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Probing Wigner time delays with photoelectron interferometry: Anisotropic long-range imprint
of the short-range centrifugal potential
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We consider the comparative dynamics of one- and two-photon ionization in atoms through semianalytical rep-
resentations of the continuum wave functions, in order to model the probe-induced anisotropy in interferometric
measurements of photoemission delays. We find an approximate expression of the long-range half-scattering
phase based on an asymptotic expansion of the continuum eigenfunctions within the Wentzel-Kramers-
Brillouin approximation, which encompasses and expands commonly used lower-order derivations. Combined
with a perturbative approach, the resulting analytic formalism can treat, at the same time, the two-photon
propensity rules, the anisotropy in the continuum-continuum photoionization time delay, and the soft-photon
regime.
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I. INTRODUCTION

Attosecond spectroscopies rely to a large extent on inter-
ferometric schemes, due to the extremely short timescale and
the wavelike nature of the investigated quantum processes
[1,2]. In particular, two pillars of attosecond science, i.e., the
attosecond streaking [3] and the reconstruction of attosecond
beating by interference of two-photon transitions (RABBIT)
[4] techniques, have been used to revisit photoemission in the
time domain [5–7].

The attosecond streaking and RABBIT are schemes based
on two-photon ionization with extreme ultraviolet (XUV) at-
tosecond pulses dressed with an infrared (IR) field. Using
them as XUV-pump IR-probe approaches to gain tempo-
ral insight into photoemission from atoms [6,7], through
measurements of the photoelectron’s spectral phase, trig-
gered intense experimental and theoretical activities (see, e.g.,
Ref. [8] and references therein). A major issue addressed in
this context concerns the intricate roles of the XUV pump and
the IR probe and more specifically the imprint of the latter
on the measured photoemission delays. Analytical derivations
based on universal asymptotic expansions of the wave func-
tions [6,7,9] and classical arguments [10–14] have proved
efficient for the modeling and interpretation in various studies
over the past decade (see, e.g., Refs. [15–18]).

However, these approximate derivations are intrinsically
isotropic, in the sense that they cannot account for the an-
gular variations of the correction between the measurements,
on the one hand, and the probed dynamics, on the other
hand, in investigations of orientation-resolved photoemission
[16,17,19–22]. The probe-induced anisotropy is particularly
striking in the seminal work published in Ref. [23], where
RABBIT measurements of atomic photoemission delays in
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He display significant angular variations, while the probed
Wigner delay associated with single-photon ionization in this
case is isotropic.

From a fundamental perspective, this asymmetry is related
to the dipole selection rules in one- and two-photon processes
and to the so-called Fano propensity rules [24] applied to two-
photon ionization [25,26]. These rules formalize an imbalance
in the angular momentum distribution in the two arms of the
RABBIT interferometer, resulting in an angular redistribution
of the modulus and phase of the photoemission probability
amplitudes. By using standard asymptotic expansion of the
continuum wave functions, the original analytical derivations
of the probe influence in RABBIT measurements of photoe-
mission delays [7,9,12] fail to account for these two-photon
Fano propensity rules.

In this article we derive a semianalytic alternative repre-
sentation of the continuum wave functions which is sufficient
to recover, at least qualitatively, the asymmetric influence of
the probe in RABBIT measurements. We use an expansion
of the continuum wave functions up to the first order in r−1,
using the Wentzel-Kramers-Brillouin (WKB) approximation
[27]. In this framework, our semianalytical expressions appear
explicitly as an improvement over the standard derivations and
are sufficient to retrieve the Fano propensity rules. Moreover,
the WKB approach, by its semiclassical nature, is particularly
suited to extract intuitive physical insight from the obtained
analytical results. In Sec. II we review the formalism used in
RABBIT, in terms of phases, delays, transitions amplitudes,
and continuum wave functions. In Sec. III, focused on the
question of anisotropy, we present our approach and demon-
strate its ability to reproduce the two-photon Fano propensity
rules. In Sec. IV we illustrate the consistency of our work
with respect to a selection of previously published studies.
We furthermore exploit its potential to provide finer insight to
state-of-the art modeling and interpretation of time-resolved
photoemission measurements. We provide a summary and
conclusions in Sec. V.
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FIG. 1. Principle of the RABBIT scheme with angular momen-
tum resolution. The two-photon transitions are indicated by solid
arrows. The dashed-line arrow shows the virtual one-photon tran-
sition meant to be probed with the RABBIT scheme according to
Refs. [7,9]. See the text for details.

