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Controlling quantum vortex dynamics and vortex-antivortex annihilation in Bose-Einstein
condensates with optical lattices
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Superfluids with strong spatial modulation can be experimentally produced in the area of cold atoms under the
influence of optical lattices. Here we address 87Rb bosons at T = 0 K in a flat geometry under the influence of a
periodic potential with the Gross-Pitaevskii theory. The statics and dynamics of vortex excitations are studied in
the case of one-dimensional (1D) and of two-dimensional (2D) optical lattices, as function of the intensity of the
optical lattice. We compute how the vortex energy depends on the position of its core and the energy barrier that
a vortex has to surmount in order to move in the superfluid. The dynamics of a vortex dipole, a pair of vortices of
opposite chirality, differ profoundly from the case of a uniform superfluid. In the 1D case, when parallel ridges
of density are present, the dynamics depends on the positions of the two vortices. If they are in the same channel
between two ridges, then the two vortices approach each other until they annihilate each other in a short time. If
the two vortices are in distinct channels, the dipole undergoes a rigid translation but with a velocity depending
on the intensity of the optical lattice and this translation velocity can even change sign with respect to the case of
the uniform superfluid. Superimposed on this translation an oscillatory motion is also present. A superposition
of translation along a channel and an oscillation is also found with a single vortex when the system is bounded
inside a circular trap. These oscillatory motions can be both longitudinal, i.e., along the channel, as well as
transverse. In all cases the transverse motions are one sided, in the sense that the vortex core never crosses the
equilibrium position nearest the starting position. In the case of the 2D lattices we study (square, triangular, and
honeycomb), the two vortices of a dipole move mainly by jumps between equilibrium positions and approach
each other until annihilation. This behavior has some similarity with what has been found for a vortex dipole
in the supersolid state of dipolar bosons. We show that a rapid ramp down of the optical potential improves the
visibility of the density holes at the vortex core.

DOI: 10.1103/PhysRevA.110.013302

I. INTRODUCTION AND SUMMARY

One of the key properties of a superfluid is the presence of
quantized vorticity. In the case of bosons this has been exper-
imentally verified in superfluid 4He [1] and in Bose-Einstein
condensates (BEC) of cold atoms [2]. A quantum vortex is
an excitation of the system with quantized circulation and
angular momentum and usually such excitation is studied in
a superfluid that is uniform or with an inhomogeneity that is
weak on the scale of the healing length of the superfluid. At
present there is the possibility of studying vortices in spatially
strongly inhomogeneous systems, both in terms of the spatial
scale as well as in terms of large contrast between the maxi-
mum and the minimum densities. In the realm of cold atoms it
is possible to generate a periodic potential (optical lattice, OL)
acting on the atoms and this potential is obtained by standing
waves of suitable crossing light beams [3]. The period of the
optical lattice can be comparable to the healing length and
the local density can vary even by orders of magnitude. A
recent experiment [4] has verified the theoretical prediction
[5] that even at the lowest temperatures the superfluid fraction
of the superfluid is less than unity due to the induced density
modulation.

Another system that is predicted to be a spatially strongly
inhomogeneous superfluid is a submonolayer of 4He adsorbed
on a substrate of fluorographene, a sheet of graphene deco-
rated by fluorine atoms. The adsorption potential of a He atom
on this substrate is strongly corrugated but not so much to
cause localization of the atoms like on graphite. Theory [6]
shows that the system is superfluid and the local density has a
very large excursion in space. A supersolid (SS) offers another
example of a strongly inhomogeneous superfluid. In a SS the
inhomogeneity arises from a spontaneous broken symmetry of
the translational invariance. Such SS state has been found in
cold-atom systems, for instance, in dipolar bosons like 164Dy
[7]. Again the local density can vary by a large amount and
the healing length is comparable with the lattice parameter of
the SS.

Different ways have been devised to create vortices in
BEC superfluids, such as phase imprinting [8], by dragging
obstacles [9], by means of artificial gauge fields [10], and
more recently using a versatile, deterministic two-dimensional
(2D) vortex collider in homogeneous atomic superfluids [11].

Complex dynamics of vortices under the action of the
optical lattice in a trapped BEC sample have been unveiled
in a theoretical study of vortices within the two-dimensional
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Gross-Pitaevskii (GP) equation with the OL and magnetic trap
[12], where it was found that depending on the phase of the
OL relative to the parabolic magnetic trap, it is possible either
to trap the vortex at the center of the trap, or the vortex moves
along an unwinding spiral, towards the periphery of the trap.

The interplay of lattice physics and rotation physics was
studied by calculating the vortex-lattice structures near a Mott
transition [13]. A single BEC loaded in a rotating OL can
show a rich variety of vortex structural transitions [14].

There have been predictions of novel types of vortex
states of repulsive BECs confined by a shallow optical lattice
(matter-wave gap vortices), which are spatially localized and
dynamically stable in 2D as well as in three-dimensional (3D)
optical lattices [15].

A somewhat related topic (vortex solitons in BEC stabi-
lized by optical lattices) has been addressed in Ref. [16].

Interestingly, vortex dynamics in nonhomogeneous sys-
tems can be linked to “glitches” in rotating pulsars, i.e., a
sudden speedup of the spinning stars, occurring at random
intervals. These events are believed to be a manifestation of
the presence of a superfluid component in the stellar interior,
the glitch occurring when many vortices jump from the inside
of the star to the solid crust, transferring angular momentum
and thus speeding it up. It has been shown recently, using
cold-atom experiments as analogs of neutron stars, that this
requires simultaneous crystalline and superfluid phases, i.e., a
supersolid state [17].

A subject that apparently has received very little attention
is the behavior of vortex dipoles. Such configurations have
been experimentally obtained in BEC in the work of Ref. [9].
However, topics such as the interaction of such dipoles and the
ensuing dynamics are still unexplored. Our study provides an
insight into these issues, and how they are modified by optical
lattice.

All this gives a motivation for studying vortices in strongly
inhomogeneous superfluids, the aim of this paper. We show
how strongly the dynamics of vortices and the lifetimes of
pairs of vortex-antivortex are affected by an optical potential.
The experimental realization of generation of vortex dipoles
in a suitable trap for cold atoms [11] opens the possibility of
experimental verification of our predictions.

Vortices in the SS state of matter in dipolar bosons have
been addressed [18–21] in recent years and some relevant
phenomena have been uncovered, like a reduced angular mo-
mentum associated to the quantum of circulation [18]. A
peculiar behavior has been found [21] in the dynamic of a
vortex dipole, i.e., a pair of vortices of opposite chirality, in
a SS. In a uniform superfluid, when the distance l between
the two vortices is larger than the healing length ξ , the pair is
a stable entity and moves with a constant velocity as a rigid
body in a direction perpendicular to the vector �l joining the
two vortices. Contrary to this, in dipolar bosons in a SS state
it was found that the two vortices move by jumps between
equilibrium sites in the lattice and approach each other until
the two vortices annihilate themselves in a short time. At the
basis of this behavior is a basic property of a vortex in a SS:
it is energetically favorable to have its core at a discrete set of
positions, the locus of minimum density. The natural question
is if such properties are specific of a SS state or if they are
generic ones when a density modulation is present, whatever

is its origin. To answer this question we address in this paper
the study of bosons in an external periodic potential like
that produced by light standing waves. We study the ground
state and vortices of the standard model of BEC, pointlike
bosons with a contact interaction, in the case of 87Rb with
the Gross-Pitaevskii equation in an external periodic potential
Vext(�r). We consider the case of modulation in one dimension
(1D) and in two dimensions (2D) for three lattices: square,
triangular, and honeycomb.

