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Bose-Einstein condensation in a canonical ensemble with fixed total momentum
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We consider Bose-Einstein condensation of noninteracting homogeneous three-dimensional gas in canonical
ensemble when both particle number N and total momentum P of all particles are fixed. Using the saddle-
point method, we derive the large-N analytical approximations for partition function, free energy, and statistical
distributions of occupation numbers of different single-particle energy levels. At temperatures below the critical
point of phase transition, we predict, in some ranges of P, fragmentation of the condensate, when more than
one single-particle level is macroscopically occupied. The occupation number distributions have approximately
Gaussian shapes for the levels hosting the condensate, and exponential shapes for other, noncondensate levels.
Our analysis demonstrates breaking of Galilean invariance of moving finite-temperature many-particle system
in the presence of Bose-Einstein condensation and extends the theory of moving and rotating quantum systems
to the finite-temperature large-N limit.
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I. INTRODUCTION

The theory of Bose-Einstein condensation (BEC), at the
simplest level of an ideal gas, relies on the balance equa-
tion for a total number N of particles statistically distributed
among single-particle energy levels in a grand canonical en-
semble [1–3]. For interacting Bose gas with a relatively weak
interaction and a large condensate fraction, the Bogoliubov
theory and Gross-Pitaevskii equation are the most frequently
used approaches [4], and quantum Monte Carlo simulations
are employed in more difficult cases of strongly interacting
systems [5].

Since grand canonical ensemble becomes inappropriate
and sometimes provides wrong predictions for a system of
fixed number of particles N , the theoretical treatments start-
ing from canonical ensemble for ideal and interacting BECs
were developed (see, for example, Refs. [6–16] and references
therein). Assuming finite and fixed N is especially impor-
tant when we analyze persistent or superfluid currents arising
in a ring-shaped mesoscopic quantum system, because its
internal energy is an Nh̄-periodic function of angular momen-
tum, whose minima correspond to metastable current-carrying
states [17,18]. Such metastable rotating states of superfluid
helium and ring-shaped atomic BECs, and their decay through
phase slippage and vortex penetration were extensively stud-
ied theoretically using macroscopic hydrodynamics [19–23]
or ab initio microscopic approaches [24–26], and observed
in experiments [27–30]. Analysis of nonequilibrium BEC dy-
namics is also greatly facilitated by the fixed-N condition
effectively arising in the rapid relaxation regime [31,32] in
a driven-dissipative polariton system.
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Our study aims to fill the gap between statistical ap-
proaches to BEC based on a canonical ensemble with a large
but fixed particle number N [6–9] and microscopic analy-
sis of current-carrying (or yrast) states of finite-N bosonic
systems [24–26] with fixed angular momentum. We con-
sider ideal three-dimensional Bose gas at finite temperature
T which has both particle number N and total momentum
P fixed as external parameters. Starting from enumeration
of all possible arrangements of N Bose particles among
single-particle energy levels, which satisfy the total momen-
tum constraint and occur according to the Gibbs probability
distribution, we use the saddle-point approach to calculate
thermodynamic and statistical properties of the system in the
leading and next-to-leading orders of the large-N limit. These
properties include partition function, free energy, and statis-
tical distributions of the particle number in the condensate.
We also discover fragmentation of the condensate at certain
ranges of P and T , when two or more single-particle lev-
els become macroscopically occupied in the current-carrying
system.

Since we consider the system states with fixed total mo-
mentum P under periodic boundary conditions, cyclic motion
of particles through the system boundaries is similar (up to
finite-size shape effects) to rotation along circumference of
a ring-shaped system. Thus our analysis presents an approx-
imate treatment of a rotating ring-shaped BEC with fixed
angular momentum. We restrict ourselves to noninteracting
Bose particles, so our study generalizes the canonical ensem-
ble theory of BEC in an ideal gas [6–13] to the setting with
fully quenched fluctuations of P. On the other hand, our anal-
ysis, thanks to the aforementioned similarity of translational
motion and rotation, extends the calculations of the energies
of rotating states [24–26] to the large-N finite-temperature
limit, although for a noninteracting Bose system. Note that
Refs. [33,34] studied the influence of boundary conditions
on thermodynamic properties of BEC, and twisting these

2469-9926/2024/110(1)/013301(14) 013301-1 ©2024 American Physical Society

https://orcid.org/0009-0008-2182-6553
https://orcid.org/0000-0002-5907-2573
https://orcid.org/0000-0003-0398-5485
https://ror.org/01kp4cp54
https://ror.org/01nmpe263
https://ror.org/055f7t516
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.110.013301&domain=pdf&date_stamp=2024-07-02
https://doi.org/10.1103/PhysRevA.110.013301


PLYASHECHNIK, SOKOLIK, AND LOZOVIK PHYSICAL REVIEW A 110, 013301 (2024)

conditions on some nonzero phase effectively shifts the ther-
mal distribution of P to a nonzero average value. In contrast,
our approach assumes not just shift of average value of P
but complete quench of its fluctuations, so it has higher
generality.

The article is organized as follows: In Sec. II we pro-
vide an overview of analytical and numerical methods which
allows us to study the thermal statistics of noninteracting
Bose system at fixed N and P, arriving to the saddle-point
approach, which is used in Sec. III to analyze the BEC condi-
tions and identify three distinct phases of the system: normal
phase, unfragmented BEC phase, and fragmented BEC phase.
In Sec. IV we calculate the free energy of the system as
a function of T , N , P, and discuss the condensate frag-
mentation. In Sec. V we calculate statistical distributions of
occupation numbers of single-particle energy levels, which,
depending on the level and system phase, has approximately
Gaussian or exponential shapes. In Sec. VI we consider the
role of total momentum fixation, i.e., what is the difference
between our results obtained at fixed P = 0 and conventional
canonical-ensemble approaches to BEC where P freely fluctu-
ates. Section VII concludes our paper, and Appendixes A and
B provide calculation details. More details on estimating the
sums-over-states arising in our calculations and deriving the
distribution functions are given in the Supplemental Material
[35].

II. ANALYTICAL AND NUMERICAL METHODS

Consider N noninteracting bosons at the temperature T =
β−1 in a cubic box of the volume V = L3 with periodic
boundary conditions imposed on single-particle wave func-
tions. The dimensionless single-particle momenta, taken in the
units of the minimal momentum k0 = 2π h̄/L, are quantized
integer-valued vectors k = {nx, ny, nz}, and the single-particle
energies are εk = k2

0k2/2m. We introduce the dimensionless
total momentum

Q = P/k0, (1)

which is also an integer-valued vector.
The partition function of the system with fixed particle

number N and total momentum Q reads

ZNQ =
∑
{nk}

e−β
∑

k nkεkδN,
∑

k nkδQ,
∑

k knk . (2)

Here the sum over the set of occupation numbers nk =
0, 1, 2, . . . is restricted by the Kronecker symbols δ to fulfill
the fixation conditions for N and Q. The probability to find Nq
particles in the single-particle state with momentum q in our
restricted ensemble is

pNQ
(
Nq

) = 1

ZNQ

∑
{nk}

e−β
∑

k nkεkδN,
∑

k nkδQ,
∑

k knkδNq,nq . (3)

Note that, if we shift Q on the vector Ns, where s = {sx, sy, sz}
is arbitrary integer vector, then Eqs. (2) and (3) transform as

ZN,Q+Ns = e− βk2
0

2mN {(Q+Ns)2−Q2}ZNQ, (4)

pN,Q+Ns(Nq+s = n) = pNQ(Nq = n). (5)

Physically it means that the quantum state of relative motion
of N bosons moving on a three-dimensional torus depend on
Qx,y,z periodically with the period N [18]. In combination with
the symmetry of ZNQ and pNQ(Nq) with respect to reflections
Qj → −Qj , q j → −q j , it implies that it is sufficient to con-
sider only the total momenta in the range 0 � Qx,y,z � N/2 to
probe all physically distinct states of the system.