II. MEASURING PHOTOEMISSION DELAYS
WITH RABBIT

A. Measurable atomic delay

In this paper we focus on the temporal information encoded
by a given sideband in a RABBIT scheme, as sketched in
Fig. 1 and summarized hereafter. We consider the photoemis-
sion of an atom by a pair of consecutive XUV odd harmonics
(with frequencies ωa and ωe) of an IR field, in the presence
of the fundamental field (typically 800 nm wavelength, which
corresponds to a photon energy ω0 = 1.55 eV). The obtained
photoelectron spectrum contains two main peaks separated
by 2ω0, corresponding to the absorption of each harmonic,
and an additional sideband peak in between, resulting from
two-photon transitions involving the harmonics and the IR
field. The energy relationship between the considered har-
monics and the fundamental IR field is such that two quantum
paths lead to the sideband formation: absorption of the lowest
harmonic and absorption of an IR photon (labeled a in Fig. 1
and in the following) and absorption of the highest harmonic
and emission of an IR photon (e).

When considering orientation-resolved measurements, the
photoelectron momentum distribution associated with the
sideband is hence expressed as the coherent sum

I (k; τIR) ∝ ∣∣Ma(k)Fae−iϕa−iω0τIR + Me(k)Fee−iϕe+iω0τIR
∣∣2

.

(1)

In this expression Fa and Fe are the field strengths of the
two harmonics, labeled according to the path to which they
contribute, ϕa and ϕe are the associated phases, and ω0τIR

corresponds to the phase of the IR field, here written as a func-
tion of the experimentally tunable IR delay τIR with respect to
the XUV. The factors Ma(k) and Me(k) are the two-photon
transition matrix elements associated with each path [28,29],
where k is the photoelectron’s asymptotic momentum vector.
Investigating the dynamics of photoemission in RABBIT ex-
periments consists in interpreting the so-called atomic phase

corresponding to

�φA(k) = arg Ma(k) − arg Me(k). (2)

This phase is accessible through a series of I (k; τIR) mea-
surements scanning τIR and calibrated with respect to the
harmonic phases [7]. Various time-domain interpretations of
the atomic phase have been proposed over the years (see,
e.g., Ref. [30] and references therein). Here we consider the
approach first introduced in [7] which consists in defining an
atomic delay

τA(k) = −�φA(k)

2ω0
, (3a)

and relating it to the Wigner delay [31]

τW (k) = 1

k

∂η(k)

∂k
, (3b)

associated with a virtual one-photon process leading to the
sideband energy E = k2/2 (see the dashed arrow in Fig. 1).
In the expression (4), η(k) is the usual scattering phase shift
of the photoelectron [32] which result only from the system-
and channel-specific short-range contributions. Any attempt
to relate τA(k) to τW (k) implies that the continuum is smooth
enough for η(k) to vary almost linearly within the 2ω0-wide
spectral range separating the two consecutive harmonic peaks.
Thus, τA(k) can be seen as a finite-difference approximation
of τW (k) [7], up to a correction

τcc(k) = τA(k) − τW (k). (3c)

In this context, RABBIT thus appears as an XUV-pump IR-
probe scheme to access the dynamics of one-photon ionization
in terms of Wigner delays. However, its full exploitation re-
quires the knowledge of the correction term τcc(k).

Insight into this term is obtained by expanding the
transition amplitudes Ma(k) and Me(k) according to the
second-order perturbation theory, with an ad hoc representa-
tion of the continuum wave functions. This is addressed in the
following, with the objective of accounting for the anisotropy
of τcc(k), i.e., the anisotropy induced by the probe stage in the
RABBIT scheme, a consequence of the two-photon transition
selection rules observed both in numerical simulations [16]
and in experiments [23].

B. Second-order perturbation theory

In order to focus on the anisotropy specifically brought
by the two-photon processes rather than by the initial state
or by the ionic potential (see [17,33] and references therein),
we consider the case of a spherically symmetric 	 = 0 ini-
tial state and linearly polarized collinear fields. By choosing
the polarization direction as the quantization axis, the orbital
magnetic quantum number m = 0 is conserved during the pro-
cesses. More importantly, a single angular momentum channel
(	 = 1) is open in one-photon ionization, i.e., η(k) = η1(k)
for all momentum directions k̂, k denoting the momentum
magnitude. In contrast, two channels (L = 0, 2) are open in a
two-photon process (see Fig. 1). In other words, the dynamics
of the probed process is isotropic, while the probe process,
and hence τcc(k), is anisotropic.
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For each path (α = a, e), the two-photon transition matrix
element reads [9]