The system is subject to periodic boundary conditions in
all three space directions, and translational invariance along
the z direction perpendicular to the lattice potential plane is
assumed. The length in the z direction is of order of the
healing length of the superfluid so that the system can be
considered as a quasi-two-dimensional system.

In the studied range of intensity of our optical potentials
we find that the bosons are in a superfluid state with a reduced
superfluid fraction. The local density is a periodic function
of position reflecting the symmetry of the optical potential
and the excursion between maxima and minima can be very
large, depending on the strength of the modulation of Vext(�r).
In a uniform superfluid the vortex excitation energy �Ev does
not depend on the position of its core. On the contrary, in the
presence of the optical potential �Ev depends on the position
of its core and it is a strong function of the local density. The
minima of �Ev are at the positions of the minima of the local
density, i.e., at the maxima of Vext(�r), consistently with the
observation of pinning of the vortex at the low-density site
of an OL was observed [22]. Therefore, �Ev is a periodic
function of position and this has a dramatic effect on the
dynamics of vortices. The flow field of a vortex is strongly
deformed from the circular shape of the uniform case and we
characterize the vortex excitation energy and its structure as
function of the amplitude of the optical potential.

The dynamics of a vortex dipole is also strongly affected by
the presence of the optical potential. For a 2D potential, where
the equilibrium positions of the vortex are isolated points,
the dipole moves mainly by jumps between equilibrium sites
approaching each other until the two vortices annihilate them-
selves in a short time. In our theory no thermal or stochastic
effects are present and these jumps are manifestations of tun-
neling of the vortices between equilibrium sites.

The behavior is different in the case of a 1D modulation
where the equilibrium positions for a vortex form a series of
parallel lines in the x − y plane.

If the two vortices of the dipole are located in the same
channel they do not translate but they move one against the
other until they annihilate and the excitation energy goes into
phonons of the superfluid. If the two vortices are located in
adjacent channels they move along these channels and the
motion is a composition of a uniform translation and of an
oscillation. In all cases the translation velocity of the pair
differs from that expected for a uniform superfluid and it can
even invert the direction of motion for large amplitude of the
optical potential. A combination of translation and oscillation
is found also for a single vortex in a trap in presence of a 1D
OL. The frequency of this oscillation is the same as in the case
of a vortex dipole moving along two neighboring channels.
Therefore, this oscillatory motion seems to be an intrinsic and
unique character of the motion of a vortex moving along a
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channel. Notice that this oscillatory motion is quite different
from that of a massive particle around a minimum energy
position because the vortex oscillation is one sided, i.e., the
vortex never crosses the position of the minimum energy and
it remains on the side from which it started.

The local density goes to zero at the position of the vortex
core. In the case of a strong modulation experimentally it
can be difficult to detect the presence of a vortex because
there is a small contrast between the vanishing density of the
vortex core and the small value of the density at the minima of
the modulated system. We show that by starting from a state
with a number of vortices in the modulated superfluid, such
vortices remain in the homogeneous superfluid after that the
optical potential is suddenly removed, allowing for an easier
visual detection due to the increased contrast between the
vanishing density at the core positions and the density of the
surrounding, almost homogeneous, phase.

The content of the paper is as follows. In Sec. II the theory
and the computational method are described. In Sec. III the
ground state, the vortex state, and the dynamics of a vortex
pair are studied in the case of 1D optical potential. In this
section we study also the dynamics of a vortex when the
system in confined in a circular trap in the x − y plane. The
case of 2D optical potentials is studied similarly in Sec. IV. In
Sec. V we study the time evolution of a confined system after
the optical potential is removed, as a way to directly image
vortex positions in these highly inhomogeneous systems. Our
conclusions are contained in Sec. VI.

II. METHOD

The Gross-Pitaevskii (GP) energy functional for the Bose
system reads as

E =
∫

dr

[
h̄2

2m
|∇ψ (r)|2 + V (r)ρ(r)

]
+ 1

2
g
∫

dr ρ2(r),

(1)
where V (r) and ρ(r) = |ψ (r)|2 represent the external poten-
tial and the boson number density, respectively. The coupling
constant is g = 4πash̄

2/m, m being the atomic mass. The
number density ρ is normalized such that

∫
V ρ(r) dr = N

where N is the total number of atoms. As model system we
take 87Rb atoms and the scattering length as describing the
(repulsive) Rb-Rb interaction is as = 100.4 a0 [23] (a0 being
the Bohr’s radius).

Minimization of the action associated to Eq. (1) leads to
the following Euler-Lagrange equation (GP equations):

ih̄
∂ψ (�r, t )

∂t
=

[
− h̄2

2m
∇2 + V (�r) + gρ(�r, t )

]
ψ (�r, t )

≡ Hψ (�r, t ). (2)

When steady states are studied, the left-hand side of Eq. (2)
is replaced by µψ (�r, t ) where µ is the chemical potential.
The numerical solutions of Eq. (2) provide the time evolution
of the 87Rb system with arbitrary N in three dimensions.
The same equation in imaginary time allows us to obtain
stationary-state solutions starting from a suitable initial func-
tion. µ is determined so that the desired value of N is achieved.
We consider an external potential depending only in x and y.

In our computations the length Lz of the computation box
is much smaller than the other sides. Under this condition
we simplify the computation by neglecting the dependence of
ψ on the z coordinate and therefore the calculations become
effectively two dimensional. Accordingly, vortex states con-
sidered here are not subject to three-dimensional instabilities
like corrugation or bending of the vortex core as the transverse
dimension is effectively suppressed. For this reason often in
the following we will describe the properties of the system as
it appears in the x − y plane only.

Equation (2) is solved either in real or imaginary time by
using Hamming’s predictor-modifier-corrector method initi-
ated by a fourth-order Runge-Kutta-Gill algorithm [24]. The
spatial mesh spacing and time step are chosen such that,
during the real-time evolution, excellent conservation of the
total energy of the system is guaranteed.

We will use in this work different forms for the external
potential V appearing in the GP equation (2). In particular,
we will consider periodic potentials both in one dimension
and in two dimensions, as described in the following sections.
These potentials are easily produced in experiments using
crossed laser fields with appropriate wavelengths (optical lat-
tices, OL).

