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Interaction-induced dimensional crossover from fully three-dimensional to one-dimensional spaces
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The exploration of dimensional crossover carries profound fundamental significance, serving as a crucial
bridge in comprehending the remarkable disparities observed in transitional phenomena across the two distinct
dimensions of a physical system. The prevalent strategy for manipulating the dimensionality involves meticu-
lously controlling the external trapping geometry, thereby restricting the degrees of freedom of the kinetic energy
from three-dimensional (3D) to lower-dimensional spaces, while maintaining the 3D nature of the interaction
energy degrees of freedom. The aim of this work is to introduce an innovative scenario to achieve dimensional
crossover, characterized by lower-dimensional nature of both the kinetic and the interaction energy degrees of
freedom. To accomplish this objective, we delve deeply into the realm of a two-dimensional optically trapped
Bose gas, focusing specifically on its finite-range interaction. Our emphasis lies in exploring the lattice-induced
dimensional crossover from full 3D to one-dimensional (1D) in both kinetic and interaction terms. Utilizing the
functional path integral method, we derive the equation of states of the model system, encompassing crucial
quantities, such as the ground-state energy and quantum depletion. These equations enable us to analyze the
combined effects of finite-range interaction and an optical lattice on quantum fluctuations of the BEC system.
Notably, our analytical findings reconcile the Lee-Huang-Yang (LHY) correction to the ground-state energy in
the 3D and Lieb-Liniger (LL) ones in the 1D limit, thereby providing fresh insights into the intriguing disparities
between LHY and LL corrections.
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I. INTRODUCTION

Currently, significant and ongoing interest is found in ex-
ploring how the dimensionality of a physical system impacts
its fundamental nature and properties [1]. The motivation be-
hind this exploration is twofold. First, lower dimensions often
amplify quantum and thermal fluctuations within the model
system, leading to a rich array of genuine quantum effects
as dimensionality decreases [2–4]. A typical example consists
of the interacting bosons, characterized by the superfluids in
three dimensions [5], Berezinski-Kosterlitz-Thouless (BKT)
topological phase transitions in two dimensions [6,7], and
Tomonaga-Luttinger liquids in one dimension [8], respec-
tively. Second, cutting-edge experimental techniques provide
remarkable precision in controlling key parameters of the
physical system, such as interaction strength and confining
potentials [1]. In particular, the system’s dimensionality can
be set freely rather than being fixed once for all. In the con-
text of ultracold gases, highlights in one and two dimensions
include the observation of bosonic fermionization into the
Tonks-Girardeau (TG) state [9–11], the expansion dynamics
[12], and the Super-Tonks-Girardeau quench [13] of dipo-
lar bosons. The stark contrast between the aforementioned
properties in lower dimensions and their three-dimensional
(3D) counterparts underscores the importance of exploring the
dimensional crossover between these two distinct dimensions.

*Contact author: zhxliang@zjnu.edu.cn

Along this research line, considerable efforts have been
dedicated to gaining a profound understanding of the dimen-
sional crossovers, ranging from a higher to a lower dimension,
within the realm of ultracold quantum systems. For instance,
Refs. [14–18] have delved into the dimensional crossover
exhibited by Bose gas, as well as the counterpart in Fermi gas
[19–22]. Through the meticulous manipulation of the trans-
verse z direction, Refs. [23–27] have successfully achieved a
dimensional crossover from three dimensions to two. Further-
more, Refs. [28,29] have demonstrated that the introduction
of an external trapping potential gives rise to a crossover from
three dimensions to one. It is noteworthy that recent theo-
retical and experimental [30–32] investigations have revealed
the dimensional crossover of strongly interacting bosons from
two dimensions to one, highlighting the rich and complex
nature of these systems across different dimensions.

