of as in terms of physical observables,

as ≡ abg − m1

4π h̄2

ᾱ2

ν̄
= abg

(
1 − �B

B − B0

)
, (D4)

we immediately see that Eq. (D1) is a correct renormalization
condition. In Eq. (D4), ᾱ measures the Feshbach resonance
width in units of energy, and ν̄ = �μm(B − B0) is the detun-
ing measured in energy.

For the closed-channel molecules, the proper regulariza-
tion that connects the bare interaction parameter g2 to the
molecule-molecule background scattering length amm,bg is

FIG. 6. Contrast between the quench dynamics at large negative
[panel (a)] and positive [panel (b)] detuning. Shaded green, blue, and
orange regimes represent the atomic condensate, noncondensed pair,
and molecular condensate fraction, respectively. Indicated in white
are the quenched detuning ν̄/�μm = B − B0 (in mG).

given by the following Lippmann-Schwinger equation:

m2

4π h̄2amm,bg
= 1

g2
+

∫ 
 dk
(2π )3

1

h̄2k2/m2
, (D5)

where m2 = 2m1 is the molecule mass and amm,bg is
the molecule-molecule background scattering length. In
principle, the cutoff 
 here can be different from the one used
in Eq. (D1). Here, we take them to be the same.

From the experimental values of {abg,�μm,�B} from
Table I and amm,bg = 220aB, taken from Refs. [7,8], we de-
termine the bare interaction parameters {α, g1, g2} in our
Hamiltonian for a chosen cutoff 
, using the renormalization
conditions in Eqs. (D1) and (D5). In our numerics we leave the
cutoff 
 as a relatively free parameter, which is adjusted such
that the resulting results are in reasonable agreement with the
experiments at comparable detuning. In Table II we list the pa-
rameters {g1, g2, α,
} that we have used in our simulations.

APPENDIX E: UNDERSTANDING
THE PAIRING CONTRIBUTIONS

In this section we give a more extensive discussion of the
pairing contributions that appear after a quench of an atomic
condensate as the quenched detuning is varied towards reso-
nance and even beyond. It is shown here that this introduction
of the pairs which occurs during the transient stage essentially
instigates the subsequent dynamics.

There seem to be two schools of thought on the atom-
molecule dynamics. In the first of these all dynamical
processes and oscillations are associated with the condensates
only [20] (although fluctuation effects can also be contem-
plated), whereas in the second [43,54] pairing contributions
are important, although they have not been treated before in
the presence of a substantial fraction of closed-channel super-
fluid molecules. It should be clear here that our approach is to
be distinguished from the condensates-only scheme. Notably,
in Ref. [8] such an approach was taken but in the context
of an extended three-body interaction term. One can, in fact,
make a case that the three-body Hamiltonian introduced in
Ref. [8] will be in some sense an effective interaction between
condensed atom and molecules, mediated by pairs through
higher-order (in Feshbach coupling) contributions of the latter.

We begin with Fig. 6(a), which addresses a sweep from an
atomic condensate to somewhat further to the molecular side
of resonance than in Fig. 2(a) in the main text. It is worth
concentrating on the detailed time dependence, as this shows

013306-9



ZHIQIANG WANG et al. PHYSICAL REVIEW A 110, 013306 (2024)

(a) (b)

FIG. 7. Panel (a) shows the time-averaged weight of each of the
three components (atomic condensate fraction f0 = |�10|2/n, non-
condensed atom-pair fraction f1 = n1/n, and molecule fraction fm =
2|�20|2/n) as a function of the quenched detuning ν̄/�μm = B − B0.
The results are obtained for the steady state reached after a quench
as in Figs. 3(a) and 3(b) in the main text. It relates to Fig. 4(a) in the
main text by showing the quantities that were not plotted in Fig. 4(a),
namely, f0 and f1; the results here could serve as a good basis for
predictions to be addressed experimentally in the future. (b) This
figure plots the steady-state oscillation frequency ω as a function
of the quenched detuning B − B0 for fixed particle number density
n = 2.9 × 1013 cm−3.

that in the early stages of the evolution the greatest change is
associated with the creation of a molecular condensate. But
shortly thereafter the pairing contribution begins to grow. In
this case an overall envelope shows that the pairing is growing
at the expense of the atomic condensate, and this is expected
because this sweep is deeper on the molecular side so that the
initial atomic condensate is less stable. After a transient, the
molecular condensate is frozen and rather time independent,
except for small oscillations. In addition, there is a three-way
coupled oscillation between the atomic and the molecular
condensates and the pairs.

If we compare Fig. 6(a) with 6(b), where the final state of
the system is on the atomic side of resonance, it is clear that
the molecular condensate and the pairing terms are in this new
figure much reduced in magnitude. In Fig. 6(b), one sees that
the atomic condensate is not as driven to decay, since it is not
as unstable as in the previous case. Hence we see fewer pairs.
Here, too, one sees after a transient that there is a three-way
coupled oscillation.

We next turn to the component contributions for more
general situations where the final-state detuning is varied
continuously. This is plotted in Fig. 7(a). This figure can be
compared to Fig. 4(a) in the main text. What is most strik-
ing here is that while the molecular boson contributions are
reasonably symmetric around resonance, the pair contribution
is more significant on the molecular side, as already seen
in Fig. 6. Indeed, we have argued in the text for such an
asymmetry based on energy conservation issues. When the
molecular level is far below the atomic level, the creation of
molecules must be compensated by introducing higher-energy
states, in this case pairs.