III. 87Rb IN 1D OPTICAL LATTICE

One-dimensional lattice potentials are often used in ex-
periments. In the simplest form, like the one used here, they
produce modulated density patterns characterized by a peri-
odic alternation of stripes of maxima and minima in the gas
density. Here we consider the form

VOL(x) = 2V0 cos2(kx). (3)

The wave vector k determines the lattice constant of the
periodic potential d = 2π/k. For the cases investigated here
we chose d = 60 000 a0 = 3.175 µm. The sizes of the super-
cell in the x − y plane are, for most of the calculations done,
Lx = Ly = 44.45 µm, corresponding to 14 stripes in the x
direction, although for the sake of visibility the plots shown in
this paper are often limited to smaller portions of the supercell.

Along the z direction we chose the value Lz = 1.429 µm.
The total number of atoms N in most of our calculations
is chosen so that it corresponds to an areal density na =
N/(LxLy) = 9.92 µm−2. In the following, some calculations
will be performed using larger supercell sizes Lx, Ly, corre-
sponding to 20 stripes in the x direction. However, we will
always take the number of atoms N such that the areal density
na = N/(LxLy) is not changed.

The healing length for the uniform system (V0 = 0) is
ξ = h̄/

√
2mμ = 1.039 µm, where µ= gρ is the Rb chemical

potential in the absence of the lattice modulation. Notice that
Lz is of the same order of magnitude of the healing length, and
therefore our system can be considered quasi-2D. Due to the
imposed translational invariance along the z direction, along
which the density is therefore constant, the calculations are
effectively two dimensional, involving a spatial discrete mesh
only in the x − y plane.

We will consider different values for the potential strength
V0 in the following, and often the following values V0 =
2, 4, 7, 9 × 10−14 Ha have been used.
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FIG. 1. Density profiles (in units of cm−3) along the x axis, for
different values of Ṽ . From the highest to the lowest peak values:
Ṽ = (7, 4, 2).

It is customary to express the lattice well depths V0 in terms
of the so-called recoil energy as V0 = sER, where

ER = h̄2π2

2md2
. (4)

In the present case ER = 8.600 × 10−15 Ha. The values of V0

quoted above therefore correspond to s = 2.3, 4.6, 8.1, 10.5.
For much larger values of the s bosons are expected to become
localized forming rows of independent quasi-one-dimensional
superfluids.

In the following we will use a more manageable notation
where the optical potential strength V0 is expressed in terms
of an adimensional quantity Ṽ such that V0 = Ṽ × 10−14 Ha
= Ṽ × 3.158 nK.

In Fig. 1 we show for some values of Ṽ the density along
the x axis, the direction of the modulation showing the peri-
odic alternation of minima and maxima in the density profile.
The values of the density at these extrema are reported in
Table I, together with the calculated chemical potentials.

It can be noticed that already an intensity Ṽ = 4 the max-
imum density is 10 times larger of the minimum density.
Despite such large inhomogeneity the system is superfluid.
The superfluid fraction can be computed from the nonclassical

TABLE I. Ṽ is the amplitude of the periodic potential; ρmin and
ρmax are the density values at the bottom and top of the modulated
density; µ is the chemical potential and fs is the superfluid fraction in
the x direction computed from the nonclassical translational inertia.

Ṽ ρmin (cm−3) ρmax (cm−3) µ (nK) fs

0 6.943 × 1012 6.943 × 1012 2.584 1
2 2.609 × 1012 1.256 × 1013 8.062 0.744
4 0.777 × 1012 1.696 × 1013 11.923 0.355
7 0.136 × 1012 2.098 × 1013 15.839 0.095

FIG. 2. Superfluid fraction in the 1D lattice as a function of Ṽ in
the direction of the modulation.

translational inertia [25] as

fs = 1 − lim
vx→0

〈P̂x〉
Nmvx

, (5)

where 〈P̂x〉 = −ih̄
∫

ψ∗(�r)∂ψ (�r)/∂x d�r is the expectation
value of the momentum in the x direction of the 87Rb and
Nmvx is the total momentum of the system if all the atoms
were moving with the constant velocity vx.

Alternatively, one could estimate the superfluid fraction
using Leggett’s formula [5]

fs = L2
x∫ Lx

0 dx〈n(x)〉 ∫ Lx

0 dx〈n(x)〉−1
(6)

where 〈n(x)〉 is the number density of the ground-state con-
figuration averaged over the transverse y − z directions. The
above quantity represents a rigorous upper bound to the super-
fluid fraction, and it was shown recently that under conditions
relevant for most ultracold experiments the two definitions (5)
and (6) provide surprisingly close values for the superfluid
fraction. We indeed find that the values of fs from the two
definitions above agree with each other to within 1%, in agree-
ment with the findings.

The dependence on Ṽ of the superfluid fraction (in the
direction parallel to the modulation) is shown in Fig. 2 and
the values of fs for some values of Ṽ are given in Table I. We
notice that the suppression of the superfluid fraction in the di-
rection of the modulation is quite substantial. In the direction
perpendicular to the modulation, i.e., in the y direction, the
superfluid fraction is unity in all cases. Therefore, we have a
strongly anisotropic superfluid.

A. Single-vortex properties

A linear, singly quantized vortex excitation in the z direc-
tion, with the core in the position (xv, yv ), can be generated
by the “phase imprinting,” i.e., we compute the lowest-energy
state obtained by starting the imaginary-time evolution from
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the initial wave function

ψv (r) = ρ
1/2
0 (r)

[
(x − xv ) + i(y − yv )√
(x − xv )2 + (y − yv )2

]
, (7)

where ρ0(r) is the ground-state density of the vortex-free
system. This wave function has unit circulation in the x − y
plane and it is orthogonal to the ground state. Such properties
are maintained during the imaginary-time evolution until the
lowest-energy state with such properties is reached. During
this evolution, the vortex position and core structure change to
provide at convergence the lowest-energy configuration for a
vortex with unit of circulation h/m in the clockwise direction.
The sign of the circulation can be changed by changing the
sign of the complex i in Eq. (7). We have verified that it is
possible to study the dynamics of a vortex also in real time
when it is started from a nonstationary position. In fact, in
this case we find that the evolution in imaginary time has a
rapid transient during which the imprinted phase and modulus
of Eq. (7) are modified reflecting the presence of the external
potential. During this stage the initial vortex core position is
essentially unaffected and it is only for much larger imaginary
times that the vortex core position migrates to the nearest
equilibrium position. The protocol we follow for real-time
study of a vortex is therefore to perform a short imaginary-
time evolution and after to evolve the system in real time.

The flow field of a linear vortex has a long-range character
∼1/r, where r is the distance from the position of the vortex
core. We have imposed antiperiodic boundary conditions [26]
in order that the condition of no flow across the boundary of
the computational cell is satisfied [21]. This is equivalent to
sum over the phases of an infinite array of vortex-antivortex,
i.e., a vortex of opposite chirality is present in each nearest-
neighbor cell of the computation cell [27]. Equation (7) can
be easily generalized to accommodate a vortex array made
of an arbitrary number of vortices and/or antivortices [28].
The case of a pair of vortices with opposite circulation (vortex
dipole) will be considered in the following. In the case of a
vortex dipole we impose, however, the usual periodic bound-
ary conditions since the flow fields of the two vortices tend to
cancel at the cell boundaries.