Dimensional crossovers are distinguished by their hierar-
chical access to novel energy and length scales. Leveraging
this understanding, the predominant approach to realizing
dimensional crossover during the last decade is that a phys-
ical system becomes quasi-low dimensional when energetic
restriction to freeze excitations in one or two dimensions
is reached, which is referred to as the kinetic-induced low-
dimensional physical system [28–33]. It is important to note
that the interactions in such low-dimensional systems are
often treated analogously to their three-dimensional (3D)
counterparts. However, in the following, we introduce an
alternative scenario based on a two-dimensional (2D) opti-
cally trapped Bose gas with weak interactions and specifically
engineered finite-range interatomic interactions. As we will
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demonstrate, considering finite-range interactions offers a dif-
ferent perspective on low-dimensional systems, characterized
by both their interactions and kinetic energy being inherently
low-dimensional.

The second impetus for this work stems from recent exper-
imental advancements in realizing ultracold quantum gases
with finite-range interatomic interaction [34,35]. Compared
with the quantum gases exhibiting s-wave interactions, ultra-
cold quantum gases with finite-range interatomic interactions
possess crucial novel features, as outlined below: The equa-
tion of state (EOS) for s-wave interacting quantum gas
exhibits a profound universality, stemming from the fact
that it can be precisely characterized by a single parame-
ter: the s-wave scattering length as. This parameter serves
as a versatile tool, encapsulating not just the fundamen-
tal nature of two-body interactions but also the intricate
many-body physics [36,37] of the system. However, the in-
troduction of finite-range atomic interactions disrupts this
universality, giving rise to nonuniversal effects within the
EOS [38–42]. At the mean-field level, the Gross-Pitaevskii
equation undergoes modifications [39,43–45] to incorporate
these nonuniversal effects. The modified Gross-Pitaevskii
equation provides a comprehensive framework for elucidating
the physical behavior of nonuniform condensates, effectively
capturing deviations from the idealized s-wave interaction
scenario. Beyond the mean-field approximation, recent stud-
ies have broadened the thermodynamic analysis of pure 2D
and 3D uniform Bose gases [46,47] to incorporate finite-
range interactions, reaching the sophisticated Gaussian level
of approximation. We mention that our previous work [48]
has investigated finite-range-interaction-induced EOS along a
dimensional crossover from three dimensions to two. These
works provide a deeper comprehension of the rich and
intricate physics that arises in the presence of nonideal inter-
actions.

In this work we have delved into the intricate phenomenon
of dimensional crossover exhibited by Bose gases with finite-
range interactions confined within optical lattices. Employing
the finite-temperature functional path integral framework and
the tight-binding approximation, we have embarked on a
comprehensive exploration of the ground-state properties of
these Bose gases in a 2D optical lattice setting. Our findings
have culminated in the derivation of a beyond-mean-field
equation of state for the Bose system, one that encompasses
the influence of various parameters, including optical lat-
tice configurations, effective ranges, and scattering lengths.
This equation of state yields generalized corrections to the
Lee-Huang-Yang (LHY) energy in three dimensions and the
Lieb-Liniger (LL) solution in one dimension. Furthermore, by
manipulating the effective range, we have visually analyzed
the subsequent influence of finite-range interactions on Gaus-
sian quantum fluctuations, offering a deeper insight into their
pivotal role in dimensional crossover phenomena.

The structure of this paper is outlined as follows: In
Sec. II we introduce the action functional of the model system
and demonstrate the fundamental terminology of the finite-
temperature functional path integral. In Sec. III we calculate
the ground-state energy and quantum depletion of the system
through thermodynamic relationships and the regularization
method. Additionally, we analyze the asymptotic behavior of

these two physical quantities under both the one-dimensional
(1D) and 3D limits. Section IV summarizes our work, and
we also consider the potential experimental conditions for
realizing our proposed scenario.

II. INTERACTION-INDUCED
DIMENSIONAL CROSSOVER

A common strategy for achieving the low-dimensional sys-
tem in an ultracold quantum gas is to add an optical lattice to
the microscopic Hamiltonian [23,28]. To illustrate this, let’s
consider the dimensional crossover from 3D to quasi-1D by
introducing a 2D optical lattice as an example. The dispersion
of single-particle energy in the model system is given by
ε0

k = h̄2k2
z /2m + J[2 − cos kxd − cos kyd] with J being the

tunneling rate between two optical wells. When the energetic
constraints freeze excitations along x and y directions, the sys-
tem effectively becomes quasi-1D with the energy dispersion
simplified into ε0

k = h̄2k2
z /2m as J → 0. Transitioning into

the quasi-1D regime, the coupling constant is renormalized
as g̃ = C2g0 with g0 being the 3D coupling constant and C
being the renormalized constant [28]. We refer to it as the
kinetic-induced 1D physical system, distinguished by its 1D
kinetic energy and 3D interaction energy.