The widely used methods [6–12] to calculate partition
function of the noninteracting Bose system in canonical en-
semble with fixed N rely on recursion relations. In the case
of fixed total momentum, we can straightforwardly derive the
similar relation

ZNQ = 1

N

N∑
l=1

∑
k

e−lβεk ZN−l,Q−lk, (6)

which relates ZNQ to partition functions at other total mo-
menta and smaller particle numbers. Additional formula can
be derived to relate the probabilities (3) to partition functions:

pNQ(Nq) = e−βNqεq

ZNQ

{
ZN−Nq,Q−Nqq − e−βεq ZN−Nq−1,Q−(Nq+1)q

}
.

(7)

Applying the recurrence relation (6) requires keeping in mem-
ory the array of ZNQ of the size ∝N4 and the same order
of computation steps, which makes this method feasible at
not very large N (no more than 100 for desktop computer
calculations).

Another method to calculate the restricted sums (2)
and (3) is based on the integral representation δ jl =
(2π i)−1

∫ π i
−π i dz e( j−l )z of the Kronecker symbol [36]. Apply-

ing it in Eqs. (2) and (3), we obtain

Z =
∫ π i

−π i

dzdr

(2π i)4 e−zN−r·Q ∑
{nk}

e
∑

k (−βεk+z+r·k)nk , (8)

p
(
Nq

) =
∫ π i

−π i

dzdr

(2π i)4Z
e−z(N−Nq )−r·(Q−qNq )

× e−βNqεq
∑
{nk �=q}

e
∑

k (−βεk+z+r·k)nk . (9)

Here and in the rest of the paper, we omit the indices N , Q
of Z and p to avoid clutter. It is convenient to introduce the
dimensionless parameter

R = 2m

βk2
0

= L2

πλ2
th

= N2/3

π
[
ζ
(

3
2

)]2/3

T

Tc
, (10)

where ζ (x) is the Riemann zeta function, λth = h̄
√

2πβ/m is
the thermal de Broglie wavelength, and

Tc = 2π[
ζ
(

3
2

)]2/3

h̄2

m

(
N

L3

)2/3

≈ 3.31
h̄2

m

(
N

L3

)2/3

(11)

is the conventional critical temperature of BEC in the ther-
modynamic limit. Changing the variable r = 2v/R in Eqs. (8)
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and (9), using relation βεk = k2/R, and performing summa-
tions over nk which are now unrestricted, we obtain

Z = 1

2π4R3

∫ π i

−π i
dz

∫ π iR/2

−π iR/2
dv e f (z,v), (12)

p(Nq) = 1

2π4R3Z

∫ π i

−π i
dz

∫ π iR/2

−π iR/2
dv e f̃ (Nq,z,v), (13)

where

f (z, v) = −zN − 2v · Q
R

−
∑

k

ln
(
1 − e

−k2+2v·k
R +z

)
, (14)

f̃ (Nq, z, v) = −z(N − Nq) − 2v · (Q − qNq)

R

− q2Nq

R
−

∑
k �=q

ln
(
1 − e

−k2+2v·k
R +z

)
. (15)

III. SADDLE-POINT CALCULATION OF
PARTITION FUNCTION

We calculate the integrals (12) and (13) in the large-N limit
with a help of the saddle-point approximation, as usually done
when switching between different statistical ensembles [37].
The saddle point (z0, v0) for the integral (12) is obtained by
equating the derivatives of the exponent (14) to zero:

∂ f

∂z
= −N +

∑
k

νk = 0, (16)

∂ f

∂v
= 2

R

(
−Q +

∑
k

kνk

)
= 0, (17)

where

νk = 1

e
k2−2v0 ·k

R −z0 − 1
(18)

is the Bose-Einstein distribution for particles in the frame
moving with velocity k0v0/m, where the chemical potential
is μ = T z0 + k2

0v2
0/2m. An example of the steepest-descent

trajectories passing through the saddle point is shown in
Figs. 1(a) and 1(b). Physically, Eqs. (16) and (17) impose
the balance conditions on the total particle number N and the
total momentum Q in the moving reference frame. Therefore
we can treat the quantity v0, called hereafter rapidity, as a
dimensionless velocity of the frame where the average mo-
mentum vanishes, and z0 as dimensionless effective chemical
potential (apart from the Galilean transformation term ∝v2

0)
of noninteracting bosons in this frame.

Note that the saddle-point method is applicable when the
function f (z, v) is not too strongly skewed near the saddle
point (z0, v0), i.e., its Taylor expansion near this point can
be safely cut beyond quadratic terms. Estimating second and
third derivatives of f , we find that this condition is violated
when R � 1. Therefore R � 1, or T/Tc � N−2/3 is the nec-
essary condition for applicability of the saddle-point method,
although numerical validation demonstrates its good accuracy
already at R > 2. In the following, we assume in our calcula-
tions that T/Tc = const when we consider the thermodynamic
limit N → ∞, so that R ∝ N2/3 → ∞ in this limit. In the
low-temperature regime, when T/Tc is constant but much less
than one, we need large enough N to make sure that R � 1.

FIG. 1. (a), (b) Real part of the function f (z, v) and the steepest-
descent paths (blue dotted lines) passing through the saddle point
(z0, v0) (a) on the complex plane of z at v = v0, and (b) on the
complex plane of vx at z = z0, vy,z = 0. Red solid lines show branch
cuts of f , and calculation parameters are N = 100, T = 0.8Tc, Q =
{10, 0, 0}. (c) Two-dimensional space with quantized single-particle
momenta k, two of them (filled circles) satisfy Eq. (20) and host
the condensate, while the remaining ones (empty circles) comprise
the thermal cloud. Shaded rectangle depicts allowable region for the
total momenta per particle Q/N restricted by inequality (27). (d),
(e) Similar pictures showing unfragmented (at 0 � v0x < 1/2) and
fragmented (at v0x = 1/2) BEC states, respectively, at Q = exQ.

Occupation numbers (18) are finite when

(k − v0)2 > v2
0 + z0R (19)

for any quantized momentum k. One or several k-levels can
host the condensate, νk ∝ N , when (k − v0)2 − v2

0 − z0R =
O(N−1/3) in the limit N → ∞, i.e., when the inequality (19)
turns into equality

(k − v0)2 = v2
0 + z0R (20)

in the thermodynamic limit (note that the chemical potential
z0 is not necessary of the order of N−1 as in conventional
BEC picture and can be of the order of N−2/3 at large enough
|Q| due to Galilean shift). As demonstrated in Fig. 1(c) for
simplified two-dimensional picture, Eq. (20) is the condition
for a sphere of the maximum allowed radius (v2

0 + z0R)1/2

centered at v0, which touches the nearest discrete k points
that become the single-particle condensate levels. We denote
the set of such levels (up to eight in three dimensions) by
C. Other levels outside this sphere satisfying Eq. (19) are
noncondensate ones and comprise the thermal cloud.