In general, we find that the stable vortex positions are at
the sites of minimum density, i.e., at the locus of maxima of
the external potential (see also the following sections, where
different types of optical lattices are employed), in agreement
with earlier observations [22]. In the case of the present one-
dimensional lattice potential the stable positions correspond
to the set of lines in the y direction (or better planes if we
consider also the z direction) where the density is minimum.
Therefore, these lines are at the bottom of a kind of channels
along which a vortex can freely move with no change of
energy.

The equilibrium vortex structure at one of such sites is
shown in Fig. 3 for the case Ṽ = 2. The streamlines for the
velocity field (lines that are tangential to the instantaneous
velocity direction) �v = h̄∇φ/m (φ being the phase of the
wave function) are shown in Fig. 4.

Notice the strong deformations with respect to the circular
patterns expected from a vortex in a homogeneous system. In
order to display these deformations more clearly in Fig. 5 we

FIG. 3. Structure of a singly quantized vortex at x = y = 0, one
of the stable sites at the density minimum, for the case Ṽ = 2. The
density is in units of cm−3.

also show the streamlines of the modified phase φ̃ as defined
in Eq. (8) further on. φ̃ represents the deviation of the phase
from the imprinted phase in Eq. (7).

Aside from the stable positions at the bottom of the low-
density channels, there are also metastable positions at the
density maxima, with higher energy than the equilibrium one.
The associated energy barrier for vortex migration from one
channel to the neighboring one depends on the amplitude of
the modulation.

In Table II the vortex excitation energy and the energy
barrier, both per particle and per unit length of the vortex, as
well as the angular momentum are reported for selected values

FIG. 4. Streamlines for a vortex in the one-dimensional lattice,
for the case Ṽ = 2. The x and y axes show coordinates in µm.
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FIG. 5. Streamlines of �∇φ̃ for a vortex in the one-dimensional
lattice, for the case Ṽ = 2. The x and y axes show coordinates in µm.

of Ṽ . The vortex excitation energy �Ev is finite because the
computation box is finite (in an infinite system �Ev would
diverge with the size of the system in a logarithmic way). �Ev

in the modulated system is smaller than in the uniform system
and it decreases for increasing Ṽ because the vortex core is
located in a region where the density decreases as Ṽ increases.
The energy barrier is a strongly increasing function of Ṽ and
this reflects the strong variation of the ratio ρmax/ρmin. We
notice also the reduced value of the angular momentum and
this reflects the reduced superfluid fraction in presence of the
modulation. In the homogeneous state (Ṽ = 0) the angular
momentum deviates from the theoretical value Nh̄ due to the
boundary effect of the computation box.

B. Vortex dipole properties

Due to the presence of particular stable sites for a vortex
caused by the presence of the spatial periodicity imposed
by the optical lattice potential, a number of properties are

TABLE II. �Ev = (EH − E0 )/Lz is the energy (per unit length)
cost to create a vortex in the minimum density sites, E0 being the
energy value (per atom) in the absence of the vortex; (EB − EH )/Lz

is the energy barrier (per unit length) to move a vortex across the
maximum density ridge; 〈L̂z〉 is the angular momentum along the z
axis in units of Nh̄.

Ṽ �Ev/N (nK/µm) (EB − EH )/N (nK/µm) 〈L̂z (Nh̄)

0 0.022 0.925
2 0.018 0.0026 0.788
4 0.011 0.0062 0.492
7 0.005 0.0109 0.198

expected to differ from those in a (nearly homogeneous) su-
perfluid.

In classical hydrodynamics of incompressible fluids, a
vortex dipole is a stable entity that moves with a constant
velocity that is perpendicular to the plane defined by the vor-
tex axis and the vector �l joining the vortex and the antivortex
core positions and inversely proportional to the distance l
between them. The same behavior holds in superfluid sys-
tems [1,29] when l is much larger than the healing length,
and the vortex dipole propagates with a constant velocity
vd = h̄/(ml ). For example, in the absence of any modula-
tion, a vortex-antivortex pair separated by a distance equal
to l = 4d = 12.7 µm is found to translate with a constant
velocity 0.058 ± 0.002 µm/ms (the error bar being estimated
from the fit to the calculated data), to be compared with the
hydrodynamical theoretical value vd = 0.057 µm/ms.

We have studied the real-time evolution of a vortex dipole
imprinted in the superfluid in a 1D optical lattice described
above. The position of the vortex core is located at each
time step by carefully scanning the spatial mesh to find the
minimum in the density corresponding to the vortex core. In
particular, we will consider two different initial states for the
vortex-antivortex pair, i.e., (i) the vortices are located in differ-
ent minimum energy channels, at initial positions x = ±2d ,
where d is the lattice constant; (ii) the vortices are located in
the same channel (at x = 0), at initial positions y = ±2d .

In the case (i) we find that the vortex pair moves with a
roughly constant velocity, the two vortices remaining in the
same initial channel. The translation velocity decreases as
the intensity Ṽ increases until between 4 and 6 the velocity
changes sign, i.e., it is in the opposite direction of motion
compared to that of the homogeneous superfluid. This is
shown in Fig. 6. Superimposed on the translation is a weak
oscillation for small values of Ṽ but the oscillation becomes
very intense for large values of Ṽ , for the largest intensity
the motion periodically changes direction. The period of this
oscillation becomes shorter for increasing Ṽ . For Ṽ = 7 the
period is about 1.9 ms−1. We will discuss more quantitatively
the origin of some of these effects in the following.

This behavior of the dynamics of the vortex dipole in dis-
tinct channels appears to be quite general: (a) we have verified
this when the vortex and the antivortex lie farther apart in
channels, (b) when the vortex and the antivortex start with a
different y coordinate they rapidly synchronize their motion
at a common y coordinate, i.e., they minimize their distance
remaining in the initial channels.

A rather peculiar behavior occurs when the initial positions
of the two vortices in different channels do not coincide with
the stable positions at the density minima, but are rather
slightly displaced with respect to it, in opposite directions.
During the ensuing dynamics, the vortices are found to move
along the channels with complex trajectories shown in Fig. 7.
Such trajectories are the result of a uniform translation along
the y direction and of two oscillatory motions (occurring
with the same frequency) along x and y directions. It should
be stressed that this oscillatory motion perpendicular to the
direction of translation is not an oscillatory motion around
the position of minimum energy but it is rather a one-sided
oscillation: if the vortex starts to the right of the minimum at
all times it remains on this side of the minimum and it never
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FIG. 6. Trajectories along y of a dipole with the vortices in two
different channels. The vortices are initially set at positions x = ±2d
and with the same y. The y coordinates of the two vortices of the
dipole remain equal at all times within the grid of the computation.
From top to bottom: Ṽ = 0, 1, 2, 3, 4, 6, 7.

crosses to the other side. The same holds if it starts to the
left. Therefore, this dynamics is quite distinct from that of a
massive particle moving around a minimum energy position.