In addition to this asymmetry, what is rather interesting
here is that there is a re-stabilization of the atomic conden-
sate deep into the molecular side of resonance. This is rather
similar to what one would observe in a simple two-level Rabi
oscillation.

For completeness, we also show in Fig. 7(b) the steady-
state oscillation frequency vs detuning B − B0. There is a
clear V shape, with a minimum of frequency at B − B0 very
close to zero, corresponding to the two-body resonance, but
more precisely at B − B0 ≈ 0.25 mG. Here the plot terminates
at B − B0 = 2 mG, because the oscillations above 2 mG are
completely damped.

In summary, given that there is a dichotomy between
pairing contributions and condensate-only contributions (but
which go beyond the simple two-body Feshbach coupling),
it will be important in the future to obtain more direct ex-
perimental evidence for or against these noncondensed pair
effects. Similarly, for future theory it may be important to
include direct pairwise intercondensate correlations.

APPENDIX F: MORE DETAILS ON
THEORY-EXPERIMENT COMPARISON:

DEPENDENCE OF THE OSCILLATION FREQUENCY
ON THE PARTICLE DENSITY

It is important to point out that the experimental data in
Fig. 4(b) are collected for B − B0 = −1 mG, which is not
strictly at unitarity where the theory was addressed. There is
some experimental uncertainty (∼2 mG) in the measured B
field, which mainly comes from environmentally caused stray
fields (of about 14 mG). We suppress the stray magnetic fields
by a servo loop to the level of 2 mG.

Given this uncertainty, if we use our theoretical result at
B − B0 = −1 mG to compare with the experiment, as shown
in Fig. 8, we see that the oscillation frequency magnitude is
actually in rather good agreement with the experimental data.

Importantly, in the context of Fig. 8, while there is a
discrepancy in the power-law exponent between theory and
experiment, we argue that this does not mean there is a contra-
diction between the theoretical model description used in the
current paper and the three-body recombination mechanism
advocated in Ref. [8]. Even though the microscopic two-
channel Hamiltonian we started with only contains Feshbach
coupling (α) and pairwise density-density interactions (g1 and
g2), it can induce three-body recombination through scattering
processes that are higher order than linear in α. This should
not be surprising, since the two-channel Hamiltonian (with
point contact interactions) has been used in the literature to
discuss three-body recombination and related Efimov physics.
See Ref. [48], for example. The two- and three-body model
Hamiltonians used in Ref. [8] should be understood as the full
two- and three-body scattering amplitudes between atom and
molecules derived from an infinite sum of microscopic scat-
tering processes resulting from the two-channel microscopic
Hamiltonian.

APPENDIX G: POSSIBLE CAUSES OF THE DISCREPANCY
BETWEEN THE THEORY AND EXPERIMENT IN THE

MINIMAL OSCILLATION FREQUENCY

The comparison between our theory and experiment is not
perfect. In particular, there is a discrepancy in the minimal
oscillation frequency as a function of detuning between the
experimental results and theory (see Fig. 7 and Fig. 3(d)
of Ref. [8]). One may speculate that some of the following
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FIG. 8. Density (n) dependence of the oscillation frequency (ω)
near unitarity. The experimental data are the same as in Fig. 4(b) of
the main text. The theoretical curve, in magenta, is taken at B − B0 =
−1 mG, which should be contrasted with the theoretical curve in
Fig. 4(b) of the main text, which is for B − B0 = 0 mG. The theoret-
ical curve at B − B0 = −1 mG here roughly follows ω ∝ n0.6 within
the density range plotted. The comparison here is to show that if one
takes into account the fact that the experimental data is collected for
B − B0 = −1 mG, a much better agreement between the magnitude
of the theoretical and experimental oscillation frequencies can be
obtained.

points, which are largely ignored in the theoretical literature as
well as in the current theoretical treatment, have contributed
to this discrepancy:

(1) In our theoretical modeling we have ignored a
possible interchannel density-density interaction term,
g12

∑
k1,k2,k3

a†
1,k1

a1,k2 a†
2,k3

a2,k1+k3−k2 , which will make
additional contributions to the dynamic equations of both
atom and molecule condensates, d�10/dt and d�20/dt , if
we assume that the g12 effect is elastic. This additional term
depends on the amplitudes of both atom and molecule
condensates, |�10| and |�20|. Given that this term is
off-diagonal in the subspace spanned by the atom and
molecule condensate energy levels, it behaves very much like
the interlevel coupling term in a two-level Rabi oscillation
problem; therefore, one expects that including this term will
lead to a larger minimal oscillation frequency. The existence
of this contribution, which is proportional to |�10| and |�20|,
is also consistent with the observation that the minimal
oscillation frequency in Fig. 3(d) of Ref. [8] increases with
the initial atom BEC fraction.

(2) Another simplification which we make and which is
widespread in the literature is to drop correlations, such as
〈a1,ka2,−k〉, in our many-body trial wave function. Including
these additional interchannel correlations, which increases the
complexity significantly, can also affect the minimal oscilla-
tion frequency.

(3) Lastly, in our theoretical modeling we have ignored
various possible loss processes due to atom-atom and atom-
molecule inelastic collision.
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