As shown in Appendix A, the contributions of the thermal
cloud to the total particle number and momentum can be
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approximated using the Bose-Einstein integral gd (x) with a
subextensive error, so in the leading O(N ) order the saddle-
point conditions (16) and (17) read∑

k∈C

νk + N

ζ
(

3
2

)(
T

Tc

)3/2

g3/2

(
−z0 − v2

0

R

)
= N, (21)

∑
k∈C

kνk + v0N

ζ
(

3
2

)(
T

Tc

)3/2

g3/2

(
−z0 − v2

0

R

)
= Q, (22)

with the omitted subleading corrections of the order N2/3.
Since g3/2(−z0 − v2

0/R) reaches the maximal value ζ ( 3
2 )

when its argument vanishes, the last term in the left-hand side
of Eq. (21) is bounded by N (T/Tc)3/2 from above. Therefore
at T > Tc this equation can be satisfied at finite −z0 − v2

0/R
in the limit N → ∞. It is the normal-state regime with no
condensate levels, where Eqs. (21) and (22) reduce to equa-
tions for chemical potential

1

ζ
(

3
2

)(
T

Tc

)3/2

g3/2

(
−z0 − v2

0

R

)
= 1 (23)

and rapidity

v0 ≈ Q
N

= P
mN

. (24)

Equation (24) states that the normal Bose gas obeys Galilean
invariance since the occupation numbers (18) turn out to be
simply displaced in the k space due to common center-of-
mass motion.

On the contrary, at T < Tc the Galilean invariance is bro-
ken: the noncondensate term in Eq. (21) is saturated at z0 →
−v2

0/R and cannot accommodate all N particles. In this limit,
Eqs. (21)–(22) in the leading O(N ) order take the form∑

k∈C

νk + N

(
T

Tc

)3/2

= N, (25)

∑
k∈C

kνk + v0N

(
T

Tc

)3/2

= Q. (26)

From these equations, we obtain
∑

k∈C (k − v0)νk = Q −
v0N and

∑
k∈C νk = N[1 − (T/Tc)3/2], which allows us to

derive the inequality∣∣∣∣Qi

N
− v0i

∣∣∣∣ �
[

1 −
(

T

Tc

)3/2
]
|ki − v0i|k∈C, (27)

where the distance |ki − v0i| is the same for all condensate lev-
els k ∈ C. This inequality is, however, saturated and turns into
equality when only a single condensate level is present. The
geometrical meaning of Eq. (27) is demonstrated in Fig. 1(c):
if some levels host the condensate, then the weaker version of
this inequality |Qi/N − v0i| � |ki − v0i|k∈C restricts the total
momentum per particle Q/N to the dotted rectangle, while
the original Eq. (27) restricts it to the shaded rectangle which
is smaller by the factor 1 − (T/Tc)3/2. This analysis helps
to figure out qualitative relation between Q and v0: if the
total momentum per particle Q/N is located in some cubic
cell bounded by integer-valued points k, the rapidity v0 ends
up in the same cell, so generally, when Q is increased, v0

increases too. However, at T < Tc the strict proportionality

(24) between these vectors is absent witnessing breaking of
Galilean invariance.

In the forthcoming sections, for simplicity, we consider
only total momenta Q directed along the x axis, so in the
following we imply Q = exQ. From Eq. (17) we immediately
see that the saddle point v0 should also lie on the x axis. The
physically nonequivalent momenta, as discussed above, lie in
the range 0 � Q � N/2, which, due to Eq. (27) corresponds
to the range 0 � v0x � 1/2 of rapidities. In this range, we
can expect one of two possibilities shown in Figs. 1(d) and
1(e). The first one is 0 � v0x < 1/2 [Fig. 1(d)], where only
the k = 0 level (hereafter 0th level) hosts the condensate. In
this case the inequality (27) is saturated and we obtain con-
dition Q < Q0 for the total momentum, where the threshold
momentum equals

Q0 = N

2

(
T

Tc

)3/2

. (28)

In this case mean occupation of the 0th condensate level is
ν0 ≈ −1/z0, and from the saddle-point conditions (21) and
(22) we obtain

z0 = − 1

N[1 − (T/Tc)3/2]
+ O(N−4/3), (29)

v0x = Q

2Q0
+ O(N−1/3), (30)

ν0 = N

[
1 −

(
T

Tc

)3/2
]

+ O(N2/3), (31)

ν1 = O(N2/3). (32)

The second case is v0x = 1/2 [Fig. 1(e)], where the conden-
sate is present in both k = 0 and k = ex (hereafter 1st level)
simultaneously, i.e., is fragmented in the momentum space.
The inequality (27) in this case restricts the total momentum
to Q0 < Q � N/2. Using ν0 ≈ −1/z0, ν1 ≈ [(1 − 2v0x )/R −
z0]−1, we find from the saddle-point conditions (21) and (22)

z0 = − 1

N
[
1 − 1

2 (T/Tc)3/2
] − Q

+ O(N−4/3), (33)

v0x = 1/2 − O(N−1/3), (34)

ν0 = N

[
1 −

(
T

Tc

)3/2
]

− (Q − Q0) + O(N2/3), (35)

ν1 = Q − Q0 + O(N2/3). (36)

To conclude this section, we identify the following three
qualitatively different regimes in the large-N limit.

(1) T > Tc: normal phase where BEC is absent, and the
system is Galilean invariant. The saddle point location is given
by Eqs. (23) and (24).

(2) T < Tc, Q < Q0: unfragmented BEC phase, where
only the 0th level is macroscopically occupied. Moreover, its
occupation ν0 remains the same as in the system at rest or
without momentum fixation, so BEC on the 0th level pos-
sesses some degree of robustness against total motion of the
system. The saddle point location in this regime is given by
Eqs. (29) and (30).

(3) T < Tc, Q0 < Q � N/2: fragmented BEC phase,
where both 0th and 1st levels are macroscopically occupied.
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FIG. 2. Saddle-point coordinates (a) z0 (or dimensionless chem-
ical potential) and (b) v0x (rapidity, or dimensionless mean velocity
of the Bose gas) as functions of the total momentum Q calculated
at T = 0.5Tc and different particle numbers N shown in legends.
Arrows show the order of increasing N . Vertical dash-dotted lines in-
dicate the threshold momentum Q0 for the BEC fragmentation. Stars
show analytical approximations (29), (30) and (33), (34) obtained in
the limit N → ∞.

On increase of Q, the occupation ν0 of the 0th level gradually
decreases, and the occupation ν1 of the 1st level increases,
while their sum remains the same as the standard condensate
population N[1 − (T/Tc)3/2] in a system without momentum
fixation. The saddle point location in this regime is given by
Eqs. (33) and (34).

Numerical solutions of the saddle-point equations (16) and
(17) are shown in Fig. 2 in the BEC region T = 0.5Tc at
different particle numbers N . In the limit N → ∞ (stars), in
the unfragmented BEC state (Q < Q0) the chemical potential
μ = T z0 is constant, and the rapidity v0x is linearly increasing
with Q. In the fragmented BEC state Q > Q0, the chemical
potential decreases, and the rapidity levels off at v0x ≈ 1/2.
At finite particle number N , these tendencies remain qualita-
tively the same, but the curves become smoothed, as typically
happens with phase transitions in finite systems.

Going beyond the restriction 0 � Q � N/2, we can use the
periodicity condition (4) and evenness of the statistics with
respect to Q to draw the phase diagram shown in Fig. 3(a).
At T < Tc, the system passes through the sequence of un-
fragmented and fragmented BECs when its total momentum
is changed. If Q traverses the period N , all occupation num-
bers of the single-particle states k become merely shifted by

k = ±ex in the momentum space. The occupations of con-
densate levels shown in Fig. 3(b) also alternate as functions
of Q showing the interleaved regions of unfragmented and
fragmented BECs. What happens at arbitrary directions of Q
was described above by Eq. (27) and Fig. 1(c).