We note that small-amplitude oscillations superimposed
to vortex trajectories have been found in a two-component
Bose mixture [30], within the so-called massive point-vortex
model, for a single vortex with a rigid circular boundary,
where a massless vortex can only precess uniformly. This
phenomenology and the one unveiled by our calculations cer-
tainly share some common physical properties. The model
of Ref. [30] is based on a Lagrangian formulation for point
vortices, and has been applied so far to homogeneous systems
[30,31]. It might be of great interest to extend such model to
the case of nonhomogeneous systems like the one described
here.

In the case (ii), vortex and antivortex started in the same
channel, for Ṽ = 4, 7 the two vortices move towards one
another, remaining in the same channel, until they annihilate
at the origin, as shown in Fig. 8. However, in the case of
a less modulated structure (Ṽ = 2), they remain initially in
the same channel and move towards one another until they
nearly touch at time t = 32 ms (still being in the density
minimum same channel): at this point, they appear to repel
each other and jump to the next channel, annihilating there
at a later time. We notice that a similar behavior has been
observed in experiments [9], where vortices in BEC are found

FIG. 7. Dynamics of a vortex dipole when the initial vortex po-
sitions are slightly displaced with respect to the channel axis. The
three vertical lines show the loci of minimum density. The simulation
refers to the case Ṽ = 2.

to approach each other so closely that they appear to coalesce,
but then move away from each other after the close encounter.
This combination of jump and approach of the vortex pair
two vortices of the dipole has some similarity with what we
find in the case of 2D modulations as described in the next
subsection.

From the equation for the velocity of a vortex within the GP
equation we can understand at a qualitative level some aspects
of our results. The flow field of one vortex on the other is in the
transverse direction of the channel, i.e., in the region where
the density of the superfluid is increasing. This variation of
density gives rise to a component of the velocity of the vortex
in the longitudinal direction along the bottom of the channel.
Following Ref. [32] (see also Ref. [25]) one may write the
vortex wave function ψv (�r, t ) with the core located at position
�r0 at time t as

ψv (�r, t ) = (x + iy − x0 − iy0)ρ̃eiφ̃ (8)

[here �r0 = (x0, y0) is expressed in complex notation as z0 =
x0 + iy0], where the factor z = x + iy − x0 − iy0 represents
the ideal gas vortex wave function and ρ̃(�r, t ) and φ̃(�r, t ) rep-
resent the deviations of the modulus and of the phase from this
ideal gas form (see Ref. [32] for additional details). Several
effects contribute to the deviation of the vortex wave function
from the ideal gas form, i.e., ρ̃(�r, t ) and φ̃(�r, t ) have the
contribution due to the presence of other vortices, to the effect
of an external potential and, finally, to the deviation of ψv (�r, t )
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FIG. 8. Trajectories along y of the two vortices of a dipole started
in the same channel. The vortices are initially set at positions y =
±2d . From left to right Ṽ = 7, 4, 2.

from the ideal gas form caused by the interatomic interactions.
On the basis of the Gross-Pitaevskii equation here adopted the
velocity of the vortex is [32]

�v = h̄

m
(∇φ̃ − κ̂ × ∇ lnρ̃ ), (9)

where the vector κ̂ is the unit vector in the direction of the
circulation, i.e., in the z direction in the present case. As soon
as the vortex position moves out of the bottom of the channel
the second contribution to the velocity in Eq. (9) becomes
nonzero due to the increasing density and its gradient is in
the x direction. The vector product of these two vectors is
in the y direction and points toward the other vortex. There-
fore, the velocity of one vortex of the pair has one longitudinal
contribution from the external potential and a transverse con-
tribution from the gradient of the phase due to the other
vortex of the pair. This transverse term might dominate if the
amplitude of the external potential is weak enough so that
the vortex pair could move across channels but in any case
due to the longitudinal contribution the two vortices move
also against each other until they annihilate. The longitudinal
contribution to the vortex velocity might dominate for large
amplitude of the external potential so that the two vortices
remain in the starting channel until annihilation. Equation (9)
for the velocity of the vortex core also explains why we see
one-sided oscillations of the vortex: the gradient of the local
density tends to bring the vortex core toward the minimum

density position but at this minimum this contribution to the
velocity vanishes.

It should be noticed at this point that Eq. (9) is not a
self-contained equation for the dynamics of a vortex because
the tilded quantities are just a different way to represent the
solution of the time-dependent GP equation. As such, Eq. (9)
can help to develop qualitative arguments as exposed above,
but it cannot predict the dynamics unless approximations are
introduced.

On the basis of Eq. (9) for the velocity of a vortex we
can also understand why the translation velocity of the vortex
dipole lying in two different channels is reduced with respect
to the homogeneous case. In fact, from Fig. 5 one can see that
the direction of ∇φ̃ along the line corresponding to y = 0 has
the opposite direction of the one of the homogeneous case,
i.e., it points downward for x > 0 and upward for x < 0 and
not vice versa as should be for a positive circulation vortex in a
homogeneous superfluid. This means that the induced velocity
due to the other vortex of the dipole is reduced compared
with the value for the homogeneous system. Why the trans-
lation velocity even changes direction at large modulations
and a longitudinal oscillation is present, however, cannot be
explained by these simple considerations.

C. Single vortex in a trap

An important question is if the oscillations in the dynamics
of a vortex pair displayed in Fig. 7 are a consequence of
the mutual coupling between vortex-antivortex or are rather
a property of the single vortex. We therefore considered the
dynamics of a single vortex initially imprinted in a position
slightly displaced from a position of minimum energy by the
same amount as in the dipole simulation just described. How-
ever, boundary effects mask the genuine dynamics in the case
of an extended system with antiperiodic boundary conditions.
To avoid this we used instead a finite system confined in the
x − y plane by an additional circular “box” potential of the
form

Vbox(x, y) = U0

[
1 − 1

e(R−R0 )/σ + 1

]
, (10)

where R =
√

x2 + y2, R0 is the chosen value for the radius
of the circular trap. We chose the following values: R0 =
14.3 µm, U0 = 60 nK, and σ = 0.212 µm. With such choice,
the potential Vbox becomes different from zero as R approaches
R0 and rapidly becomes very repulsive reaching the value U0.
As a result, the system is essentially unaffected in the inner
region by this potential, where the system density is very close
to that of the extended system, and goes exponentially to zero
for radial distances from the center larger that R0. We chose
the number of atoms so that the density pattern in the interior
of the circular trap is very similar to that of the extended
system, for a given value of Ṽ .

We perform the computation with the external potential
V (�r) = VOL(x, y) + Vbox(x, y) and VOL is such that the center
of the trap is a maximum of the OL, i.e., the center of the
trap is an equilibrium position for the vortex core. We find
that the vortex remains immobile if initially it is located at or
very near the center of the trap, in the low-density channel
passing through it. If the initial position of the vortex is off
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FIG. 9. Upper curve: displacement x(t ) of the vortex core per-
pendicular to the channel axis; lower curve: displacement y(t ) of
the vortex core parallel to the channel axis. The dotted line shows
a least-square fit to y(t ). The simulation refers to the case Ṽ = 2.

center along the y direction by a larger amount, however, the
vortex is found to migrate towards the edge of the trap and
disappears once it approaches the trap edge.