Below we embark on a strategy to engineer the form
of interatomic interaction, aiming to achieve a dimensional
crossover from 3D to quasi-1D for both the kinetic and inter-
action energy of the model system. This crossover, dubbed the
interaction-induced 1D system, involves meticulously select-
ing the interatomic pseudopotential [39,49] to facilitate this
transition

V (r) = g0δ(r) − g2

2
[
←−∇ 2δ(r) + δ(r)

−→∇ 2], (1)

with g0 = 4π h̄2as/m and g2 = 2π h̄2a2
s rs/m being the s-wave

scattering and finite-range coupling constants. Here as is the
s-wave scattering length and rs represents the effective range
of interatomic interaction potential [50]. With the introduction
of a 2D optical lattice, the interaction energy correspond-
ing to Eq. (1) is proportional to be g̃2[k2

z + J1(2 − cos kxd −
cos kyd )]. By changing J1 → 0, one can reach the regime of
1D interaction in the form of g̃2k2

z . In what follows, we focus
on the equation of state of the interacting Bose gas trapped in
a 2D optical lattice and demonstrate the interaction-induced
dimensional crossover through full 3D to qusi-1D.

We adopt the path-integral approach in the study of the
weakly interacting Bose gas with the finite-range interaction
in a 2D optical lattice. The grand canonical partition function
Z of the system has the form [51,52]

Z =
∫

D[ψ,ψ∗] exp

[
−S[ψ,ψ∗]

h̄

]
, (2)

where

S[ψ,ψ∗] =
∫ h̄β

0
dτ

∫
drψ∗(r, τ )

×
[

h̄
∂

∂τ
− h̄2∇2

2m
− μ + Vopt(r)

]
ψ (r, τ )

+ g0

2
|ψ |4 − g2

2
|ψ (r, τ )|2∇2|ψ (r, τ )|2 (3)
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is the action functional and bosonic atoms described by the
complex field ψ (r, τ ), and τ is imaginary time, β = 1/kBT
with kB being the Boltzmann constant and T being the tem-
perature.

The 2D optical lattice of Vopt(r) in action functional (3)
reads [53]

Vopt(r) = t × ER[sin2 (qBx) + sin2 (qBy)], (4)

where t describes the dimensionless intensity of the laser
beam and ER is the recoil energy with qB being the Bragg
momentum [1]. The lattice period is fixed by d = π/qB with d
being the lattice spacing. Atoms are unconfined in the z plane.
By incorporating a 2D optical lattice, as described in Eq. (4),
into a BEC existing in a uniform spatial configuration, which
triggers a dimensional crossover from 3D to quasi-1D [23,28],
we enable graded access to novel energy and length scales.
Note that the equation of state for BEC exhibiting finite-
range effective interaction, which aligns with Eq. (3) while
Vopt(r) = 0, has been meticulously derived and comprehen-
sively presented in Refs. [46,47]. Meanwhile, Refs. [23,28]
have investigated the lattice-induced dimensional crossover
from 3D to quasi-1D for a BEC without finite-range effective
interaction, corresponding to Eq. (3) with g2 = 0.

Additionally, in contrast to 3D free Bose gases, the effec-
tive coupling constant in Eq. (3) is intricately linked to the
tight constraints imposed by the optical lattice in a particular
direction. In the presence of an optical lattice, both the s-wave
coupling constant and the finite-range coupling constant are
jointly determined by the lattice constant and the density. It is
worth emphasizing that in our work, we abstained from con-
sidering the impact of confinement-induced resonance (CIR)
[54,55] on the coupling constant. Feshbach resonance [56]
offers a profound framework for explaining the underlying
physics of CIR, where the ground-state transverse mode and
the other transverse modes along the tightly constrained di-
mension correspond to the scattering open channel and closed
channel, respectively. The tight-binding approximation em-
ployed in our study confines the ultracold atoms to the lowest
Bloch band, thereby eliminating the existence of transverse
modes along the tight-confinement dimension. Consequently,
the influence of CIR can be safely disregarded.