IV. THERMODYNAMICS

A. Free energy

In the large-N limit, the integral (12) is dominated by
vicinity of the saddle point (z0, v0). In the leading exponen-
tial order it is equal to Z ∼ e f (z0,v0 ). Using the approximate
expression (A1) for the logarithmic sum, we obtain the free

FIG. 3. (a) Phase diagram of the Bose gas in terms of its tem-
perature T and total momentum Q. The normal phase at T/Tc > 1
is separated from the BEC phase T/Tc < 1. In the BEC phase,
the condensate can populate one or two single-particle states with
momenta kx shown in the regions separated by the lines Q mod N =
±Q0 of fragmentation transitions. (b) Mean populations νkx of the
single-particle states with momenta kx shown at T = 0.5Tc (along
the dashed line of the upper panel) in the units of the maximal con-
densate population N[1 − (T/Tc )3/2] = N (1 − 2−3/2) as functions of
the total momentum Q in the limit N → ∞.

energy F = −T ln Z = −T f (z0, v0) as

F = NT

{
z0 + 2v0xQ

NR
− 1

ζ
(

3
2

)(
T

Tc

)3/2

× g5/2

(
−z0 − v2

0x

R

)}
+ O(ln N ). (37)

In the normal phase T > Tc, using Eqs. (10), (23), and (24),
and performing Taylor expansion of g5/2, we obtain in the
leading order:

F ≈ NT

{
z0 − 1

ζ
(

3
2

)(
T

Tc

)3/2

g5/2(−z0)

}
+ k2

0Q2

2mN
. (38)

The first term is the ordinary free energy of normal nonin-
teracting Bose gas without momentum fixation [37], and the
second term is P2/2mN , i.e., the kinetic energy of entire gas
moving with the total momentum P. We again see manifesta-
tion of Galilean invariance of a normal Bose gas at T > Tc.

At T < Tc the Galilean invariance is broken, as shown in
Fig. 4(a) by several examples of numerically calculated F
as a function of Q. This dependence does not resemble the
quadratic center-of-mass kinetic energy k2

0Q2/2mN with the
addition of a constant internal free energy, because the latter
also becomes Q dependent. Analytically, in the unfragmented
BEC phase T < Tc, Q < Q0, using Eqs. (10), (29), and (30),
we obtain

F ≈ −NT
ζ
(

5
2

)
ζ
(

3
2

)(
T

Tc

)3/2

+ k2
0Q2

2mN ′ . (39)

Here the first term is the free energy of particles in excited
k �= 0 states (thermal cloud), which is the same as in the
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FIG. 4. (a) Free energy F as a function of the total momentum
Q at different temperatures for N = 800. Dashed lines show the
thermodynamic limits F∞ given by Eq. (42). (b) Corresponding
differences of F and F∞. The inset in panel (a) shows the large-N
limit of kinetic energy Ekin when the momentum Q is carried solely
by the thermal cloud (orange parabola) or shared between the 1st
level and the thermal cloud in the most favorable proportion (straight
green line). The solid lines show physical branches which minimize
Ekin.

Bose-condensed gas without momentum fixation [37]. The
second term can be interpreted as the kinetic energy P2/2mN ′
of the thermal cloud. The mean particle number in the thermal
cloud is [see Eqs. (31) and (32)]

N ′ = N − ν0 − ν1 = N

(
T

Tc

)3/2

. (40)

Thus the whole momentum P is carried only by the thermal
cloud, since the condensate in the 0th state has zero momen-
tum.

In the fragmented BEC phase T < Tc, Q0 < Q � N/2, the
thermal cloud population (40) remains the same, and, using
Eqs. (10), (33), and (34), we obtain

F ≈ −NT
ζ
(

5
2

)
ζ
(

3
2

)(
T

Tc

)3/2

+ (Q − Q0)k2
0

2m
+ k2

0Q2
0

2mN ′ . (41)

The first term is the same internal free energy of the thermal
cloud as in the Bose gas without momentum fixation. The
second term is the kinetic energy ν1k2

0/2m of condensate at
the 1st level, since ν1 = Q − Q0 (36), and the third term is the
kinetic energy of thermal cloud moving with momentum Q0.

Unlike the previous case of unfragmented BEC, here the total
momentum Q is shared between the thermal cloud and the 1st
state, because it allows us to lower the total kinetic energy, as
discussed in the next section.

In agreement with Eqs. (39) and (41), the numerically cal-
culated F (Q) at T < Tc [Fig. 4(a)] consists of interchanging
parabolic parts in the unfragmented BEC phases near Q = sN
and almost linear pieces in the fragmented BEC phases in
between. It conforms to the piecewise linear dependence ex-
pected at T = 0 [18] but smoothed in our case due to nonzero
temperatures. In Fig. 4(b) we subtract from F the smooth
parabolic function

F∞ = −NT
ζ
(

5
2

)
ζ
(

3
2

)(
T

Tc

)3/2

+ k2
0Q2

2mN
(42)

reached in the thermodynamic limit to obtain the extra energy
of relative motion whose Q dependence stems from Galilean
invariance breaking. At T = 0 this quantity is expected to
have the shape of periodically repeating upturned parabolas
[18], but in our case junctions of these parabolas are smoothed
due to nonzero temperatures.

B. Fragmentation of the condensate

To explain the fragmentation, we can write the balance
equation for total momentum Q and kinetic energy Ekin shared
between the 1st level and the thermal cloud,{

Q = ν1 + Q′,

Ekin = ν1
k2

0
2m + k2

0 Q′2

2mN ′ ,
(43)

where Q′ and N ′ = 2Q0 are, respectively, momentum and
particle number of the thermal cloud. From these equations we
see that the minimum of Ekin equal to (k2

0/2m)(Q − Q0/2)
is formally achieved at ν1 = Q − Q0, as shown in the inset
in Fig. 4(a) by green straight line. However, at Q < Q0 this
minimum is unphysical because ν1 cannot be negative, so the
physical minimum is ν1 = 0, Ekin = (k2

0/2m)(Q2/2Q0) [inset
in Fig. 4(a), orange parabola]. Thus the fragmentation of BEC
is governed by competition between two ways to share the
total momentum Q between the condensate and the thermal
cloud. At Q < Q0 the whole momentum is carried by the ther-
mal cloud, and transferring it to the condensate at the 1st level
can only increase Ekin. At Q > Q0 transferring the momentum
Q − Q0 to the 1st condensate level and keeping the remaining
momentum Q′ = Q0 in the thermal cloud allows us to reduce
Ekin and hence the free energy (since the entropic part of the
free energy carried only by the thermal cloud is independent
of the distribution of the total momentum).

In the presence of repulsive interparticle interaction, the
condensate fragmentation is usually suppressed by extra en-
ergy cost associated with exchange energy [38]. Although our
analysis is focused on noninteracting Bose gas, we can esti-
mate the exchange energy hindering the fragmentation for a
three-dimensional homogeneous system. Consider, following
Ref. [38], the Hamiltonian of effective contact interaction

Hint = U

2L3

∑
k1k2q

a†
k1+qa†

k2−qak2 ak1 , (44)
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where U is the interaction constant, ak and a†
k are the de-

struction and creation operators for Bose particles. In the
mean-field approximation, where only the intercondensate in-
teraction is taken into account, we assume ak ≈ a†

k ≈ √
Nk

whenever k belongs to one of the condensate levels. In the
presence of two condensates with populations N0 and N1, in
the leading order we obtain

Hint ≈ U (N0 + N1)2

2L3
+ UN0N1

L3
. (45)

The first term, being the Hartree interaction energy, does
not depend on distribution of the condensate among the 0th
and 1st levels. The second term, corresponding to mean-field
exchange interaction, gives rise to the additional exchange
energy 
Eexch = UN0N1/L3 in the presence of fragmenta-
tion, when both N0 and N1 are macroscopically large. On
the other hand, the condensate fragmentation allows the sys-
tem to lower its kinetic energy at Q0 < Q � N/2 by the
amount 
Ekin = −k2