When the initial position is at y = 0 but slightly off center
along the x direction, i.e., away from an equilibrium position,
then the vortex moves toward the border of the trap and
the radial motion is the superposition of a uniform motion
in the radial direction and of a longitudinal and transverse
oscillatory motion, similarly to the case of a vortex dipole
shown in Fig. 7. As in the case of the vortex dipole the
oscillatory motion is one sided: the vortex never crosses the
line of minimum density but it remains on the same side of
the channel from which it started. This is shown in Fig. 9.

We have estimated, from the trajectories x(t ) and y(t ), the
frequency characterizing these oscillations, which is reported
in Fig. 10 as a function of Ṽ , together with the average trans-
lation velocity of the vortex along the channel.

We finally note that the frequencies found for the oscilla-
tions of a single vortex, as discussed above, agree with the
ones found for the case of a vortex dipole propagating in
parallel channels. We have checked the effect of changing the
density of the system on the oscillation frequency in Fig. 10.
We thus studied the dynamics of a vortex slightly displaced
from the equilibrium position in the transverse direction x, as
described before, but when the total number of atoms in the
system is doubled (halved). We find that both the amplitude
and frequency of the transverse oscillations are unaffected
by the increased (decreased) density. Also, the frequency of
the back-and-forth oscillations along the channel axis is not
changed, whereas its amplitude is reduced as the density in-
creases.

A natural question is if these oscillations might be due
to the coupling of the vortex motion with the phonon ex-
citations in the system which can be created by the vortex
motion through the system. However, this is not the case. In
fact, we have computed, by using the Bogoliubov–de Gennes
approach, the dispersion relation perpendicular and parallel to

FIG. 10. Upper panel: average translation velocity of a single
vortex starting from a slightly displaced x position from the center
of the trap. Lower panel: calculated frequency of the oscillations
occurring during the vortex motion along the channel.

the channel direction. The phonons propagating in a direction
perpendicular to the channels, having a dispersion relation
which flattens at the Brillouin zone boundary, are those with
the highest density of states. Their frequencies are found to be
[33] in the range 0.12 < ω < 0.4 ms−1 (corresponding to the
range 7 > Ṽ > 2), i.e., much smaller than the observed vortex
oscillation frequencies.

IV. 87Rb IN 2D OPTICAL LATTICE

A. Square lattice

The external potential V (�r) acting on the Rb atoms is taken
in the form of a periodic potential with square symmetry, i.e.,
V (r) = VOL(x, y), where

VOL(x, y) = V0[cos2(κx) + cos2(κy)]. (11)

As done in the previous sections, the optical potential strength
V0 is expressed in the following in terms of an adimensional
quantity Ṽ such that V0 = Ṽ × 10−14 Ha = Ṽ × 3.158 nK.

We first computed the ground-state in the presence of the
periodic potential VOL, for different values of the amplitude Ṽ .
We will use in the following a shorthand notation where the
site of maximum density (corresponding to the minimum of
the lattice potential) is called “top” (T), the site with minimum
density (corresponding to the maximum of the lattice poten-
tial) is called “hollow” (H), and the saddle point between two
adjacent top sites is called “bridge” (B).

As in the case of the 1D potential discussed in Sec. III,
the system is superfluid, with a superfluid fraction fs which
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TABLE III. Ṽ is the amplitude of the periodic potential. The
density values at the hollow, top, and bridge sites are shown; µ is
the chemical potential; fs is the superfluid fraction computed from
the nonclassical translational inertia.

Ṽ ρH (cm−3) ρT (cm−3) ρB (cm−3) µ (nK) fs

0 6.943 × 1012 6.943 × 1012 6.943 × 1012 2.584 1
2 2.797 × 1012 1.338 × 1013 6.462 × 1012 8.48 0.929
4 0.9412 × 1012 2.079 × 1013 5.295 × 1012 13.57 0.768
7 0.1668 × 1012 3.151 × 1013 3.329 × 1012 19.97 0.513
9 0.0537 × 1012 3.793 × 1013 2.288 × 1012 23.59 0.375

depends on the amplitude of the lattice modulation V0. The
relevant densities at the various lattice sites and the calculated
superfluid fraction are reported in Table III.

B. Vortices

We imprint a single vortex using the procedure described
before. If the vortex initial position is in a generic point of the
unit cell of the modulating potential, during the imaginary-
time evolution the vortex core moves to the closest minimum
density position. We find that stable vortex positions are at the
low-density sites corresponding to the maxima of the optical
potential (hollow site), as discussed in the following. In the
case of a square lattice these equilibrium positions have the
same square symmetry. The vortex structure at the hollow site
is shown in Fig. 11 for the case Ṽ = 2.

We show in Fig. 12 the equilibrium vortex structure for
different values of the potential depth Ṽ , including the value
Ṽ = 0. In order to improve the visualization of the vortex core
structure, we show in the figures the density differences with
respect to the configuration without vortex.

We show in Fig. 13 the calculated vortex excitation energy
per unit length �Ev ≡ (Ev − E0)/Lz as a function of density
of Rb atoms.

FIG. 11. Structure of a singly quantized vortex in the stable
hollow site, for the case Ṽ = 2. The vortex core is at the origin
(x = y = 0). The density is in units of cm−3.

FIG. 12. Relative density difference (ρvort − ρnovort )/ρnovort

showing the minimum energy vortex structure (hollow site) for
Ṽ = 0, 2, 4, 7.

Notice the decrease of the vortex energy, for a given N ,
with the modulation amplitude of the lattice potential. This is
a consequence of the decreasing density in the region of the
vortex core as Ṽ increases.

The streamlines around the vortex core are shown in
Fig. 14 for Ṽ = 7.

Aside from the stable position at the hollow site, we have
found that the saddle point between two adjacent density min-
ima (bridge site in the following) is a metastable equilibrium
position for a vortex, with slightly higher energy than the
equilibrium one. A third metastable position for the vortex is
found, at least for not too large value of Ṽ , at the high-density
sites (top site in the following), corresponding to the minima
of the optical potential. We show the vortex structures for

FIG. 13. Vortex total energy as a function of the areal density of
Rb atom. From top to bottom: Ṽ = 0, 2, 4, 7, 9. The density na =
9.92 µm−2 is the one used in most of the calculations discussed in
the paper.
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FIG. 14. Streamlines for a vortex in the hollow site, for the case
Ṽ = 7. The x and y axes show coordinates in µm.

these configurations in Fig. 15, together with the stable hollow
configuration.

In a uniform superfluid the energy of a vortex does not
depend on the position of its core so that it is free to move
under the influence of a perturbation. Our results show that in
presence of a 2D optical lattice the vortex energy becomes a

FIG. 15. Structure of a singly quantized vortex, for the case Ṽ =
2 (only a portion of the density in the x − y plane is shown). From
left to right: (i) hollow (most stable) site; (ii) bridge site; (iii) top site.
The density is in units of cm−3.

