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Ancilla-free measurement of out-of-time-ordered correlation functions:
General measurement protocol and Rydberg atom implementation
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We introduce a protocol that gives access to out-of-time-ordered correlation functions in many-body quantum
systems. Unlike other such protocols, our proposal, which can be applied to arbitrary initial states, neither
requires ancilla degrees of freedom to the quantum system of interest, nor has the need for randomized measure-
ments. Nontrivial experimental capabilities required to implement the protocol are single-site measurements,
single-site rotations, and backwards time evolution. To exemplify the implementation of the protocol, we
put forward a strategy for Hamiltonian sign inversion H → −H in arrays of Rydberg-dressed atoms. In this
way, a complete and practical toolbox is obtained for the measurement of out-of-time-ordered correlations in
equilibrium and nonequilibrium situations.
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“Scrambling” refers to the process where, under unitary
time evolution of a many-body quantum system, initially lo-
cal information disperses into many-body entanglement and
spreads over increasingly larger regions of the system. In this
process, information, while in principle conserved, becomes
inaccessible to local measurements, resulting in an effective
loss of memory. Quantum information scrambling rose to
prominence in the context of the black hole information prob-
lem [1], and accompanies the dynamics of thermalization in
isolated quantum systems [2].

A strategy to quantify the size of the region across which
quantum information is spread under the system’s dynam-
ics consists in considering two operators V and W that are
initially supported on separated regions of space, imply-
ing [W,V ] = 0. The commutator C(t ) = 〈|[W (t ),V ]|2〉 then
quantifies the degree to which the time-evolved operator
W (t ) = exp(iHt )W exp(−iHt ) spreads into the support of V ,
which indicates whether or not the region over which quan-
tum information can be scrambled in time t extends into the
support of V . Moreover, the semiclassical limit of C quantifies
the sensitivity of the dynamics to small changes in the initial
conditions, which suggests to interpret C as a measure of
quantum chaoticity [3]. Closely related to C, and often more
practical and accessible, is the out-of-time-ordered correlation
(OTOC) [4]

F (t ) = 〈W †(t )V †W (t )V 〉. (1)

Such correlation functions have been used in early studies of
electron scattering off impurities in models of superconduc-
tors [5], are related to the Renyi entropy and the generation
of entanglement [6,7], and have been employed to distinguish
many-body localized phases from thermalizing ones [7,8].

A setting of particular physical interest is when V and W
are local Hermitian operators that correspond to experimen-
tally measurable observables. But even in such a, presumably

“simpler,” situation, F in Eq. (1) is the expectation value of
a, in general, non-Hermitian and nonlocal operator. A direct
measurement of such an expectation value is unrealistic in
all but the most trivial special cases, and one therefore has
to resort to indirect measurement protocols in order to gain
access to OTOCs. Such measurement protocols for OTOCs
essentially interpret the product of operators on the right-hand
side of Eq. (1) as a sequence of operations. Because of the
lack of time-ordering that is characteristic for OTOCs, this
sequence of operations involves forward-in-time as well as
backward-in-time evolving unitaries, which, while challeng-
ing in general, are available in certain experimental platforms
such as atoms in optical lattices [9] and in all-to-all in-
teracting neutral atom or ion systems [10–12]. While most
of the proposed measurement protocols for OTOCs require
backward-in-time evolution, other strategies, each with their
own merits and challenges, are known as well [13]. Some as-
pects of OTOCs have already been measured in small systems
[14–19].

Here we will focus on measurement protocols for OTOCs
that make use of backwards time evolution. Several such pro-
tocols have been proposed by now [20,21], some of which
have been implemented experimentally [14,22,23]. While
none of these protocols is easy to implement, some are less
challenging, but at the expense of being applicable only to
specific choices of V and/or specific initial states [14,21,22].
The protocol put forward in Ref. [20], on the other side, is
applicable to arbitrary V , W and arbitrary initial states. It is,
however, significantly more difficult to implement, as it re-
quires, in addition to backwards time evolution, the capability
to couple an ancilla qubit to the system of interest and to create
entanglement between the two. An experimental realization
of this ancilla-based protocol was reported in Ref. [23] for
a two-dimensional array of superconducting qubits, which is
known for the exquisite level of experimental controllability.
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FIG. 1. Sequence of steps for accessing the real part (a) and
imaginary part (b) of an OTOC. From top to bottom: (i) initial state,
(ii) projective measurement or spin rotation at site j, (iii) forward
time evolution under the Hamiltonian H , (iv) projective measurement
or spin rotation at site i, (v) backward time evolution under H , (vi)
projective measurement or spin rotation at site j, (vii) forward time
evolution under H , (viii) projective measurement at site i.