We proceed to provide approximate estimates of the
parameter ranges where the tight-binding approximation re-
mains valid. For this purpose, we adopt the commonly
encountered experimental parameters for an optically trapped
Bose gas reported in Ref. [57]. It is crucial to note that the
tight-binding approximation holds under specific conditions.
Primarily, the lattice depth t in Eq. (4) must be relatively
large (t � 5) to ensure that the interband gap Egap exceeds
the chemical potential μ [23,28,29,58]. Second, under such
conditions, numerous isolated wells are formed, giving rise
to an orderly array of condensates. Simultaneously, due to
quantum tunneling, the overlap between the wave functions
of two continuous wells is still sufficient to ensure full co-
herence. Additionally, the typical detailed parameters read as
follows: The recoil energy is ER ≈ h × 3.33 kHz with h being
the Plank constant and the chemical potential of gas is μ ≈
g̃0n0 ≈ h × 400 kHz. In the case of t ≈ 5, we can estimate the
parameters of J/ER ≈ 0.18 based on Ref. [59]. Consequently,
the dimensionless parameters used in the figures of this work

FIG. 1. (a) Scaling function f (s) of Eq. (12) (solid line) as
function of dimensionless tunneling rates s = 2J/g̃0n0 with differ-
ent values of χμ. The dotted curves represent the 3D asymptotic
behavior of f (s) in the regime of s � 1. The concrete values of
f (s = 0) = 4

√
2/3(1 + χμ) in the 1D limit are displayed by the

three dots in the inset. (b) Scaling function h(s) of Eq. (14) (solid
line) and its 3D (dotted line) asymptotic behavior as as function of s
with different values of χμ.

are as follows: s = 2J/g̃0n0 ≈ 3.6, indicating that our model
system exhibits 3D-like behavior. Furthermore, as shown in
[57], the optically trapped Bose gas exhibits complete super-
fluidity below the critical lattice height tc ≈ 13 corresponding
to J and J1 being nearly zero [59]. We, therefore, conclude
that the tight-binding approximation can be regarded as valid
within the range of 5 < t < 13, corresponding to 0 < s < 4 as
depicted in Fig. 1. Based on this assumption, we refer to the
density of the condensate as n0 and ignore the phase transition
of the Mott insulator.

Following Refs. [23,29,58], we treat our model
system within the tight-binding approximation. Within
this framework, the lowest Bloch band of the system
can be accurately described in terms of the Wannier
functions as φkx (x)φky (y) with φkxi

(xi ) = ∑
l eildkxi w(xi − ld )

and w(xi ) = √
dexp[−x2

i /2σ 2]/π1/4σ 1/2 with d/σ =
πt1/4 exp(−1/4

√
t ) (i = 1, 2 and x1 = x, x2 = y) [28].

Expanding the bosonic field variables in (3) by the expression
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ψ (r, τ ) = ∑
k,n ψk,nφkx (x)φky (y)e−ikzzeiωnτ with the bosonic

Matsubara frequencies ωn = 2πn/h̄β, we obtain

S[ψ,ψ∗]

h̄βV
=

∑
k,n

ψ∗
k,n

[−ih̄ωn + ε0
k − μ

]
ψk,n

+ g̃0

2

∑
k,k′ ,q
n,n′,m

ψ∗
k+q,n+mψ∗

k′−q,n′−mψk′,n′ψk,n

+ g̃2

2

∑
k,k′ ,q
n,n′,m

q̃2ψ∗
k+q,n+mψ∗

k′−q,n′−mψk′,n′ψk,n, (5)

where ε0
k = J (2 − cos kxd − cos kyd ) + h̄2k2

z /2m is
the energy dispersion of the noninteracting system
and q̃2 = k2

z + J1(2 − cos kxd − cos kyd ) is the correc-
tion of momentum exchange between particles with
J = −2/d

∫ d
0 dxw∗(x)(−h̄2∂2

x /2m + Vopt)w(x − d ) and

J1 = 2
√

2πσ/d2
∫ d

0 dxw2(x − d )∂2
x w2(x). Based on

the functional of Eq. (5), we can demonstrate the
interaction-induced dimensional crossover proposed in
this work explicitly as follows.