FIG. 16. Trajectories of the two vortices of the dipole in the
x − y plane ending in vortex dipole annihilation. Left panel: the two
vortices are initially placed at x = ±2d = ±6.35 µm. From top to
bottom: Ṽ = 2, 4, 7. The label on each trajectory gives the observed
annihilation time in milliseconds. The crosses show the positions of
the T sites where the Rb density is maximum. Right panel: the two
vortices are initially placed at x = ±3d = ±9.53 µm.

periodic function of position. The associated energy barriers
for vortex migration along the lattice are reported in Table IV.
These barriers will play an important role, as discussed in the
following, in the dynamics of vortices across the lattice.

C. Vortex dipole properties

Following the protocol described in Sec. III B we imprint
a vortex dipole in the 2D modulated superfluid and follow
its real-time dynamics. Instead of rigidly translating as in
an homogeneous superfluid phase, in the presence of spatial
modulation the vortex and antivortex approach each other by
a series of jumps from one site to another moving mostly
across the saddle positions until they annihilate in a very short
time and their energy is released in the form of density wave
excitations.

The path followed during the annihilation process depends
on the amplitude Ṽ of the optical lattice: the smaller the
modulation, the farther the dipole moves along the y direction
before annihilation, and the longer it takes for the dipole to
disappear. This is shown in Fig. 16, where it appears that
the vortex hopping occurs mostly across bridge sites. The
two vortices are initially placed at x = ±2d = ±6.35 µm (left

TABLE IV. �Ev = (EH − E0 )/Lz is the energy (per unit length) cost to create a vortex in the minimum density (hollow) sites, E0 being
the energy value (per atom) in the absence of the vortex; 〈L̂z〉 is the angular momentum along the z axis in units of Nh̄ (the value at Ṽ = 0
denoted with an asterisk has been computed with a bigger cell, with a surface area in the x − y plane four times larger the one used for all the
calculations; (EB − EH)/Lz and (ET − EH)/Lz are the energy barriers (per unit length) to move a vortex across the bridge site and the top site,
respectively.

Ṽ �Ev/N (nK/µm) (EB − EH)/N (nK/µm) (ET − EH)/N (nK/µm) 〈L̂z〉 (Nh̄)

0 0.0220 − − 0.925(0.927∗)
2 0.0199 0.00049 0.00210 0.858
4 0.0163 0.00046 0.00468 0.708
7 0.0108 0.00026 0.00886 0.486
9 0.0078 0.00019 0.01147 (unstable) 0.356
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panel of Fig. 16). In the right panel of Fig. 16 the annihilation
paths are shown instead when the two vortices are initially
placed at a larger mutual distance, x = ±3d = ±9.53 µm. We
recall that in absence of OL the vortex dipole would move
rigidly with constant velocity in the y direction.

It is of interest a comparison with the dynamics of a vortex
dipole in the supersolid state of dipolar bosons [21]. There is
some similarity with what we find here in that the vortices of
the dipole move by approaching each other by jumps between
equilibrium sites with final annihilation but the studied case
for dipolar atoms did not show any translation of the dipole in
the direction perpendicular to the line joining the vortices.

The energy released immediately after the annihilation
goes into excitations of the system. In order to gain some
insights on the character of the excitations we computed the
spectral density of the kinetic energy of the superfluid velocity
field, decomposing it into compressible and incompressible
parts [34–36]. Briefly, one splits the density-weighted velocity
field �u(�r, t ) ≡ √

ρ(�r, t )�v(�r, t ) into a compressible (C) and
an incompressible (I) part, �u(�r, t ) = �uI (�r, t ) + �uC (�r, t ), such
that �∇ · �uI (�r, t ) = 0 and �∇ × uC (�r, t ) = 0. One can therefore
decompose the kinetic energy E into two parts, E = EI + EC ,
where

EI,C = m

2

∫
d�r|�uI,C (�r, t )|2. (12)

The compressible component is attributed to the kinetic en-
ergy contained in the sound field, while the incompressible
part gives the contribution from quantum vortices.

In �k space, the total incompressible (compressible) kinetic
energy EI,C is given by

EI,C = m

2
� j=x,y

∫
d2�k|Fj (�k)|2, (13)

where

Fj (�k) = 1

2π

∫
d2�r e−i�k·�ruI,C

j (�r) (14)

(the time dependence is implied).
The one-dimensional spectral density in k space is given

by integrating over the azimuthal angle

EI,C (k) = mk

2
� j=x,y

∫ 2π

0
dφk|Fj (�k)|2. (15)

We show in Fig. 17 the spectral density of the kinetic en-
ergy EI,C (k, t ) for the case Ṽ = 4, when the two vortices are
initially placed at positions x = ±2d (whose trajectories are
displayed in the left panel of Fig. 16). The horizontal arrows
show two relevant wave vectors: kvv = 2π/l , where l is the
initial vortex-vortex distance, and kd = 2π/d , which is the
wave vector corresponding to the periodic modulation with
lattice constant d . The lower panel clearly shows the sharp
transition when the vortices disappear with a strong drop of
the incompressible kinetic energy. The peak in the incom-
pressible part appearing below the wave vector kvv before
annihilation is a general feature also found in the calculations
for a vortex dipole in Ref. [36] (see in particular the Fig. 3
of that reference). After vortex annihilation the compressible
part (upper panel) starts showing features connected to density
fluctuations (sound waves). One can notice that also before

FIG. 17. Kinetic energy spectra for the case Ṽ = 4, square OL.
Top: compressible part; bottom: incompressible part.

vortex annihilation a faint time modulation is present over an
extended range of k vectors and its period is about 7 ms. We
have computed [33] the phonon frequencies of the Rb gas in
presence of the 2D OL but without vortices and find that this
7-ms period falls inside a gap of the phonon spectrum. The
vortex dipole represents a defect in the modulated system and
our interpretation of this oscillation is in terms of a localized
vibration of the Rb gas around the moving vortex dipole.

We have also considered two other types of 2D lattices,
with triangular symmetry and with the honeycomb structure.
Similarly with what we have done in the case of the square
lattice, we studied the vortex structures in such lattices and
the real-time dynamics of a vortex-antivortex pair, eventually
leading to annihilation as the vortices meet. The results are
reported in the Supplemental Material [37].

D. Visualizing vortices in optical lattices

As previously discussed, the direct visualization of vortices
in the system studied here might be difficult, especially for
large values of the amplitude of the OL. This is a consequence
of the fact that the vortex cores tend to localize in the low-
density sites of the periodic lattice. We suggest here that a
simple way to visually detect the presence of vortices in the
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FIG. 18. From left to right, from top to bottom: panel (1): density
of the stationary state in the corotating frame, for Ṽ = 7; (ii)–(iv):
density patterns at t = 1.6, 4.1, and 6.4 ms, during the time evolution
of the state (1) when the amplitude Ṽ is ramped linearly to zero in 5
ms. The density is in units of cm−3.

modulated system can be achieved by sudden removal of the
optical lattice potential.