In many other experimental platforms, however, the simulta-
neous requirements of backwards time evolution and ancilla
coupling poses an obstacle. This motivates the search for alter-
native measurement protocols, ideally of broad applicability
and with more moderate experimental requirements.

The first main result of this article is a measurement pro-
tocol for OTOCs, applicable to arbitrary initial states, that
requires neither ancilla quantum degrees of freedom to be
coupled to the system, nor interferometric techniques, nor
averaging over randomized initial states. In addition to back-
wards time evolution, the main experimental requirement to
execute the protocol are single-site measurements and single-
site rotations in a system of qubits or spin-1/2 degrees of
freedom; see Fig. 1 for an illustration. Single-site resolution
and addressability are key capabilities of quantum computing
platforms and are readily available in a variety of experimental
settings.

As the second main result of this article we propose a tech-
nique, based on microwave-assisted Rydberg dressing [24],
that facilitates Hamiltonian sign inversion, and hence back-
wards time evolution, in array of ultracold Rydberg-dressed
atoms. Combining this technique with local in-sequence read-
out and local rotation techniques, our measurement protocol
becomes a full-fledged tool for the measurement of OTOCs
in a relevant experimental platform, while avoiding the chal-
lenge of having to couple ancillas to individual sites. Since
the protocol is not restricted to specific initial states, OTOCs
can be measured and analyzed in arbitrary equilibrium and
nonequilibrium situations. The sign-inversion technique is in-
teresting also in the context of other applications, for example,
for quantum simulation at finite energies [25] or quantum
metrology [26].

I. OTOC MEASUREMENT PROTOCOLS

We consider an arbitrary network of N qubits, which
includes regular lattices as special cases. Time evolution
is assumed to be unitary, generated by a time-independent
Hamiltonian H , but is arbitrary otherwise, allowing for
multisite interactions (beyond pair interactions) as well as
interactions of arbitrarily long range.

Our main technical requirement is that the operators V and
W in Eq. (1) have only two distinct (albeit possibly degener-
ate) eigenvalues. In the context of qubit systems, this is a very
natural and not particularly restrictive setting. For notational
simplicity we will in the following choose single-site Pauli
spin operators as observables, W = σ a

i and V = σ b
j , where i

and j denote sites on the network and a, b ∈ {x, y, z} label spin
components. The object of study is the OTOC

C(t ) := Tr
[
ρσ a

i (t )σ b
j σ

a
i (t )σ b

j

]
, (2)

where ρ is the initial density operator. Note that, even though
each factor of the operator product on the right-hand side of
Eq. (2) is Hermitian, the product of operators in general is not,
and hence C can be complex.

A. Measurement protocol for the real part

We show that the real part of C can be obtained by in-
terpreting the operator product inside the trace of Eq. (2) as
measurements of the occurring spin operators, interspersed
with time evolutions [27]. This is by no means a trivial
statement, as Eq. (2) describes unitary evolution, and mea-
surements are known to disturb unitary evolution due to
wave-function collapse. However, when probing bivariate ob-
servables, these disturbing effects, which do occur, cancel
out exactly when using the following measurement protocol,
illustrated in Fig. 1:

(i) Prepare the initial state |ψ〉.
(ii) Projectively measure the observable σ b

j and record the
outcome (+ or −).

(iii) Time-evolve unitarily until time t .
(iv) Projectively measure the observable σ a

i and record the
outcome.

(v) Evolve backwards in time for a time t .
(vi) Projectively measure the observable σ b

j and record the
outcome.

(vii) Time-evolve unitarily until time t .
(viii) Projectively measure the observable σ a

i and record
the outcome.