0 (Q − Q0)2/4mQ0 [the difference be-
tween solid and dashed lines in the inset in Fig. 4(a)]. The
total change of system energy 
E = 
Ekin + 
Eexch when
it passes from unfragmented [N0 = N{1 − (T/Tc)3/2}, N1 =
0] to fragmented [N0 = N{1 − (T/Tc)3/2} − (Q − Q0), N1 =
Q − Q0] BEC is


E = −k2
0 (Q − Q0)2

4mQ0
+ U

L3
(N − Q − Q0)(Q − Q0). (46)

To estimate the relative magnitudes of both terms in
Eq. (46), we take Q = N/2 where 
Ekin reaches the extreme
value. Taking into account that k0 = 2π h̄/L, U = 4πash̄

2/m,
where as is the s-wave scattering length, and using Eq. (28),
we obtain in this case


E |Q=N/2 = π2h̄2N

2mL2

[
1 −

(
T

Tc

)3/2
]2

×
{

−
(

Tc

T

)3/2

+ 2Nas

πL

}
. (47)

The first term in the braces always dominate at low enough
temperature, so the fragmentation becomes energetically fa-
vorable (
E |Q=N/2 < 0) even in the presence of interaction.
With the typical parameters of atomic BECs [2,39] as =
2–100 nm, L = 10–50 µm, N = 104–105, we obtain the tem-
perature when fragmentation occurs in the range T/Tc ≈
0.02–1. Thus we conclude that condensate fragmentation pre-
dicted by our analysis should not be necessarily suppressed by
the interaction effects. At some combinations of realistic sys-
tem parameters, the exchange interaction, which counteracts
the fragmentation, can be even negligibly weak.

V. DISTRIBUTIONS OF OCCUPATION NUMBERS

A. Saddle-point calculation of distributions

In this section, we calculate the probabilities p(Nq) for Nq
particles to occupy the qth single-particle state. Our main
focus is the 0th and 1st states which can host a BEC at
0 � Q � N/2, with the other states considered in Sec. V E.

Our calculations are based on the saddle-point expression
(13), so we find the probability distribution functions in the

large-N limit. The saddle point location (z̃(Nq), ṽ(Nq)) for this
integral depends on Nq and is determined by the equations

∂ f̃

∂z
= −N + Nq +

∑
k �=q

ν̃k = 0, (48)

∂ f̃

∂v
= 2

R

⎛
⎝−Q + qNq +

∑
k �=q

kν̃k

⎞
⎠ = 0, (49)

where

ν̃k = 1

e
k2−2ṽ(Nq )·k

R −z̃(Nq ) − 1
. (50)

From the physical point of view, Eqs. (48) and (49) fix the total
particle number N − Nq and total momentum Q − qNq for a
system of bosons having the dimensionless chemical potential
z̃ in the frame moving with the dimensionless velocity ṽ. The
occupation of the qth level is frozen and treated as the external
parameter Nq, while mean occupations of other levels (50) are
given by the Bose-Einstein distribution.

Further calculation of p(Nq) is described in Appendix B
and consists in the following steps:

(i) For each Nq from Eqs. (48) and (49) we find the saddle
point (z̃(Nq), ṽ(Nq)) whose vicinity provides the dominant
contribution p(Nq) ∼ e f̃ (Nq,z̃(Nq ),ṽ(Nq )) to the integral (13).

(ii) Among the occupation numbers Nq we find the value
N̄q where p(Nq) attains the maximum.

(iii) We decompose the exponent in p(Nq) around the
maximum up to the term (Nq − N̄q)2 obtaining the Gaussian
approximation for the distribution function.

(iv) In the case N̄q < 0, arising when condensate at the qth
level is absent, we approximate only the physically relevant
tail Nq � 0 of the distribution by the exponentially decaying
function.

Figure 5 depicts the general picture for distribution func-
tions for the 0th and 1st single-particle states. In the normal
phase, both p(N0) and p(N1) attain their maxima at N̄0,1 < 0,
so only their positive-N0,1 exponential tails are physical. In
the unfragmented BEC phase, N̄0 > 0 and N̄1 < 0, so p(N0)
is Gaussian and p(N1) is exponential. In the fragmented BEC
phase, both maxima are attained at N0,1 > 0, thus both distri-
bution functions p(N0,1) are Gaussian.

Examples of numerically calculated distribution functions
p(N0) and p(N1) are shown in Fig. 6 at different T and fixed
Q = 0.25N , and in Fig. 7 at different Q and fixed T = 0.5Tc.
In the presence of a condensate at the qth level, p(Nq) has
the Gaussian-like shape. Otherwise the distribution p(Nq) is
exponentially decaying at Nq � 0, as seen in Fig. 6(a) at T >

Tc, in Fig. 6(b) at T > 0.63Tc, and in Fig. 7(b) at Q < 1768.
The insets in Figs. 6 and 7 show the mean occupa-

tion numbers 〈Nq〉 of the 0th and 1st levels, and their
root-mean-square deviations σ (Nq) = 〈(Nq − 〈Nq〉)2〉1/2, or
particle-number fluctuations. The leading-order (∝N) analyti-
cal results for 〈N0,1〉 in different regimes (normal state as well
as unfragmented and fragmented BEC) are given in Eqs. (29)–
(36) by the quantities ν0,1. In the following sections, we go
beyond this simple analysis, calculating 〈N0,1〉 up to sublead-
ing (∝N2/3) corrections and estimating the distribution widths
σ (N0,1) at the leading order. To achieve this accuracy, some-
times we need to take into account subleading terms in the
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FIG. 5. Phase diagram in the range 0 � Q � N/2, where qualita-
tive shapes of distribution functions p(N0) and p(N1) for occupations
of the 0th and 1st single-particle levels are shown in different phases:
normal phase T > Tc, unfragmented BEC phase T < Tc, Q < Q0,
and fragmented BEC phase T < Tc, Q > Q0. In all phases the saddle-
point calculations yield approximately Gaussian shapes for p(N0,1),
but their parts at N0,1 < 0, shown by dashed lines, are unphysical.

saddle-point integral (13) caused by pre-exponential factors,
as described in detail in Sec. II of the Supplemental Material
[35].

B. Normal phase, T > Tc

Above the critical temperature, the condensate is absent
on both the 0th and 1st levels, which means that the distri-
bution maxima are attained at negative N0,1. Thus we expand
f̃ (Nq, z̃(Nq), ṽ(Nq)) around N0,1 = 0 up to the linear term to
obtain

p(N0) ∼ exp {z̃(0)N0}, (51)

p(N1) ∼ exp

{[
z̃(0) + 2ṽx(0) − 1

R

]
N1

}
. (52)

Here ṽx(0) = Q/N , and the dimensionless chemical potential
z̃(0) is given by the equation

1

ζ
(

3
2

)(
T

Tc

)3/2

g3/2(−z̃(0)) = 1. (53)

Mean occupation numbers and their standard deviations cal-
culated from Eqs. (51) and (52) are shown in Figs. 6(a) and
6(b) by black crosses.

C. Unfragmented BEC, T < Tc, Q < Q0

In this regime the condensate is present only at the 0th
level. Its occupation probability p(N0) has the Gaussian shape

p(N0) ∼ exp

{
− π2

[
ζ
(

3
2

)]4/3(
N0 − N̄0

)2

2N4/3(T/Tc)2J1(Q/2Q0, α0)

}
(54)

with the maximum at

N̄0 = N

[
1 −

(
T

Tc

)3/2
]

− RI1

(
Q

2Q0
, α0

)
+ o(N2/3), (55)

where α0 is found from the equation

α0 + J2(Q/2Q0, α0)

2J2
1 (Q/2Q0, α0)

= 0. (56)

Here the integrals

I1(vx, α) =
∫ ∞

0
dt eαt

[
G(vx, t )G2(0, t ) − 1 −

(π

t

)3/2
]
,

(57)

Jn(vx, α) =
∫ ∞

0
dt tneαt

[
G(vx, t )G2(0, t ) − 1

]
(58)

are introduced, and G(v, t ) = ∑∞
k=−∞ e−k2t+2kvt is the Jacobi

theta function. The analytical results for mean occupation (55)
and the standard deviation provided by the Gaussian distribu-
tion (54) are shown in Figs. 6(a) and 7(a) by red circles.