One way to experimentally cause vortex nucleation is by
means of rotation of the optical lattice. We consider here the
the case of the square lattice with the same radial confining
potential (circular “box”) used to analyze the dynamics of
a single vortex in the one-dimensional lattice described in
Sec. III C.

To enforce rotations (with some fixed angular velocity ω,
around the z axis) we work in the corotating frame, described
by the Hamiltonian

{H − h̄ωL̂z} (r) = μ(r), (16)

where L̂z is the total angular momentum operator in the z
direction and H is the Hamiltonian of Eq. (2).

We first compute the stationary state in the presence of a
rotation of the system with constant ω by solving the Euler-
Lagrange equations in imaginary time associated with the
previous Hamiltonian. If the imposed angular velocity is large
enough (i.e., larger than the critical frequency for a single vor-
tex nucleation), a number of vortices will eventually populate
the system, which may later be visualized. These vortices, as
it happens in rotating finite superfluid samples, are initially
nucleated on the boundaries of the system, and rapidly settle
to an equilibrium position at a distance from the center which
depends on the value of the rotational frequency: the larger
the latter is, the closer to the center will be the vortices in the
stationary-state configuration.

As an example, we show in the first panel of Fig. 18 the
stationary state obtained with ω = 2π × 8 Hz in presence of
a square OL with value Ṽ = 7. At first sight, the resulting den-
sity profile resembles that of the ground state in the absence of
rotation. However, a finite value for L̂z indicates the presence
of vorticity in the system.

A possible way to increase the vortex visibility is to
rapidly remove the periodic potential (but keeping the radial

confinement active) so that the system may evolve towards
a more homogeneous state where the increased contrast be-
tween the empty core and the background density may allow
to reveal the vortex positions.

We therefore perform a real-time dynamics, starting from
the stationary state shown in the first panel of Fig. 18, with a
linear ramp of the optical potential which brings its value from
Ṽ = 7 to 0 in 5 ms. The three panels (from left to right, from
top to bottom) of Fig. 18 show snapshots of the Rb density
during the real-time evolution, clearly showing a ring of six
vortices as the density modulations are suppressed. Notice
that the vortex core positions rotate with the imposed angular
velocity ω.

We remark that the time required to visually disclose the
vortex cores is so short that the final core positions (last
panel in the figure) coincide with their initial positions in
the modulated phase shown in the first panel. Such short
times exclude the possibility that vortices are nucleated dur-
ing the quench from the modulated to the homogeneous
phase.

V. CONCLUSIONS

We have studied the superfluid phase of boson 87Rb atoms
under the influence of an optical potential which induces a
spatial modulation of the local density. The main interest is
on the static and dynamical properties of vortex excitations.
We have studied the system at zero temperature with the mean
field Gross-Pitaevskii equation and our investigation is mainly
on the regime of strong modulation when the excursion be-
tween low and high density becomes quite large. We study the
system in a flat geometry so that one can neglect the transverse
direction and the system is close to the 2D limit. The dynamics
of a vortex in an almost 2D superfluid is rather simple when
no other vortex is present within its healing length: the core
moves with the gradient of the phase due to other vortices.
Consequences of this law are, for instance, that a vortex dipole
is a stable entity and it rigidly translates with constant velocity
and that one vortex in a circular trap performs a procession
around the trap center. Deviations from such behaviors in
a weakly inhomogeneous superfluid have been studied by a
number of authors as discussed in the Introduction. We have
studied a rather different regime, when the inhomogeneity
is very large. In presence of an intense optical potential we
find a vortex behavior quite different from that of the uniform
superfluid. Depending on the symmetry of the optical lattice
two vortices of opposite chirality, a vortex dipole, can move
by jumps approaching each other until annihilation with a
lifetime of the pair depending on the intensity of the optical
lattice or the vortices of the dipole do translate but with a
velocity even of opposite direction of that present in the uni-
form case and, in addition, this translation takes place together
with an oscillatory motion. Or a single vortex in a trap does
not perform a processional motion but it moves toward the
periphery of the trap with a complex motion consisting of
translation of an oscillation. These periodic motions are single
side in the sense that they never cross the equilibrium position
from the starting place, a behavior quite different from that
of a massive particle around an equilibrium position. Such
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features of the vortex motion derive from two facts. On one
hand, the vortex energy depends on the local density at the
position of its core and the energy is lowest where the density
has a minimum, i.e., at the positions of the maxima of the
optical lattice. A consequence of this is that a vortex is not free
to move but it is pinned to specific sites or lines depending on
the symmetry of the optical lattice. On the other hand, the
stream lines have large deviations from the simple circular
shape of the uniform superfluid. The superfluid fraction is
reduced from unity, even if our system is at zero temperature,
and this reduction can be quite large for large amplitudes
of the optical potential. In the case of 1D optical potential
the superfluid has a stripe structure and the superfluidity is
very anisotropic: the superfluid fraction is unity along the
stripes and it is reduced in the direction perpendicular to the
stripes. At the same time a vortex has a unit circulation but
a reduced angular momentum compared to that of a uniform
superfluid.

It is possible now to generate experimentally vortex dipoles
in a superfluid of cold atoms [11] so it should be possi-
ble to verify our predictions for the dynamics of vortices in
a modulated superfluid. We have studied the case of 87Rb
atoms but our results should be valid for other bosons with
positive scattering length. The jumping behavior and anni-
hilation of a vortex dipole seen in the case of a 2D optical
lattice have some similarity with that of a vortex dipole in a
supersolid [21].

Our study is based on a mean field theory and we should
pose the question of the accuracy of such theory because it is
known that a Mott transition to a localized state sets in when
the optical lattice is strong enough [38]. In terms of recoil
energy the amplitude of the optical potential in our study is
much smaller than the amplitudes for which experimentally

the localization has been found to set in. In addition, we
have indication of the internal consistency of the used theory
because we have performed computations [33] of the excita-
tion spectrum of our system with the Bogoliubov–de Gennes
equation and no sign of instability has been found. This gives
confidence on our theoretical results.

We have been able to explain at a qualitative level some
aspects of our results like the approach of the two vortices of a
dipole or the one-sided oscillations in terms of the expression
of the velocity of the vortex core and its relation to the gradient
of the local density of the superfluid.

One would like to see a treatment of the systems of our
study on the basis of an approximate analytic treatment like
a suitable extension of the point-vortex approximation as ex-
plored in Ref. [32]. Different extensions of this study come to
mind. One is the study of vortices in the supersolid phase of
soft-core bosons or in supersolid with a stripe structure. The
flat geometry used in our computations does not allow flexural
motion of the core of the vortex. Of interest will be a similar
study when the system is extended in the third direction and
key questions are the fate of the Kelvin waves that characterize
the motion of a vortex core in 3D [1] or if additional excita-
tions are present similar to kinks of a dislocation in a solid.
Theory predicts that a supersolid phase with a stripe structure
can be present with dipolar bosons [39]. Our results for the
vortex behavior in a 1D modulated system should be relevant
also for such supersolid system.
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