(ix) Repeat (i)–(viii) many times and record the relative
frequencies of the combinations of measurement outcomes
(+ + ++), (+ + +−), (+ + −+), etc., occurring in each
of the measurement sequences.

(x) Use these relative frequencies to estimate the cor-
responding probabilities P++++, P+++−, P++−+, etc., and
calculate the correlation function

C (t ) :=
∑

o1,o2,o3,o4∈{−1,+1}
o1o2o3o4Po1o2o3o4 . (3)

We show in Appendix A that

2C (t ) − 1 = ReC(t ), (4)
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i.e., the real part of the desired OTOC (2) is obtained by apply-
ing the above protocol that “naively” disregards the effect of
measurement backaction. The key experimental capabilities to
execute the protocol are unitary backwards time evolution and
projective measurements of single qubits.

B. Unitarily evolved vs projectively measured OTOCs

Equation (4) is an exact relation between the OTOC C and
the correlation function C , where the latter is determined by
the probabilities P±±±±. In an experimental realization of the
measurement protocol, these probabilities must be estimated
through finite sample averages. The sampling introduces sta-
tistical errors, which, by error propagation, cause errors in
C. We illustrate the magnitude of these errors, and hence
the performance of the proposed measurement protocol when
constrained by limited resources, for spin chains with nearest-
neighbor XZ couplings,

H = −
N−1∑
k=1

(
σ x

k σ x
k+1 + σ z

k σ z
k+1

)
. (5)

For this Hamiltonian and using the initial state ρ =
(|↑ · · · ↑〉 〈↑ · · · ↑|)⊗N , we calculate the probabilities P±±±±
that determine the measurement outcomes of the protocol in
Sec. I A for the OTOC 〈σ x

i (t )σ x
j σ

x
i (t )σ x

j 〉; see Appendix A for
detailed expressions for the relevant probabilities. To simulate
a finite number of experimental runs of the measurement
protocol, we draw pseudorandom numbers according to these
probabilities and calculate a finite-sample estimator of C . In
Fig. 2 (top), the real part ReC of the exact OTOC is compared
to the finite-sample estimator of 2C − 1 for samples of size
Ns = 104. While the agreement with the exact result is ex-
cellent, small statistical errors are visible in the estimator. To
assess the magnitude of the statistical errors, we compare the
estimators obtained with sample sizes Ns = 102, and 103 in
Fig. 3. Statistical errors are found to decrease quickly with
increasing sample size, and a moderate value of Ns = 103

is sufficient to obtain relative statistical errors of only a few
percent.

C. Measurement protocol for the imaginary part

The imaginary part of an OTOC is known to contain in-
formation that is complementary to that of the real part [28],
and obtaining both is therefore desirable. The corresponding
measurement protocol we present here requires, in addition to
backward time evolution, the experimental capability to per-
form single-qubit rotations at sites i and j. The imaginary part
of the OTOC (2) can be obtained by the following sequence
of operations (see Fig. 1 for an illustration):

(i’) Prepare the initial state |ψ〉.
(ii’) Rotate spin j by an angle θ1 around the b direction.
(iii’) Time-evolve unitarily until time t .
(iv’) Rotate spin i by an angle θ2 around the a direction.
(v’) Evolve backwards in time for a time t .
(vi’) Rotate spin j by an angle θ3 around the b direction.
(vii’) Time-evolve unitarily until time t .
(viii’) Projectively measure the observable σ a

i .

FIG. 2. Real part (top) and imaginary part (bottom) of the OTOC
C as a function of time t in an XY spin chain of length N . Different
colors correspond to different pairs of lattice sites in definition (2),
as specified in the legend. Solid lines show exact results for C, the
dots mark estimated values for samples of size 104, obtained by
calculating the left-hand sides of Eq. (4) for the real part and (6) for
the imaginary part, respectively. The further apart the sites i and j, the
longer it takes until the OTOC starts to deviate from its initial value,
which is a manifestation of quasilocality in a system with short-range
interactions.

(ix’) Repeat (i’)–(viii’) many times and record the empiri-
cal mean of the measurement outcome.