First, the functional of Eq. (5) has two elements of impor-
tance with respect to the functional characterizing a trapped
Bose gas in the absence of optical confinement: (i) the kinetic
energy in the first line of the functional of Eq. (5) exhibits
a periodic dependence as ε0

k = J (2 − cos kxd − cos kyd ) +
h̄2k2

z /2m. In the 3D limit when the lattice strength is weak, the
kinetic energy can be rewritten as ε0

k = h̄2(k2
x + k2

y )/2m∗ +

h̄2k2
z /2m with m∗ = h̄2/Jd2. With the increase of lattice

strength, the value of J will decay exponentially. As a result,
the kinetic energy experiences a dimensional crossover from
3D to 1D and becomes an effective 1D one of ε0

k = h̄2k2
z /2m.

(ii) The s-wave scattering coupling constant in the second line
of the functional of Eq. (5) is renormalized as g̃0 = C2g0 with
C = √

π/2t1/4e−1/4
√

t .
Second, the finite-range interaction term in the third line of

the functional of Eq. (5) exhibits the dynamical 1D features of
particle motion, and a dimensional crossover from 3D to 1D
emerges in the behavior of the interaction energy when the
energetic restriction to freeze anxial excitations is reached.

(i) For 8J/μ � 1, the system exhibits a distinct anisotropic
3D behavior, and the finite-range effective coupling constant

takes the form of g̃2 q̃2

2 = g2C2m
h̄2 × [

h̄2(k2
x +k2

y )
2m(2/J1d2 ) + h̄2k2

z

2m ].
(ii) For 8J/μ 
 1, the finite-range interaction term in the

third line of the functional of Eq. (5) exhibits a dimensional
crossover from 3D to 1D with the form of g̃2 q̃2

2 = g2C2m
h̄2 ×

[ h̄2k2
z

2m ], corresponding to J1 → 0.
Now we are ready to calculate the analytical expressions

of the equation of state of the model system along the dimen-
sional crossover. In this end, by applying the mean field plus
Gaussian (one loop) approximation [46] to Eq. (5) and writing∑

k,n ψk,n = √
n0 + ∑

k,n �=0 φk,n, we find that the Gaussian
contribution of quantum fluctuation is described by

Sg[φ, φ∗] = 1

2

∑
k,n

(
φ∗

k,n φ−k,−n
)
M(k, n)

(
φk,n

φ∗
−k,−n

)
. (6)

The inverse fluctuation propagator M(k, n) is given by

M(k, n) = β

(−ih̄ωn + ε0
k − μ + g̃0n0 + n0Ṽ (k) n0Ṽ (k)

n0Ṽ (k) ih̄ωn + ε0
k − μ + g̃0n0 + n0Ṽ (k)

)
, (7)

where the chemical potential is μ = g̃0n0 and Ṽ (k) = g̃0 +
g̃2[k2

z + J1(2 − cos kxd − cos kyd )]. By integrating on the Bo-
son fields φk,n and φ∗

k,n, the sum over bosonic Matsubara
frequencies gives [60] the Gaussian grand potential

�g =
∑

k

Ek

2
+ 1

β
ln(1 − e−βEk ), (8)

where Ek is the energy dispersion:

Ek =
√

ε0
k

[
ε0

k + 2n0Ṽ (k)
]
. (9)

Before moving on to the subsequent calculation, we verify
the formula (9) to ascertain if the energy dispersion can be
restored to the existing work when either the optical lattice
Vopt disappears or the finite-range interaction g2 vanishes. In
the limit of Vopt = 0 and g2 �= 0, the energy dispersion returns
to the corresponding one in Ref. [46], and then in the limit of
Vopt �= 0 and g2 = 0, Eq. (9) recovers the corresponding one
in Ref. [29]. When both the optical lattice and finite-range
interaction vanish, our findings should be identical with the
well-known Bogoliubov spectrum of collective excitations.