Mα (k) = (8π )5/2

6i

∑
L=0,2

CL0YL0(k̂)eiηL (k)T α
L (k), (4)

where C00 = 1/2 and C20 = −1/
√

5 are the appropriate
Clebsch-Gordan coefficients, YL0 are the normalized spheri-
cal harmonics, and ηL are the scattering phases of the open
channels L = 0, 2. We emphasize that the phase of interest is
ultimately η1(k), which does not appear explicitly in Eq. (4)
but emerges from the radial integrals T α

L (k). The latter can be
expressed as1 [29]

T α
L (k) = 〈RkL| r |ρkα1〉 , (5)

where RkL(r) is the radial component of the final state’s (re-
duced) wave function in channel L and ρkα1(r) the radial part
of the so-called first-order perturbed wave function defined as

ρkα1(r) = lim
ε→0+

∑∫
ν

Rν1(r)
〈Rν1| r |R0〉

E0 + ωα − Eν + iε
. (6)

All through the paper, we assume E0+ωα>0 (with E0 the ini-
tial energy and ωα the XUV photon energy in the considered
path) such that ρkα1 behaves as a continuum wave function
[34] with asymptotic momentum kα = √

2(E0+ωα ). With this
notation, the time delay of the probed one-photon process
[Eq. (3b)] can be approximated as the finite difference

τW (k) = η1(ke) − η1(ka)

2ω0
. (7)

In Eq. (6), R0(r) is the radial part of the initial state and
the sum and integral span the 	 = 1 manifold of the complete
atomic spectrum, each of its states being associated with the
radial wave function Rν1(r) and energy Eν . Note that, follow-
ing the reasoning of Ref. [7], we have discarded in Eq. (6)
the term resulting from the paths where the infrared photon
is absorbed first, which is negligible compared with the one
considered here.

According to Eq. (6), the dominant contribution to ρkα1(r)
in each path is proportional to the resonant Rkα1(r), i.e., to the
final wave function reached by the XUV alone in the probed
process. This underlines the possibility to isolate η1(kα ) in the
phase of Mα (k).

In Ref. [7], standard asymptotic expansions of RkL(r)
and ρkα1(r), i.e., up to zeroth order in r−1, are used. This
approximation somehow formalizes a commonly accepted hy-
pothesis, according to which the IR transition in the RABBIT
scheme takes place significantly after the XUV absorption,
i.e., when the photoelectron is beyond the L-dependent short-
range influence of ionic potential. Consequently, T α

L is found
independently of L, which eventually leads to an isotropic
expression of τA, and therefore of τcc, as summarized in the
Appendix.

In the next section we go beyond this approximation and
present a semiclassical treatment of the two-photon transition

1All through the paper, the bra-ket notation designates the scalar
product with respect to the radial coordinate r.

amplitudes that provides a properly anisotropic [23,25,26]
semianalytic derivation for τcc.

III. ACCOUNTING FOR ANISOTROPY

In order to let the scattering phase difference η1(ke) −
η1(ka) emerge from the RABBIT phase, we explicitly express
the total phase of the continuum radial wave functions ρkα,1(r)
and RkL(r) in the generic form

Sκ	(r) = κr + Z

κ
ln(2κr) − 	π

2
+ η	(κ )︸ ︷︷ ︸

≡S∞
κ	

(r)

+�Sκ	(r). (8)

Here κ is the asymptotic momentum norm, 	 the angular
momentum, and Z the charge of the photoelectron’s parent
ion. The first terms encompassed in S∞

κ	 (r), including η	(κ ),
correspond to the universal asymptotic phase of an ionic
radial continuum wave function. Only this expression was
considered in the seminal works on RABBIT measurements
of photoemission delays [7,9] that led to an isotropic τcc. Here
we explicitly add a term �Sκ	(r) to be determined, expected
to include short-range effects and to account for the anisotropy
of τcc. This term vanishes at large r such that

Sκ	(r) ∼
r→∞ S∞

κ	 (r). (9)

A. WKB continuum wave functions

To proceed, we choose the WKB formalism [27] and fur-
thermore restrict �Sκ	(r) to the first nonvanishing term in
its expansion in powers of r−1. The WKB approach provides
both intuitive arguments in terms of classical mechanics and
satisfactory quantitative results in related contexts (see, e.g.,
Ref. [35] and references therein). It was notably used in [9]
to the order of r−1, but to obtain a correction of the wave
functions’ modulus only. Within the WKB approach, the final
continuum and intermediate first-order perturbed wave func-
tion are approximated as

RkL(r) 
 sin[SkL(r)]

[k2−2VL(r)]1/4
, (10a)

and

ρkα1(r) 
 exp
[
iSkα1(r)

]
[
k2
α−2V1(r)

]1/4 , (10b)

respectively, where V	(r) is the channel-dependent effective
potential including the centrifugal term. In this framework, the
phase Sκ	(r) is approximated as the action (also known as the
Hamilton characteristic function [36])

Sκ	(r) 
 Sκ	(r0) +
∫ r

r0

√
κ2 − 2V	(r′)dr′, (10c)

where the value Sκ	(r0) at the arbitrary radius r0 is enforced
to fulfill the asymptotic boundary conditions given in Eq. (9).