This empirical mean gives an estimator of the expectation
value 〈σ a

i 〉t,θ1,θ2,θ3
with respect to the state at the end of step

FIG. 3. Magnitude of the statistical fluctuations in the estimator
2C − 1, obtained from Eq. (3) and using samples of sizes Ns = 102

(left) and Ns = 103 (right). All data are for the OTOC (2) with i = 2
and j = 3 on a chain of N = 4 sites. Solid lines show the exact result,
the dots are estimated values, fluctuating around the exact value.
The shaded area around the exact result indicates an estimate of the
statistical error, obtained by drawing multiple samples, each of size
Ns, from the probability distribution of P±±±± and then calculate the
standard deviation of the estimated values.
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(vii’) of the above protocol. We show in Appendix B that
〈
σ a

i

〉
t,−θ1,−θ2,−θ3

− 〈
σ a

i

〉
t,θ1,θ2,θ3

− 〈
σ a

i

〉
t,−θ1,θ2,−θ3

+ 〈
σ a

i

〉
t,θ1,−θ2,θ3

= 4 sin(θ2) sin(θ1 + θ3/2) sin(θ3/2)ImC(t ). (6)

Hence, the imaginary part of the OTOC (2) is obtained by
performing the above protocol (i’)–(viii’) for the four sets of
rotation angles (−θ1,−θ2,−θ3), (θ1, θ2, θ3), (−θ1, θ2,−θ3),
and (θ1,−θ2, θ3). A simple and, in some sense, optimal choice
is θ1 = θ2 = θ3 = π/2, in which case the right-hand side of
Eq. (6) simplifies to 2ImC(t ).

A comparison of finite-sample estimators of the left-hand
side of Eq. (6) and the exact OTOC is shown in Fig. 2 (bot-
tom). As expected, statistical fluctuations due to finite sample
size Ns diminish with increasing Ns, qualitatively similar to
the behavior of the real part in Fig. 3 (not shown).

II. EXPERIMENTAL IMPLEMENTATION
WITH RYDBERG ATOM ARRAYS

The requirements to implement the above described proto-
cols are coherent forward and backward time evolution under
an effective spin-1/2 Hamiltonian, as well as the capability
to conduct single-site projective measurements and single-site
spin rotations. Among the experimental platforms that allow
for coherent dynamics of many-body qubit systems, arrays of
ultracold Rydberg atoms in optical tweezers are particularly
suitable (see Ref. [29] for a review). Optical tweezers allow
the experimenter to arrange and hold the atoms in a lattice
geometry of choice, with lattice constants of the order of
micrometers. To make the atoms interact over such distances,
they are excited to Rydberg states, i.e., atomic states with a
large principal quantum number. Various schemes to emulate
spin-1/2 Hamiltonians in such arrays have been devised, giv-
ing rise to coherent spin dynamics under Ising- or XY -type
Hamiltonians. Moreover, single-site control is well estab-
lished for these platforms [30,31]. In the following we present
a solution to the remaining challenge for a successful imple-
mentation of our OTOC measurement protocol in Rydberg
platforms, namely backwards time evolution or, equivalently,
sign inversion of the Hamiltonian.

The experimental scheme we propose is based on
microwave-assisted Rydberg dressing [24]. Rydberg dressing
naturally leads to spin-1/2 degrees of freedom being encoded
in two low-lying and long-lived atomic states, with long-range
Ising interactions between the spins [32]. The strength of these
interactions can be dynamically tuned by choosing the detun-
ing of the light field, which off-resonantly couples one of the
states to a Rydberg state. Several experiments demonstrated
this technique in optical lattices and tweezers [33]. The sign of
the induced Ising interaction is determined by the sign of the
interaction in the laser-addressed Rydberg state. Implement-
ing time reversal with this technique is not straightforward, as
it requires the existence of Rydberg states with opposite sign
and near-equal magnitude of the interaction potential. Even
if a specific pair of Rydberg states is identified that meets
this special condition, interaction reversal is still a technically
demanding task requiring two distinct laser frequencies.