III. EQUATION OF STATE OF MODEL SYSTEM FROM
FULL 3D TO QUASI-1D

In the previous Sec. II, we present the protocol for realizing
interaction-induced dimensional crossover. In Sec. III we plan
to obtain the analytical expressions of the equation of state of
the model system along the dimensional crossover from 3D to
quasi-1D.

In this work we are interested in the equation of state at
zero temperature. As such, the analytical expression of the
ground-state energy Eg = �0(μ, n0) + μN0 can be obtained
as

Eg

V
= 1

2
g̃0n2

0 + 1

2V

∑
k

[√
ε0

k

(
ε0

k + 2Ṽ (k)n0
)]

. (10)

Equation (10) contains an ultraviolet divergence in the limit
of large momentum, which can be regularized by the mean of
momentum-cutoff regularization (MCR) [61]. After changing
the sum into integrals in Eq. (10) and performing the integra-
tion over the axial momentum kz, we can derive the analytical
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expression of ground-state energy as

Eg

V
= 1

2
g̃0n2

0 − g̃0n0
√

2mg̃0n0

4π h̄d2
f

(
2J

g̃0n0

)
, (11)

where the first term represents the mean-field contribution,
whereas the second term corresponds to the correction beyond
the mean-field approximation, which arises due to quantum
fluctuations and the scaling function f (s) with the variable
s = 2J/g̃0n0 which can be controlled by the strength of the
optical lattice, is given by

f (s) = π

2(2π )2

∫ π

−π

d2k

{
2F

1

[
1

2
,

3

2
, 3,

−2ν

sγ

]√
1 + χμ

sγ
ν2

}
,

(12)

where the integration over the transverse quasimomenta is
restricted to the first Brillouin zone |kx|, |ky| � π [28] and
the function 2F1[a, b, c,d] is the hypergeometric function
with multiple parameters, including the finite-range factor
χ = 4mg̃2/h̄2g̃0, the dimensionless second-order tunneling
rate β = h̄2J1/2mg̃0n, and several combination parameters
λ = 1 + χμ, γ = 1 − cos kx/2 − cos ky/2, and ν = (2 +
sγ + 2χμβγ )/2λ − sγ /2

Quantum depletion refers to the number of atoms with
nonzero momentum which can be calculated through a
thermodynamic equation n = −∂μ�(0)(μ, n0)/V with
�(0)(μ, n0) = �0(μ, n0) + �(0)

g (μ, n0). The first term
�0(μ, n0) = ( 1

2 g̃0n2
0 − μn0)V is the mean-field contribution,

and the second term �(0)
g (μ, n0) = 1

2

∑
k Ek(μ, n0) is

the zero temperature contribution of quantum Gaussian
fluctuations. From this, we obtain the particle density
n = n0 − 1

2V

∑
k ∂μEk(μ, n0). After changing the sum into

integrals and using the MCR method again, we obtain the
analytical expression of quantum depletion �N as follows:

�N

V
=

√
2mμ

4π h̄d2
h(s), (13)

with

h(s) = 1

(2π )2

∫ π

−π

d2k
∫ ∞

0

√
λ

z
dz

[
(z + sγ )

(
1 + 1

λ

) + ν

2
√

(z + sγ )(z + sγ + ν)

− 1

2

(
1 + 1

λ

)
+ ν

4(z + sγ )

(
1

λ
− 1

)]
. (14)

Prior to delving into the intricacies of ground-state energy
and quantum depletion, it is imperative to examine the ratio-
nality of the value of the dimensionless finite-range coupling
constant χμ = 4d2/σ 2(a3

s n0)rs/as. This step is fundamental
as it informs us about the potential experimental viability of
our proposed model. Considering the typical experiments in
an optically trapped BEC as in [1], the relevant parameter
d/σ ∼ 1. To illustrate, let us consider the example of 6Li,
as referenced in [62]. In this instance, the typical density n0

is approximately 4 × 1012 cm−3. Concurrently, the scattering
length as is estimated to be around 1.13 × 10−7 m. The order
of magnitude of a3

s n0 is approximately 10−3. Furthermore, as
documented in [34], the effective distance rs is estimated to
be within the range of 0 ∼ 3.71 × 10−6 m. By inserting these
parameters into χμ, we can approximate its value to be within

the range of 0–0.75. The maximum value of χμ in Fig. 1 is
within this range.