At the 1st level, the condensate is absent, so we decom-
pose the exponent f̃ (N1, z̃(N1), ṽ(N1)) around N1 = 0, taking
both the linear in N1 and quadratic terms, because retaining
only the former produces large numerical errors. The resulting
distribution is

p(N1) ∼ exp

{
−π

[
ζ
(

3
2

)]2/3
(N1 − Q + Q0)2

N5/3(T/Tc)5/2

}
, (59)

and its mean and standard deviation calculated over N1 � 0
are shown in Figs. 6(b) and 7(b) by red circles.

D. Fragmented BEC, T < Tc, Q > Q0

In this regime, both the 0th and 1st levels host the con-
densate, so their occupation probabilities have the form of
Gaussians

p(N0) ∼ exp

{
−π

[
ζ
(

3
2

)]2/3
(N0 − N̄0)2

N5/3(T/Tc)5/2

}
, (60)

p(N1) ∼ exp

{
−π

[
ζ
(

3
2

)]2/3(
N1 − N̄1

)2

N5/3(T/Tc)5/2

}
, (61)

centered around the most probable occupation numbers

N̄0 = N

[
1 −

(
T

Tc

)3/2
]

− (Q − Q0) + RI2

2
+ o(N2/3),

(62)

N̄1 = Q − Q0 + RI2

2
+ o(N2/3). (63)

Here the integral

I2 = −
∫ ∞

0
dt

[
G

(
1

2
, t

)
G2(0, t ) − 2 −

(
π

t

)3/2
]

≈ 6.375

(64)
was introduced.

Note that we can also calculate the joint distribution
p(N0, N1) of both occupation numbers in the fragmented BEC
phase. Our estimates show that location of its maximum is
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FIG. 6. Distribution functions p(N0,1) for occupation numbers of
the (a) 0th and (b) 1st single-particle levels calculated at N = 104,
Q = 2500 for different temperatures T/Tc indicated near correspond-
ing curves. Insets show mean particle numbers 〈N0,1〉 and their
root-mean-square deviations σ (N0,1) as functions of T , calculated
numerically (solid lines) and approximated analytically (symbols,
see text). Different approximations are used in the normal phase (N),
unfragmented BEC phase (U), and fragmented BEC phase (F).

close to those of marginal distributions (62) and (63) except
slight deviations of the order of R. Interestingly, this joint
distribution is anisotropic: in the large-N limit its width along
N0 + N1, being of the order of N2/3, is much smaller than
the width along N0 − N1 having the order N5/6. In other
words, the sum of occupation numbers N0 + N1 fluctuates
much more weakly than their difference or both N0 and N1 on
their own.

E. Other levels q �= 0, ex

Now consider the distribution functions p(Nq) for occu-
pation numbers on other levels q �= 0, ex which should not
host the condensate at 0 � Q � N/2. Due to the absence of
condensate, we need to expand p(Nq) around Nq = 0, and
with this condition the saddle-point equations (48) and (49)

FIG. 7. Distribution functions p(Nq ) for occupation numbers of
the (a) 0th and (b) 1st single-particle levels calculated at N =
104, T = 0.5Tc for different total momenta Q indicated near cor-
responding curves. Insets show mean particle numbers 〈N0,1〉 and
root-mean-square deviations σ (N0,1) as functions of Q, calculated
numerically (solid lines) and approximated analytically (symbols,
see text). Different approximations are used in the unfragmented (U)
and fragmented (F) BEC phases.

reduce to those for the partition function (21) and (22), be-
cause exclusion of the momentum q from the sum over states
provides only a small error O(1). Hence we can use the results
(23), (24) and (29)–(36) for the saddle-point parameters for
partition function and substitute them to the general formula
(B12) for the distribution function to obtain

p(Nq) ∼ exp

{[
z̃(0) + −q2 + 2ṽx(0)qx

R

]
Nq

}
. (65)

In the normal phase T > Tc, z̃(0) is given by Eq. (53) and
ṽx(0) = Q/N . In the BEC phases T < Tc, we take z̃(0) ≈ 0
and ṽx(0) = min(Q/2Q0, 1/2).

Thus in both normal and BEC phases the distribution func-
tions (65) for occupations of noncondensate levels q take
the Gibbsian form p(Nq) ∼ exp{−[βεq−ṽ(0) − z̃(0)]Nq} with
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FIG. 8. Distribution functions p(N0) (solid lines) and pc(N0)
(dashed lines) for occupation number N0 of the 0th condensate level
calculated at N = 1000 for different temperatures showed near the
curves. Insets show mean particle number 〈N0〉 and root-mean-square
deviations σ (N0) as functions of T . Solid lines correspond to calcu-
lations at fixed total momentum Q = 0, and dashed lines correspond
to canonical ensemble without momentum fixation.

suitable dimensionless chemical potential z̃(0) and the refer-
ence frame boost ṽ(0). Note that the levels whose momenta
q are co-directional with ṽ (and generally with the system
total momentum Q) become more populated to partly accom-
modate it, and those with the counter-directional momenta q
become less populated.

VI. EFFECT OF MOMENTUM FIXATION

In this section, we compare our analysis with the total
momentum fixed to Q = 0 and conventional approach for
ideal Bose gas in canonical ensemble without total momentum
fixation. As shown in Sec. III of the Supplemental Material
[35], the partition Z and distribution p(N0) functions, calcu-
lated with the fixed total momentum Q = 0 using Eqs. (12)
and (13), differ from those calculated in canonical ensem-
ble only by extra integration over v = 0 around the saddle
point (z0, v = 0) and (z̃(Nq), ṽ = 0), respectively. The re-
sulting difference in Z and p(N0) turns our to be relatively
small when T/Tc � N−2/3, i.e., in the thermodynamic limit
N → ∞ taken at fixed temperature.

At lower temperatures, when T/Tc � N−2/3, fixation of
zero total momentum Q = 0 significantly changes both free
energy and distribution function p(N0). In particular, p(N0)
becomes much more narrow than its counterpart pc(N0) cal-
culated in canonical ensemble. This is shown in Fig. 8, where
the distribution functions are compared at N = 1000 and at
several temperatures approaching the low-temperature condi-
tion T/Tc ∼ N−2/3 = 0.01. As seen, at progressively lower
T the total-momentum fixed distribution p(N0) (solid lines)
becomes more and more narrow in comparison with the
canonical ensemble result pc(N0) (dashed lines).

We should note that the saddle-point method itself, which
is used in our calculations, becomes poorly applicable at
T/Tc � N−2/3, because the integrands in Eqs. (12) and (13)
become relatively wide and essentially non-Gaussian near the
saddle points. Besides, we cannot treat the parameter R [see

Eq. (10)] as large in this case. At extremely low tempera-
tures T/Tc � N−2/3, when R � 1, it is better to calculate the
distribution functions p(N0) and pc(N0) by direct summation
(3) over the seven single-particle states q = 0,±ex,±ey,±ez

which are closest to the origin. In this approximation, we
obtain the average occupation 〈N0〉 = N − 6e−2/R and its root-
mean-square deviation σ (N0) = 2

√
3e−1/R with the fixed total

momentum Q = 0. To compare, in canonical ensemble we
obtain 〈N0〉c = N − 6e−1/R and σc(N0) = √

6e−1/2R. Indeed,
in the insets of Fig. 8 we see that at T → 0 the mean oc-
cupation of the 0th level in canonical ensemble is lower,
〈N0〉c < 〈N0〉, and its width is larger, σc(N0) > σ (N0), be-
cause of less restricted distribution of particles among the
single-particles levels than in the presence of momentum
fixation.