FIG. 4. Illustration of microwave-assisted potential inversion for
the example of 39K. (a) Interaction potential between pairs of atoms
for various eigenstates of the dipolar interaction. The thick blue line
highlights the pair potential between atoms in the |50S1/2, mF = 1/2〉
state. The energy corresponding to the laser frequency is chosen
as the energy-zero level and the polarization is such that only the
highlighted level is coupled from the ground state. (b) Switch-
ing on microwave radiation with a frequency of 27.592 GHz, the
|50S1/2, mJ = 1/2〉 state is coupled to the |50P1/2, mJ = 1/2〉 state.
As a result, the pair potentials highlighted as the thick red lines
emerge from the blue line in (a) as microwave-dressed pair-states.
The plotted data assumes linear polarization and a realistic choice of
the Rabi frequency of about 30 MHz. The shading of the colored lines
in (a) and (b) is chosen proportional to the laser coupling strength.
The weakly visible gray lines indicate other pair states which are
not coupled by the laser. (c) Resulting dressed Ising interactions in
the electronic ground state for a laser red-detuned by 4 MHz with
respect to the single-atom resonance and 4.4 MHz blue-detuned to
the lower of the microwave-shifted states. The laser Rabi frequency
has been set to 2 MHz. The lower branch arises when the microwave
is off from dressing to the highlighted potential in (a), the lower from
dressing to the microwave-engineered potentials in (b).

Here we show, for the example of 39K atoms, that this
difficulty can be overcome, and sign inversion of the Ising
interactions can be implemented, by strong microwave cou-
pling of the van der Waals pair-potential curve to a dipolar
potential curve. The blue line in Fig. 4(a) shows the interaction
potential between pairs of atoms in the |50S1/2, mF = 1/2〉
state, where the zero-energy level is chosen to coincide with
the laser with the laser-targeted energy. When switching on
microwave radiation with a frequency of 27.592 GHz, the
|50S1/2, mJ = 1/2〉 state is coupled to the |50P1/2, mJ = 1/2〉
state, resulting in the pair potential shown in red in Fig. 4(b).
The splitting of the two emerging potential branches at large
distances is determined by the Autler-Townes splitting of
the single-atom state. At shorter distances of around 3–4
µm, the signature of an avoided level crossing is visible.
For microwave interaction of a suitably chosen strength, the
avoided level crossing is opened up to an extent such that the
lower branch in Fig. 4(b) becomes the reflection image of the
blue line in Fig. 4(a) around the laser-targeted energy. This
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property of one pair potential being the reflection image of
another then gets imprinted onto the corresponding Ising
interactions, as illustrated in Fig. 4(c). These results were
obtained with the “pairinteraction” software [34], which diag-
onalizes the two-atom Hamiltonian, including magnetic fields
and dipolar interactions. We extended the software to also
include the effect of microwave coupling in the diagonal-
ization. Figure 4(c) illustrates that, by merely switching on
or off the microwave-induced coupling, the sign of the Ising
interaction is inverted, and hence backward time evolution can
be realized. The Rydberg dressing approach discussed here
has the advantageous feature that the atoms remain trapped in
the optical tweezers during the entire sequence, and that forces
between the atoms remain small. This avoids decoherence
due to uncontrolled coupling to motional degrees of freedom,
which otherwise would corrupt time reversal.

III. SUMMARY AND OUTLOOK

The results presented in this article lay out a path towards
measuring OTOCs for arbitrary many-body qubit systems
and initial states. Unlike other measurement protocols of that
generality, our proposal requires neither randomized mea-
surements nor the use of ancilla degrees of freedom. In
our protocol, real and imaginary parts of the OTOC are
measured separately, both requiring local control (single-
site measurements and single-site rotations, respectively) in
the experiment. In addition, coherent forward- as well as
backward-in-time evolution are needed.

We demonstrate the feasibility of the proposed measure-
ment protocol for Rydberg-dressed atoms in optical tweezers.
While single-site measurements and rotations are readily
available in this platform, Hamiltonian sign inversion, which
facilitates backward-in-time evolution, has hitherto been miss-
ing. We introduced a method that facilitates sign inversion
through microwave-assisted Rydberg dressing, thus complet-
ing the tool set for successfully implementing our OTOC
measurement protocol in arrays of Rydberg atoms. This paves
the way for experimental explorations of equilibrium and
nonequilibrium situations through OTOCs in these platforms,
including the detection of quantum chaos [35], the monitoring
of thermalization and the scrambling of quantum information
[7,8,28], or more exotic tasks like the probing of excited-
state quantum phase transitions [36]. We expect our protocol
to become applicable in other many-body qubit systems or
analog quantum simulators of spin-1/2 Hamiltonians in the
near future.