Equations (11) and (13) are the key results of our work.
Based on Eqs. (11) and (13), we investigate the nonuniversal
equations of state of model system along the dimensional
crossover from full 3D to quasi-1D with the emphasis on the
finite-range interaction effects labeled by g2. To this end we
plot the functions of f (s) and h(s) of Eqs. (12) and (14) into
Figs. 1(a) and 1(b), respectively, based on which we can an-
alyze interaction-induced dimensional crossover through full
3D to 1D.

In the 3D limit of s � 1 corresponding to weak lattice
depth limit, the scaling function (12) approaches the asymp-
totic law f (s) � 1.43+9.8χμ√

s/2
− 32

√
2

15πs · 1
(1+χμ)2 as shown by the

dotted curves in Fig. 1(a). By plugging such asymptotic be-
havior of f (s) into Eq. (11), we can obtain the asymptotic
form of the ground-state energy in the 3D limit:

Eg

V
= 2π h̄2ã3Dn2

0

m

[
1+ ã3D

ãcr
+ 128

15

(
n0ã3

3D

π

)1/2
m∗

m(1 + χμ)2

]
.

(15)

In Eq. (15), the first term of the right-hand side represents the
mean-field energy characterized by the lattice-renormalized
s-wave scattering length of ã3D = a3Dd2/2πσ 2. The term
of ã3D/ãcr < 0 is a further renormalization of the scat-
tering length due to the combined effects of the optical
lattice and finite-range interaction. In more detail, the ãcr is
calculated to be ãcr = − d

√
m

2
√

2(1.43+9.8χμ)·√m∗ . Here the m∗ =
h̄2/Jd2 is the effective mass associated with the band, and
the χ = 4mg̃2/h̄2g̃0 is due to the finite-range effect. Here
g̃0 = 4π h̄2ã3D/m and g̃2 = 2π h̄2ã2

3Dr̃3D/m are character-
ized by the lattice-renormalized s-wave scattering length of
ã3D = a3Dd2/2πσ 2, and the lattice-renormalized effective
range of r̃3D = 2πσ 2r3D/d2. Note that the ãcr can recover the
corresponding one in Ref. [28] in the vanishing finite-range
effect of g̃2 = 0.

The last term in Eq. (15) represents the generalized LHY
correction in the presence of the optical lattice and the finite-
range interaction. We have checked that Eq. (15) is simplified
into the corresponding result in Ref. [28] for vanishing the
finite-range interaction coupling constant g̃2 = 0, whereas for
vanishing the optical lattice t = 0, our result recovers exactly
the corresponding one in Ref. [46]. We see that with respect
to the previous cases in Refs. [28,46], the LHY correction in
Eq. (15) is magnified by the renormalization of the coupling
constant of ã3D, the effective mass of m∗, and the finite-range
coupling of χ = 4mg̃2/h̄2g̃0.

In the opposite 1D regime corresponding to s → 0, f (s)
exactly approaches a limiting value of f (0) = 4

√
2/3(1 +

χμ) with the different values of the finite-range coupling
constant of χ = 4mg̃2/h̄2g̃0. We routinely check that our cal-
culated f (0) = 4

√
2/3 in the case of vanishing χ = 0, which

can recover the corresponding one in Ref. [28]. In the 1D
limit, Eq. (11) approaches asymptotically the ground-state
energy of a 1D Bose gas in the presence of the optical lattice
and the finite-range effect