The related question is how the total momentum Q fluc-
tuates in canonical ensemble when it is not fixed. Taking
into account that partition function in canonical ensemble
reads

Zc =
∑
{nk}

e−β
∑

k nkεkδN,
∑

k nk , (66)

and comparing this formula with Eq. (2), we see that proba-
bility of the unrestricted system to have the total momentum
Q is

p(Q) = Z

Zc
= e− F (N,Q)−Fc (N )

T . (67)

In the normal state T > Tc, the free energy F (N, Q) of the
fixed-momentum system given by Eq. (38) is higher than
those in canonical ensemble Fc(N ) [equal to the first term
in Eq. (38)] by k2

0Q2/2mN , so the distribution (67) has the
ordinary Maxwellian form,

p(Q) ∼ e−Q2/NR = e−P2/2mNT , (68)

for the system of N particles taken as a whole. In the unfrag-
mented BEC state T < Tc, |Qx,y,z| < Q0, Eq. (39) yields the
similar difference of free energies k2

0Q2/2mN ′, but with the
smaller number N ′ = N (T/Tc)3/2 in the denominator, equal
to particle number in the thermal cloud. The resulting distri-
bution in this case,

p(Q) ∼ e−(Q2/NR)(Tc/T )3/2 = e−(P2/2mNT )(Tc/T )3/2
, (69)

is more narrow than in the normal state, because in the Bose-
condensed system the Galilean invariance is broken, and the
center-of-mass motion is no longer decoupled from the rel-
ative motion. Equation (69) is formally applicable only at
low enough total momenta |Q| � Q0. At larger momenta we
enter the fragmented BEC regime T < Tc, |Qi| > Q0, where
the difference of the momentum-fixed (41) and unrestricted
free energies switch from quadratic to linear dependence on
|Q| [see Fig. 4(a)], so the distribution p(Q) switches from
Gaussian to exponential. However, if e−(Q2

0/NR)(Tc/T )3/2 � 1,
the exponential high-momentum tail can be neglected. Taking
into account Eq. (10), this happens at T/Tc � N−2/3, when
temperature is not very small and the saddle-point method is
still applicable. Thus we have found that at moderate temper-
atures N−2/3 � T/Tc < 1 the distribution of fluctuating total
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momentum P in canonical ensemble is Gaussian, although
involves only the thermal cloud.

VII. CONCLUSIONS

We have considered Bose condensation of ideal three-
dimensional gas with fixed particle number N and fixed total
momentum P. In principle, partition function and all other
thermodynamic properties of the system can be found in this
setting using the recurrence relations (6) and (7), but their
application is limited to N not exceeding several hundreds.
To uncover universal features arising in the large-N limit,
we integrate over complex chemical potential z and complex
rapidity v to fix both N and P. In the large-N limit, the
dominating contribution to the integral is provided by vicinity
of the saddle point (z0, v0). Interestingly, the saddle-point con-
ditions look like transition to the grand canonical ensemble
with definite chemical potential μ = T z0 + k2

0v2
0/2m in the

reference frame moving with the velocity k0v0/m, where k0 =
2π h̄/L is the quantization unit of momentum in the system of
size L.

Studying the system phase diagram with respect to T
and dimensionless total momentum Q = Px/k0 along the x
axis, we identify three different phases: (1) normal phase at
T > Tc, where Tc is the conventional critical temperature of
BEC (11); (2) unfragmented BEC phase at T < Tc, 0 � Q <

Q0 with the threshold momentum Q0 (28), where only the
k = 0 level hosts the condensate; (3) fragmented BEC phase
at T < Tc, Q0 < Q � N/2, where the condensate, i.e., mean
macroscopic occupation, is present at the k = 0 and k = ex

levels simultaneously. Fragmentation of the condensate can
be explained using energetic arguments: at large enough total
momentum, macroscopic occupation of the moving k = ex

state becomes more energetically favorable for the particles
than staying in the noncondensed thermal cloud. Although
usually the fragmentation is suppressed by exchange energy
[38], our estimates show that this its effect can be weak at
realistic parameters of atomic BECs, especially at low tem-
peratures. Beyond the range 0 � Q � N/2, the sequence of
unfragmented and fragmented phases is repeated with the
period 
Q = N and symmetry around Q = 0, although with
varying specific numbers of condensate levels. At arbitrary
three-dimensional momenta P, we can expect up to eight
single-particle levels hosting the condensate.

The saddle-point method allowed us to derive analytical
expressions for partition function Z and probability distribu-
tions p(Nk ) for occupation numbers of the kth single-particle
states in all aforementioned phases. These expressions be-
come asymptotically exact when the parameter R ∝ N2/3T/Tc

tends to infinity, i.e., in the thermodynamic limit N, L → ∞
at N/L3 = const and T = const (although numerical saddle-
point integration provide accurate results already at R > 2).
The distribution p(Nk ) has approximately exponential shape
for noncondensate levels and Gaussian shape for those levels
k which host the condensate 〈Nk〉 ∝ N . In the latter case, we
deduce both leading (∝N) and subleading (∝N2/3) terms in
analytical expressions for the mean value 〈Nk〉 to achieve bet-
ter accuracy. Fluctuations of the number of Bose-condensed
particles at each condensate level are given by the standard
deviation of the order of N2/3 in the unfragmented phase and

N5/6 in the fragmented phase. In the latter case, as we verified
by additional analysis of the joint distribution p(N0, N1), the
total number of condensate particles N0 + N1 fluctuate weaker
(with the standard deviation ∝N2/3, as for unfragmented
BEC) than each of the numbers N0,1 separately. Note that dis-
tribution functions can be related as p(Nq) ∝ exp[−βL(φq)]
to Landau functionals L(φq) of the corresponding BEC order
parameters having amplitudes |φq| = √

Nq [36], so the Gaus-
sian and exponential shapes of p(Nq) correspond to minima
of L(φq) at, respectively, |φq| �= 0 and |φq| = 0.

We also compared the thermodynamic (free energy) and
statistical (occupation number distribution functions) proper-
ties of the system with the fixed total momentum P = 0 and
without momentum fixation, in ordinary fixed-N canonical
ensemble. These two cases are shown to essentially differ only
at low enough temperatures T/Tc � N−2/3 when only few
lowest-energy single-particle states are significantly occupied,
and discreteness of particle momenta in a finite system cannot
be neglected. At the same time, at such low temperatures
the saddle-point method becomes poorly applicable because
of essentially non-Gaussian integration. Thus we show that
standard canonical ensemble treatment of BEC provides fairly
good approximation for the system at rest, at strictly zero total
momentum if the temperature is much higher than quanti-
zation scale of kinetic energy. However, at P �= 0 it is not
applicable any more, and the condensate fragmentation effects
witnessing breaking of Galilean invariance in Bose-condensed
system at T < Tc arise. Another signature of this invariance
breaking is suppression of the center-of-mass momentum fluc-
tuations in canonical ensemble in the presence of BEC at
T < Tc.