Note added. Recently, we became aware of Ref. [37], in
which sign inversion in a bulk Rydberg gas implementing the
dipolar XXZ model was demonstrated.
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APPENDIX A: PROOF OF EQ. (4)

Denote by �
±a
i the projector onto the ± eigenstate of the

Pauli operator σ a
i .

In the course of the protocol (i)–(viii) the system state goes
through the following stages:

(i) Initial state ρ.
(ii) After the first measurement, and depending on the

outcome ± of the measurement, the state is

ρ±
1 = �

±b
j ρ�

±b
j /P±, (A1)

where

P± = Tr
(
ρ�

±b
j

)
(A2)

is the probability of measuring + or −.
(iv) After the second measurement, and depending on the

outcome ± of the first measurement (ii) and the outcome ± of
the second measurement (iv), the state is

ρ±±
2 = �

±a
i e−iHtρ±

1 eiHt�
±a
i /P±|±, (A3)

where

P±|± = Tr
(
e−iHtρ±

1 eiHt�
±a
i

)
(A4)

is the conditional probability of measuring ± in the second
measurement after having measured ± in the first measure-
ment.

(vi) Similarly one obtains

ρ±±±
3 = �

±b
j eiHtρ±±

2 e−iHt�
±b
j /P±|±± (A5)

with

P±|±± = Tr
(
eiHtρ±±

2 e−iHt�
±b
j

)
(A6)

after the third measurement.
(viii) And

ρ±±±±
4 = �

±a
i e−iHtρ±±±

3 eiHt�
±a
i /P±|±±± (A7)

with

P±|±±± = Tr
(
e−iHtρ±±±

3 eiHt�
±a
i

)
(A8)

after the fourth measurement.
The probability of finding a specific sequence of the four

measurement outcomes ± is then given by

P±±±± = P±P±|±P±|±±P±|±±±. (A9)

Inserting Eqs. (A1)–(A9) into the correlation function (3), the
latter can be written as

C (t ) =
∑

o1,o2,o3,o4∈{−,+}
o1o2o3o4

× Tr
[
�

o4
i (t )�o3

j �
o2
i (t )�o1

j ρ�
o1
j �

o2
i (t )�o3

j

]
, (A10)

where �o
i (t ) := eiHt�o

i e−iHt . Making use of the spectral
representation

σ a
i = �

+a
i − �

−a
i =

∑
o4∈{−,+}

o4�
o4
i (A11)

013303-5



KASTNER, OSTERHOLZ, AND GROSS PHYSICAL REVIEW A 110, 013303 (2024)

as well as the linearity of the trace, one obtains

C (t ) =
∑

o1,o2,o3∈{−,+}
o1o2o3Tr

[
σ a

i (t )�o3
j �

o2
i (t )�o1

j ρ�
o1
j �

o2
i (t )�o3

j

]
. (A12)

Using the completeness relation �
o3
j = 1 j − �

−o3
j on the second occurrence of �

o3
j in Eq. (A12), C can be rewritten as

C (t ) =
∑

o1,o2∈{−,+}
o1o2Tr

⎡
⎣σ a

i (t )

⎛
⎝ ∑

o3∈{−,+}
o3�

o3
j

⎞
⎠�

o2
i (t )�o1

j ρ�
o1
j �

o2
i (t )

⎤
⎦

−
∑

o1,o2,o3∈{−,+}
o1o2o3Tr

[
σ a

i (t )�o3
j �

o2
i (t )�o1

j ρ�
o1
j �

o2
i (t )�−o3

j

]
. (A13)

The second line of (A13) can be simplified by recognizing that the term in round brackets is the spectral representation of
σ b

j = �
+b
j − �

−b
j . Writing out the remaining o3 sum in the bottom two lines of (A13) and using the cyclic invariance of the

trace, one obtains

C (t ) =
∑

o1,o2∈{−,+}
o1o2

(
Tr

[
σ a

i (t )σ b
j �

o2
i (t )�o1

j ρ�
o1
j �

o2
i (t )