In order to reveal the signatures of the 	-dependent cen-
trifugal term in the two-photon matrix elements, we explicitly
express the effective potential experienced by the photoelec-
tron with momentum 	 as

V	(r) = −Z

r
+ 	(	 + 1)

2r2
+ O(r−3). (11)
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FIG. 2. Plot of the L = 0 continuum state of the hydrogen atom at k = 0.37 a.u. (a) and (b) Radial wave function obtained as the exact
solution of the time-independent Schrödinger equation (blue solid line), as the approximation given by Eq. (10a) including βκ	 (black dashed
line), and as the standard approximation [7,9] discarding βκ	 (red dotted line). (c) and (d) Phase difference between each of the two approximate
wave functions [same color code as in (a) and (b)] and the exact one. The left and right columns highlight two different radius ranges.

With the WKB expressions (10) and neglecting the O(r−3)
terms in Eq. (11), we find that the leading term when expand-
ing the WKB action Sκ	(r) in powers of r−1 is the first-order
term, i.e.,

�Sκ	(r) = Reβκ	

r
+ O(r−2), (12)

with the complex-valued 	-dependent coefficient

βκ	 = 1

2κ3

[
	(	 + 1)κ2 + Z2 + iZκ

]
, (13)

the imaginary part of which comes from the expansion of the
denominator in Eq. (10). The first term is related to the short-
range centrifugal potential 	(	 + 1)/2r2 and the last two terms
are imprints of the Coulomb tail −Z/r.

Eventually, we obtain WKB approximations of the radial
continuum wave functions, up to the first order in r−1, behav-
ing asymptotically as

RkL(r) = 1√
k

e−ImβkL/r sin
[
S∞

kL(r) + ReβkL/r
] + O(r−2),

(14a)

ρkα1(r) = 1√
kα

e−Imβkα1/rei[S∞
kα1(r)+Reβkα1/r] + O(r−2). (14b)

Note that, at zeroth order in r−1, the expressions (10) lead to
the standard wave functions used in Ref. [7].

To highlight the importance of the �Sκ	(r) corrections at
short and long distances, we assess our approach with the
hydrogen atom, for which exact results are available [27] [in

particular, η	(k) = �(	 + 1 + iZ/k)]. As an illustration, we
show in Figs. 2(a) and 2(b) the L = 0 and k = 0.37 a.u. radial
wave functions. The numerically exact solution of the time-
independent Schrödinger equation is shown as a blue solid
line, the WKB approximation given in Eq. (10a) as a black
dashed line, and the lowest-order equivalent, corresponding
to βκ	 = 0, as a red dotted line. We see in Fig. 2(b) that both
approximate wave functions converge asymptotically to the
exact solution. However, our WKB continuum wave function
converges much faster to the exact solution due to its r−1

corrections, as seen in the shorter range displayed in Fig. 2(a).
Here we see that the imaginary part of βκ	 modulates the
amplitude of the wave function in the short range, which qual-
itatively reproduce the behavior of the exact wave function
[9]. That modulation is formally absent in the zeroth-order
wave function.

For more comprehensive insight, we plot in Figs. 2(c) and
2(d) the phase difference between each approximate wave
function and the exact one (same color code). We see in
Fig. 2(c) that including the correction allows a much faster
convergence of the phase, within a few tens of a.u. At r = 40
a.u, the error is −0.015 rad only when βκ	 is properly in-
cluded, while it is an order of magnitude larger (0.218 rad)
when enforcing βκ	 = 0. Moreover, Fig. 2(d) underlines the
improvement of our approach with respect to the zeroth-order
approximation even at larger distances, where the latter con-
verges slowly (in r−1) while the former accurately matches
the exact phase. This is particularly important in the context of
the present study because the integrals involved in the matrix
element computation are mainly driven by the long-range

013120-4



PROBING WIGNER TIME DELAYS WITH PHOTOELECTRON … PHYSICAL REVIEW A 110, 013120 (2024)

oscillations of ρkα1(r) ∝ Rkα1(r) and of RkL(r) (discussed
below).

More generally, the phases Sκ	 play a central role in inter-
ferometric schemes such as the RABBIT. In the next section,
we show how the corrections �Sκ	 impact the angular depen-
dence of the measurable atomic delays.