Our analysis extends the statistical theory of BEC in a
canonical ensemble [6–16] by including the additional con-
serving quantity P besides N . On the other hand, it can
be considered as extension of quantum theory of finite-N
Bose systems with nonzero angular momentum [24–26] to
the finite-temperature and large-N limit because of similarity
between angular momentum in annular geometry and total
momentum at periodic boundary conditions. We consider
noninteracting bosons, so our calculations cannot properly
describe superfluidity and formation of metastable currents
[18] as well as obstacles to the condensate fragmentation
due to exchange effects [38], arising in the presence of re-
pulsive interaction or nonlinearities which can reach even
single-photon level at room temperature [40]. Nevertheless,
the predicted behavior of moving Bose-condensed system can
be checked in experiments with cold atomic gases, where
Feshbach resonances allow us to suppress interaction [41].
Possible future development of our approach can include tak-
ing into account interactions using the mean-field Bogoliubov
theory, considering microcanonical ensemble with fixation of
the total energy instead of temperature, and explicit consider-
ation of rotational geometries of trapped gases.
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APPENDIX A: LARGE-N LIMIT OF THE LOGARITHMIC
SUM AND ITS DERIVATIVES

Conventional treatment of the momentum sums like those
appearing in Eqs. (16), (17) and (48), (49) relies on switching
from summation to integration over k. The terms correspond-
ing to the single-particle levels k which are expected to be
macroscopically occupied should be treated separately. For
the sum of logarithms in Eqs. (14) and (15), there is no need
for such separation because any single term can provide, at
most, only subextensive O(ln N ) contribution. Switching from
summation to integration and integrating by parts over |k|, we
obtain

−
∑

k

ln
(
1 − e

−k2+2v·k
R +z

)

= N

ζ
(

3
2

)(
T

Tc

)3/2

g5/2

(
−v2

R
− z

)
+ O(ln N ). (A1)

Here the Bose-Einstein integrals [42]

gd (x) = 1

�(d )

∫ ∞

0
dx

xd−1

ex+z − 1
=

∞∑
s=1

e−sx

sd
(A2)

were introduced, which have the properties

g′
d (x) = −gd−1(x), (A3)

gd (0) = ζ (d ) when d > 0, (A4)

and ζ (x) is the Riemann zeta function.
The saddle-point conditions (16) and (17) need more accu-

rate treatment because the 0th (q = 0) and 1st (q = ex) levels,
which can potentially host the condensate, can provide large,
linear in N , contributions to the derivatives of the momentum
sum (A1). Let us denote the set of such condensate levels by
C and consider the sum over remaining noncondensate levels
k /∈ C. As shown in more details in Sec. I of the Supplemental
Material [35], we can approximate these derivatives as

− ∂

∂z

∑
k/∈C

ln
(

1 − e
−k2+2v·k

R +z
)

= N

ζ
(

3
2

)(
T

Tc

)3/2

g3/2(−z) + O(N2/3), (A5)

− ∂

∂vx

∑
k/∈C

ln
(
1 − e

−k2+2v·k
R +z

)

= 2

R

{
vxN

ζ
(

3
2

)(
T

Tc

)3/2

g3/2(−z) + O(N2/3)

}
. (A6)

From the physical point of view, Eq. (A5) provides the popu-
lation of all noncondensate levels at the saddle point. The first
term on the right-hand side provides the leading (∝N) order of
a particle number in the thermal cloud in the thermodynamic
limit, and the O(N2/3) term is responsible for the finite-size
correction to it. Similarly, Eq. (A6) presents the total momen-
tum (times 2/R) of all noncondensate states which comprise
the thermal cloud and move with the average rapidity vx.

Using Eqs. (A5) and (A6) with C = {0, ex} in Eq. (14), we
obtain the saddle-point conditions (21) and (22), respectively.

APPENDIX B: CALCULATION OF DISTRIBUTION
FUNCTIONS

Particle number distribution function p(Nq) for q = 0 or
q = ex is given by the four-dimensional integral (13), which
is dominated in the large-N limit by a Gaussian integral in
vicinity of the saddle point (z̃(Nq), ṽ(Nq)), whose location
depends on Nq:

p(Nq) ∼ 1√
H

e f̃ (Nq,z̃(Nq ),ṽ(Nq )). (B1)

Here we can write the function (15)

f̃ (Nq, z, v) = h(z, v) + zNq + (−q2 + 2v · q)Nq

R
, (B2)

in terms of

h(z, v) = −zN − 2v · Q
R

−
∑
k �=q

ln
(
1 − e

−k2+2v·k
R +z

)
. (B3)

The Hessian determinant

H =
{

∂2h

∂z2

∂2h

∂v2
x

−
(

∂2h

∂z∂vx

)2
}∣∣∣∣∣ z=z̃(Nq )

v=ṽ(Nq )
(B4)

of both f̃ and h, calculated at the saddle point, provides sub-
leading contribution to (B1) with respect to the leading-order
exponential term. We retain it to obtain refined expressions for
locations of the distribution maxima.

The saddle-point location (z̃(Nq), ṽ(Nq)) is defined by sta-
tionarity conditions (48) and (49), which can be written as

∂ f̃

∂z
= ∂h

∂z
+ Nq = 0,

∂ f̃

∂v
= ∂h

∂v
+ 2qNq

R
= 0. (B5)

The maximum of distribution function (B1) is formally
achieved at some particle number Nq = N̄q, where

d

dNq

(
f̃ − 1

2
ln H

)∣∣∣∣ z=z̃(Nq )
v=ṽ(Nq )

= −q2 + 2ṽ(Nq) · q
R

+ z̃(Nq) − 1

2

d ln H

dNq
= 0. (B6)

Here we have used the stationarity conditions (B5). The actual
location of the maximum coincides with N̄q if N̄q > 0, so in
this case we can perform Gaussian expansion of p(Nq) around
N̄q. Otherwise, if N̄q < 0, only a right tail of this Gaussian
distribution will be present in the physical region Nq � 0,
so in the large-N limit we can retain only its exponential
asymptotic.

Thus, in the case N̄q > 0 we expand the distribution (B1)
around the maximum Nq = N̄q in the Gaussian form

p(Nq) ∼ exp

{
1

2

d2 f̃

dN2
q

∣∣∣∣∣ z=z̃(N̄q )
v=ṽ(N̄q )

(Nq − N̄q)2

}
. (B7)

To calculate the second derivative d2 f̃ /dN2
q at the saddle point

we take into account Eqs. (B2) and (B3) together with the
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stationarity conditions (B5) and their derivatives with respect
to Nq:

d2 f̃

dN2
q

∣∣∣∣∣ z=z̃(N̄q )
v=ṽ(N̄q )

= dz̃

dNq
+ 2q

R
· d ṽ

dNq
. (B8)

From the other hand, differentiating Eq. (B5) by Nq and taking
into account that the mixed second derivatives ∂2h/∂z∂vy,z

and ∂2h/∂vi∂v j (at i �= j) vanish at the saddle point since
ṽy = ṽz = 0, we obtain

dz̃

dNq
= 1

H

(
2qx

R

∂2h

∂z∂vx
− ∂2h

∂v2
x

)
, (B9)

d ṽ
dNq

= ex

H

(
−2qx

R

∂2h

∂z2
+ ∂2h

∂z∂vx

)
. (B10)

Substituting these expressions into Eqs. (B8) and (B7), we get

p(Nq) ∼ exp

{
−

(
2q2

x

R2

∂2h

∂z2
− 2qx

R

∂2h

∂z∂vx
+ 1

2

∂2h

∂v2
x

)

× (Nq − N̄q)2

H

}
. (B11)

In the formulas (B9)–(B11), all derivatives of h should be
evaluated at the saddle point (z̃(N̄q), ṽ(N̄q)).

In the case Nq < 0 we expand f̃ in Eq. (B1) up to the linear
term around Nq = 0 using the maximum condition (B6) to
obtain the exponential distribution:

p(Nq) ∼ exp

{[
z̃(0) + −q2 + 2ṽ(0) · q

R

]
Nq

}
. (B12)
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