] − Tr
[
σ a

i (t )�+b
j �

o2
i (t )�o1

j ρ�
o1
j �

o2
i (t )�−b

j

]

+ Tr
[
�

−b
j �

o2
i (t )�o1

j ρ�
o1
j �

o2
i (t )�+b

j σ a
i (t )

])
. (A14)

The operator products in the second and third trace in Eq. (A14) are Hermitian conjugates of each other. Hence, the difference
of the traces can be expressed as an imaginary part, yielding

C (t ) = 2i Im c3 +
∑

o1,o2∈{−,+}
o1o2Tr

[
σ a

i (t )σ b
j �

o2
i (t )�o1

j ρ�
o1
j �

o2
i (t )

]
(A15)

with

c3 =
∑

o1,o2∈{−,+}
o1o2Tr

[
�

−b
j �

o2
i (t )�o1

j ρ�
o1
j �

o2
i (t )�+b

j σ a
i (t )

]
. (A16)

Next we apply the completeness relation �
o2
i = 1 j − �

−o2
i and the corresponding spectral representation to the first occur-

rence of �
o2
i in Eq. (A15), which yields

C (t ) = 2i Im c3 +
∑

o1∈{−,+}
o1Tr

[
σ b

j �
o1
j ρ�

o1
j

] −
∑

o1,o2∈{−,+}
o1o2Tr

[
σ a

i (t )σ b
j �

−o2
i (t )�o1

j ρ�
o1
j �

o2
i (t )

]
. (A17)

Applying the same completeness relation and spectral representation to the second occurrence of �
o2
i in Eq. (A15), one obtains

C (t ) = 2i Im c3 +
∑

o1∈{−,+}
o1Tr

[
σ a

i (t )σ b
j σ

a
i (t )�o1

j ρ�
o1
j

] +
∑

o1,o2∈{−,+}
o1o2Tr

[
σ a

i (t )σ b
j �

−o2
i (t )�o1

j ρ�
o1
j �

o2
i (t )

]
. (A18)

Summing Eqs. (A17) and (A18) gives

2C (t ) = 4i Im c3 +
∑

o1∈{−,+}
o1Tr

[
σ b

j �
o1
j ρ�

o1
j

] +
∑

o1∈{−,+}
o1Tr

[
σ a

i (t )σ b
j σ

a
i (t )�o1

j ρ�
o1
j

]
. (A19)

Similarly, by applying the completeness relation �
o1
j = 1 j −

�
−o1
j and the corresponding spectral representation to the

second occurrences of �
o1
j in the first as well as the second

trace of Eq. (A19), one arrives at

2C (t ) = 2i Im(c2 + 2c3) + C(t ) + 1 (A20)

with

c2 =
∑

o1∈{−,+}
o1Tr

[
�

−b
j ρ�

+b
j σ a

i (t )σ b
j σ

a
i (t )

]
. (A21)

The first term on the right-hand side of Eq. (A20) is purely
imaginary, whereas C is real by definition (3). Hence, by
taking the real part on both sides of the Eq. (A20) one arrives
at Eq. (4).

APPENDIX B: PROOF OF EQ. (6)

Spin rotations at the lattice site i around the a axis by an
angle θ are described by the unitary rotation operator

Ra
i (θ ) = exp

( − iσ a
i θ/2

) ≡ cos(θ/2) − i sin(θ/2)σ a
i . (B1)

After step (vii’) of the rotation protocol the system is in the
state

R(t, θ1, θ2, θ3) ρ R(t, θ1, θ2, θ3)† (B2)

with

R(t, θ1, θ2, θ3) := e−iHt Rb
j (θ3)eiHt Ra

i (θ2)e−iHt Rb
j (θ1). (B3)

Using this expression to calculate the expectation values of σ a
i

on the left-hand side of Eq. (6) results in a lengthy expression
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with numerous combinations of sine and cosine terms. Sim-
plifying these terms, either by hand in a tedious calculation or
quickly using Mathematica, establishes the validity of Eq. (6).

This calculation makes repeated use of the involution (σ a
i )2 =

1, which is an indication that the measurement protocol is
unlike to hold beyond bivariate observables.
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