B. Anisotropy of the atomic delay

We now use our approximate representation of the con-
tinuum wave functions to evaluate the two-photon matrix
elements involved in the RABBIT process, their phases, and
the corresponding atomic delay. By substituting Eqs. (10) into
(5) and neglecting the phase term proportional to SkL+Skα1

following Ref. [7] (rotating-wave approximation), we obtain

T α
L (k) 


∫ ∞

0
dr

r exp
{ − i

[
SkL(r) − Skα1(r)

]}
[
k2−2VL(r)

]1/4[
k2
α−2V1(r)

]1/4 . (15)

By approximating Sκ	(r) by S∞
κ	 (r)+Reβκ	/r and

[κ2−2V	(r)]−1/4 by exp(−Imβκ	/r)/
√

κ consistently with
Eqs. (14), we obtain an analytic expression for the radial
two-photon transition matrix elements

T α
L (k) 
 −iL

√
kkα

ei[η1(kα )−ηL (k)]

× (2kα )iZ/kα

(2k)iZ/k
M(Z/kα − Z/k︸ ︷︷ ︸

≡s

, kα − k︸ ︷︷ ︸
≡�k

, βkα1 − β∗
kL︸ ︷︷ ︸

≡�βL

),

(16a)

with

M(s,�k,�βL ) ≡ 1

2

∫ ∞

0
r1+is exp

(
i�kr + i

�βL

r

)
dr

=
(

�βL

�k

)1+is/2

K2+is(−2i
√

�βL�k),

(16b)

where Kν (z) is the modified Bessel function of the second
kind. Note that, as mentioned earlier, in Ref. [9] the correction
in r−1 has been considered only in the modulus of the contin-
uum wave function, i.e., corresponding to taking the real part
of βκ	 to be zero.

The atomic phase τA(k) can then be evaluated by inserting
the analytical expression (16a) in Eq. (4). The expression
(16a) shows explicitly that η1(ke)−η1(ka) emerges and ηL(k)
disappears when expressing �φA(k) out of T α

L (k), as in [7].
Here τA(k) and therefore τcc(k) are anisotropic due to the ex-
plicit L dependence of arg T α

L . We now turn to the comparison
of the results with ab initio numerical calculations.

Figure 3 shows the angular variations of the atomic delay
�τA(k, θ ) = τA(k, θ ) − τA(k, 0) as a function of the emission
angle θ with respect to the polarization axis, for a few val-
ues of the asymptotic final momentum k. The WKB results
obtained from Eq. (16a) are shown with dashed lines and
the ones obtained from numerically exact calculations with
solid lines. All the curves follow a similar trend. First, �τA

remains constant, close to zero, for 0◦ < θ � 60◦ at all k.
Then a sudden jump takes place, spanning several hundred
attoseconds over few 10◦, before reaching a stable value for
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FIG. 3. Angular variations of the atomic delay τA(θ ) − τA(0◦) in
photoemission from a neutral atom. Data were obtained from the
numerically exact simulations on the H atom [37] (solid lines), using
the analytical WKB derivation with Z = 1 from Eqs. (16) (dashed
lines), and experimentally on He reproduced from [23] (blue dots
with error bars). Each panel is associated with a given asymptotic
final momentum (see Fig. 1): (a) k = 0.61 a.u., (b) k = 0.77 a.u.,
and (c) k = 0.91 a.u.

larger θ values. In addition, we make the two following ob-
servations when k increases: (i) The critical angle θc around
which the jump occurs increases and (ii) the jump gets sharper
and its magnitude converges towards approximately π/2ω0.
The latter is the signature of a change of sign in the domi-
nant contribution Ma(k) to the overall amplitude [25]. In the
context of RABBIT measurements of one-photon ionization
delays, this remarkable ω0-dependent feature underlines the
probe origin of the measured τA anisotropy [23].

These k- and θ -dependent trends, observed in the exact
simulations (thick blue lines), are qualitatively reproduced by
our analytical WKB results (dashed lines). Quantitatively, we
note that θc are overestimated in the analytical predictions by
about 5◦ compared to the exact solutions and the �τA jump
is less pronounced than in the exact simulations by about 50
as. These small differences can be related to the estimation
of the WKB wave functions near the origin [see Fig. 2(a)].
Nevertheless, these results show that the approximate WKB
wave functions expanded to the first order in r−1 are sufficient
to recover the trend of the experimental results reported in
[23], displayed as symbols with error bars in the insets of
Fig. 3.

Therefore, our results show that the angular dependence
of τcc mainly comes from an r−1 contribution to the photo-
electron phase. This term plays a significant role because it
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persists at large distances. It is itself the signature of the short-
range influence of the centrifugal barrier, which indicates that
the IR pulse, in the RABBIT setup, probes the photoelectron
already at short distances.