Eg

L
= 1

2
g1Dn2

1D − 2

3π

√
m

h̄2 (n1Dg1D)
3
2

1

1 + χμ
, (16)
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with n1D = n0d2 being the linear density and L being the
length of the tube. It is noteworthy to mention that Eq. (16)
exhibits a resemblance to the ground-state energy of the pure
1D Bose gas in Ref. [40]. However, our study incorporates
the presence of an optical lattice and derives the asymptotic
energy expression in the 1D limit. The zero-range interaction
coupling constant g1D in Eq. (16) represents the outcome after
renormalization. It is indicated that our findings align well
with the pure 1D results in the 1D limit. In the case of van-
ishing the finite-range interaction coupling constant χ = 0,
Eq. (16) is in agreement with the exact LL solution of the 1D
model expanded in the weak coupling regime mg1D/h̄n1D 

1 [63,64]. We conclude, therefore, that Eq. (16) is the gen-
eralized LL solution of the 1D model expanded in the weak
coupling regime in the presence of the finite-range interaction.

In a similar study, we delve into the asymptotic behavior of
quantum depletion. In the 1D limit of s → 0, Eq, (13) diverges
as it is expected, indicating that in the absence of tunneling
there is no real Bose-Einstein condensation in alignment with
the general theorems in one dimension [5]. In the opposite 3D
regime of s � 1, the function of h(s) in Eq. (14) decays as

8
3
√

2πs
(1 − 3χμ) + 4(χμ)

3
2

3s . Consequently, one finds the ana-
lytical expression of the quantum depletion in 3D limit

n − n0 = 8

3

√
(ã3Dn0)3

π

m∗

m

[
1 − 3χμ +

√
2

2
π (χμ)

3
2

]
. (17)

Replace χ and μ in Eq. (17) with 4mg̃2/h̄2g̃0 and g̃0n0, and
rewrite Eq. (17) as

n − n0 = n0

[
8

3

m∗

m

√
ã3

3Dn0

π
− 64

m∗

m

√
π

r̃3D

ã3D

(
ã3

3Dn0
) 3

2

+ 128

3

m∗

m
π2

(
r̃3D

ã3D

) 3
2 (

ã3
3Dn0

)2
]
, (18)

which generalizes the standard 3D result in the presence of
finite-range interaction in free space [65] to that in the pres-
ence of an optical lattice and finite-range effect.

IV. CONCLUSION

In conclusion, we have meticulously derived the equa-
tion of state that extends beyond the mean-field approximation
for a Bose gas with finite-range interactions within a 2D opti-
cal lattice. This derivation was achieved using the framework

of finite-temperature functional path integrals. Consequently,
we have obtained analytical expressions for ground-state en-
ergy and quantum depletion. Notably, our work has taken
into account finite-range interaction, leading to the dimen-
sional crossover of the system due to constraints on both
interaction energy and particle kinetic energy. This crossover
differs from the previously observed dimensional crossover
in BEC systems, which was solely attributed to the com-
pression of kinetic energy. Our findings provide a more
comprehensive understanding of the Bose gas behavior
in optical lattices, incorporating the effects of finite-range
interactions. Furthermore, in accordance with the Mermin-
Wagner-Hohenberg theory [66–68], quantum fluctuations are
significantly enhanced by finite-range corrections in low-
dimensional systems. It is due to these reasons that our final
results are not universal results that solely depend on

√
n0a3

s ,
as previously believed. Our results demonstrated that the
2D optical lattice induces the 3D-1D dimensional crossover
in quantum fluctuations. In the 1D limit region, our results
closely align with the LL solution, offering a precise rep-
resentation. Conversely, in the 3D limit region, we obtained
the generalized LHY correction. These finite-range analytical
results represent nontrivial generalizations of the universal
equation of state presented in [28].

The underlying physics of this dimensional crossover in-
volves the intricate interplay among three parameters: the
lattice intensity t , the effective range rs, and the scattering
length as. Leveraging the most advanced techniques, all of
these quantities are experimentally controllable, allowing for
precise manipulation and observation of the system’s behav-
ior. Notably, it is feasible to arbitrarily tune the depth of
optical lattices ranging from 0ER to 32ER [57]. Therefore,
given current experimental capabilities, it should be feasible
to directly observe the phenomena discussed herein, which
are intimately linked to dimensional effects. The direct ob-
servation of this dimensional effect would mark a significant
milestone in elucidating the intricate interplay between di-
mensionality and quantum fluctuations in low dimensions.
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