C. Fano’s propensity rules

We now revisit the anisotropy of RABBIT measurements
in terms of Fano’s propensity rules [24,25], in the light of our
WKB-based approach.

In order to obtain an expression of τcc bearing relevant
physical insight, we proceed with our analytical developments
in the so-called soft-photon limit [38], which is achieved for
either large k or small ω0. The soft-photon approximation has
often proved efficient in this context (see, e.g., Refs. [9,16]).
This corresponds to considering �k/k small in the computa-
tion of the matrix elements expressed according to Eqs. (16a)
and (16b), leading to

M(s,�k,�βL ) ≈ �(2 + is)

2(−i�k)2+is
exp

(
�k �βL

1 + is

)
, (17)

where we have used standard limits of Bessel functions [39].
One should note that the isotropic results of [7,9] can be re-
trieved by setting �βL = 0 a posteriori in this last expression
of the matrix element.

Next, by substituting Eq. (17) into Eq. (16a) and expanding
in terms of ω0/k2 up to the first order, we obtain the expression
for the radial transition matrix element in the soft-photon
regime

T α
L (k) ≈ iLk

2ω2
0

ei[η1(kα )−ηL (k)] exp
(
εα

ω0

2k2
[2 − L(L + 1)]

)

× exp

{
iεα

ω0Z

k3

[
1 + γ + ln

(
ω0

2k2

)]}
, (18)

where εa = −1, εe = +1, and γ ≈ 0.577 is the Euler-
Mascheroni constant. Remarkably, at this level of approx-
imation arg T α

L (k) does not depend on the final electron
momentum L other than through the final scattering phase
ηL(k) (and iL), in contrast to its modulus

|T α
L (k)| = k

2ω2
0

exp

(
εαω0

2k2
[2 − L(L + 1)]

)
. (19)

This expression allows retrieving, in the soft-photon limit, the
Fano propensity rules [25] of two-photon processes. Indeed, it
tells us that |T a

2 | � |T e
0 | � |T a

0 | � |T e
2 |, i.e., the most probable

ionization path in the RABBIT scheme is the one involving
the IR absorption (α = a) with L = 2 while the least probable
path is the one involving the IR emission (α = e) for L = 2.
These propensity rules appear to result from the L dependence
of the real part of the lowest order in ω0/k2 of

�βL = 2 − L(L + 1)

2k
+ i

Z

k2
+ O

(
ω0

k2

)
, (20)

and therefore from the r−1 term [Eq. (12)] in the continuum
wave function phase [Eq. (8)].

FIG. 4. Value of f (k) given by Eq. (21b) as a function of the
asymptotic momentum k and the emission angle θ . The red line
indicates the critical angle θc around which the phase jump occurs,
i.e., the solution of Eq. (22).

In terms of dynamics, the atomic delay τA in the soft-
photon regime is obtained by substituting Eq. (18) into
Eqs. (4) and (3c), leading to the expression

lim
ω0→0

τcc(k) = Z

k3

[
1 + γ + ln

(
ω0

2k2

)]
− 1

2ω0
arg[ f (k)],

(21a)

with the real-valued orientation-dependent function

f (k) = 1 − 2C00Y00(k̂)C20Y20(k̂)

[C00Y00(k̂)]2 + [C20Y20(k̂)]2
cosh

(
3ω0

k2

)
,

(21b)

for all Z . The angular jump observed in each frame of Fig. 3
is thus the signatures of a change of sign in f . This can
occur only due to the cosh factor, whose presence is a direct
manifestation of the Fano propensity rules. Indeed, this factor
reduces to 1 if one sets |T a

2 | = |T a
0 | and |T e

0 | = |T e
2 |, which

is based on the original derivations of Refs. [7,9] (see the
Appendix).

The characteristics of this Z- and k-dependent phase
jump were modeled in Ref. [22] through a general formula
parametrized with the interfering transition amplitudes. In
particular, the angle θc around which the jump is centered
increases for increasing ω0/k2. This is consistent with the
general trend illustrated in Fig. 3 and noted above. Within
our approach this angle is the solution of f (k) = 0, which
translates into a very simple formula

cos2(θc) = 1
3

(
1 − e−3ω0/k2

)
. (22)

It is indicated by the red line in the (k, θ ) map of Fig. 4.
Note that higher orders in the soft-photon expan-

sions would be required to investigate the ω0 dependence
of τcc(k, 180◦) − τcc(k, 0◦) revealed numerically on one-
dimensional asymmetric model systems in [17].
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FIG. 5. Continuum-continuum time delays τ cc(k) from the inte-
grated RABBIT scheme as a function of the asymptotic momentum
k. The gray and black lines are for Z = 0 and Z = 1, respectively.
The dashed lines show the data obtained with the radial two-photon
transition matrix element (16a). The dotted lines correspond to the
soft-photon approximation given by Eq. (25).

IV. LINKS WITH AVAILABLE DERIVATIONS
AND INTERPRETATIONS

Here we highlight additional links between our semianalyt-
ical approach and existing derivations and interpretations and
exploit the advantages of the WKB approach to gain further
physical insights. We resort to the soft-photon approximation
invoked in Sec. III C when it is helpful.

A. Orientation-averaged RABBIT

In the original RABBIT scheme [4], the atomic phase
�φA(k) is extracted from the orientation-averaged photoelec-
tron spectra

I (k; τIR) =
∫

I (k; τIR)dk̂. (23)

The atomic delay obtained in this context is then given by

τA(k) = − 1

2ω0
arg

⎛
⎝ ∑

L=0,2

|CL0|2T a
L (k)T e

L (k)∗

⎞
⎠. (24)

In the same way as for the angularly resolved case, the
angle-integrated continuum-continuum correction is defined
as τ cc(k) = τA(k) − τW (k). Note that, if the probed one-
photon transition ends up in a single angular momentum
channel as considered throughout the paper, τW (k) = τW (k)
in all momentum directions. Otherwise, if it ends up in a
combination of angular momenta, i.e., starting from an 	�=0
initial state, then the Wigner delay τW (k) associated with an
orientation-averaged measurement is ill-defined. In the soft-
photon limit, we find that

lim
ω0→0

τ cc(k) = Z

k3

[
1 + γ + ln

(
ω0

2k2

)]
. (25)

This result corresponds to the isotropic contribution of the
angularly resolved case given by Eq. (21). We have veri-
fied that Eq. (25) can be derived by taking the soft-photon
limit of Eq. (100) in Ref. [9]. Figure 5 compares τ cc

obtained from the radial two-photon transition matrix element
[Eq. (16a)] (dashed lines) and within the soft-photon approx-
imation [Eq. (25)] (dotted lines), for Z = 1 (black lines) as
well as for Z = 0 (gray lines). We observe that for all k � 1,
the soft-photon approximation provides a very good estimate
of the actual τ cc. Note that, when neglecting the long-range
term (in r−1) in the wave function, the resulting expression
significantly differs from Eq. (25) (see the Appendix).

The expression (25) is reminiscent of the one obtained
from empirical classical arguments in Ref. [12], i.e.,

τ cc(k) ≈ Z

k3

[
2 + ln

(
ω0

πk2

)]
. (26)

It was shown to reproduce well ab initio calculations in
the soft-photon regime [16,17]. The absolute difference be-
tween the expressions from Eqs. (21) and (26) is [γ − 1 +
ln(π/2)]Z/k3 
 0.03×Z/k3, which indeed vanishes far from
threshold.

B. Atomic delays in photodetachment processes

We now consider photodetachment processes from
closed-shell negative ions, as investigated numerically in
Refs. [40,41] from the delay perspective. In this case, the
effective potential is given by Eq. (11) with Z = 0. It is short
range and asymptotically dominated by the centrifugal barrier.
As a consequence, the radial dependence of the asymptotic
phase S∞

κ	 (r) of the continuum wave function in Eq. (8) is
essentially κr, which corresponds to a free particle. Regarding
the coefficient of the correcting term �Sκ	(r) at order r−1

[Eq. (12)], it becomes βκ	 = 	(	+1)/2κ . Therefore, even in
the presence of short-range interactions only, the phase main-
tains a long-range behavior.

In order to analyze the photodetachment dynamics, we start
by comparing the continuum-continuum time delays from the
integrated RABBIT scheme shown in Fig. 5 and discussed
in the preceding section. For increasing k, τ cc(k) goes faster
to zero for Z = 0 than for Z = 1, and the photodetachment
time-delay practically vanishes beyond k ≈ 1, in agreement
with Ref. [40]. This is consistent with the hypothesis ac-
cording to which, in a RABBIT experiment, the interaction
with the IR photon takes place outside the effective range of
the atomic potential, including the centrifugal term, leading
to τA(k) ≈ τW (k). Note, however, that numerical simulations
evidence near-threshold system-specific deviations from this
universal behavior, as shown in Fig. 7 of Ref. [40]. This can
be accounted for in our approach by correcting the expression
of βκ	 [Eq. (13)] with any contribution of the r−2 term in the
polarization potential of the considered anion. Meanwhile,
when looking at the angularly resolved data (see Fig. 6) we ob-
serve an angular dependence which is as pronounced as in the
photoionization case Z = 1 (see Fig. 3). Indeed, as explained
in Sec. III C, the main features of this angular dependence are
related to the universal centrifugal barrier. Therefore, the IR
transitions occur under the influence of the latter also in the
photodetachment case, even though it does not manifest in the
angularly integrated data.
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FIG. 6. Angular variations of the atomic delay τA(k, θ ) −
τA(k, 0◦) = τcc(k, θ ) − τcc(k, 0◦) in a photodetachment process.
Data were obtained using Eqs. (16) with Z = 0. The dark violet,
medium purple, and light pink lines correspond to values of the final
asymptotic momentum k = 0.61, 0.77, and 0.91 a.u., respectively.

C. Classical perspective on the Fano propensity rules

In this section we exploit the WKB formalism to pinpoint
the dominant paths in the two-photon process and highlight
the classical mechanisms behind Fano’s propensity rules dis-
cussed in Sec. III C. We start with the WKB expression of
T α

L (k) given by Eq. (15) and note that it is reminiscent of the
single-photon form discussed by Fano in Ref. [24]. Its inte-
grand contains an oscillating complex term exp[i(SkL−Skα1)].
Following Fano’s arguments and inspired by the saddle-
point approximation, the modulus of this integral is larger if
there exists a real-valued position for which the derivative of
the phase vanishes. More explicitly, this corresponds to the
conditions

pkL = pkα1, (27)

where

pκ	(r) ≡ ∂Sκ	(r)

∂r
=

√
κ2 − 2V	(r), (28)

is the local momentum obtained from the Hamilton character-
istic function Sκ	 given in Eq. (10c) [36].

We now turn to the identification of the paths, among those
involved in a RABBIT scheme, fulfilling Eq. (27) or not.
As an illustration, we consider the case of Z = 1 and k =
0.37. Figure 7 shows trajectories (r, pκ	) in a phase-space-like
representation, for the different κ and 	 associated with the
intermediate and final states. The absorption and emission
paths are shown in Figs. 7(a) and 7(b), respectively. In each

frame, the (r, pkα1) and (r, pkL ) trajectories are represented
by thick and thin lines, respectively. The existence of a real-
valued saddle point fulfilling (27) is therefore revealed by
an intersection between thick and thin lines. Note that the
trajectories can possibly intersect because they are associated
with different effective potentials V	.

The trajectories possessing such a point are highlighted by
solid lines, while the others are shown with dashed lines. In
Fig. 7(a) (α = a), only the trajectory (r, pk2) intersects with
(r, pka1), and therefore the dominant quantum path is the L =
2 channel. In Fig. 7(b) (α = e), only the trajectory (r, pk0)
intersects with (r, pke1), and therefore the dominant quantum
path is the L = 0 channel. Hence, this perspective expands
the classical arguments implied by Fano’s discussion of the
propensity rules in Ref. [24] to the two-photon case [25].

V. CONCLUSION

To summarize, we have used the WKB formalism to
obtain approximate atomic continuum wave functions that
provide a qualitative account of Fano’s propensity rules in
two-photon ionization [24]. The latter are responsible for the
probe-induced asymmetry in interferometric RABBIT mea-
surements of the Wigner delay characterizing the one-photon
ionization dynamics [16,23,25].

Our derivations provide analytical expressions of the ra-
dial two-photon transition matrix elements [Eq. (18)] and of
the so-called atomic delay τA [Eqs. (21)], in the soft-photon
regime. It notably accounts for the angular jump of nearly
π rad in the argument of the RABBIT transition matrix el-
ement, due to Fano’s propensity rules. This jump leads to
a pronounced anisotropy of the atomic time delay measure-
ments, i.e., an angular jump of approximately π/2ω0 in terms
of delay. We have shown that this probe-induced asymmetry
of τA can be traced back to a universal long-range behavior, in
r−1, of the continuum wave function, which is inherited from
the long-range Coulomb tail of the ionic potential as well as
from the 	-dependent short-range centrifugal potential.

We then further investigated how our approach relates
to other previously published results. When considering
orientation-averaged RABBIT measurements, we have ob-
tained an analytical expression of the atomic time delay
τA [Eq. (25)] that is remarkably close to the one obtained
semiempirically in Ref. [12] and that has proved efficient

FIG. 7. Local momentum pκ	 [Eq. (28)] as a function of the radius in (a) intermediate states (	 = 1) and (b) final states (	 = 0, 2) involved
in the two arms of the interferometric 800-nm RABBIT scheme. The considered asymptotic final momentum is k = 0.37 such that the
asymptotic intermediate momenta are ka = 0.15 a.u. and ke = 0.50 a.u.
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in comparisons with numerical simulations [16,17]. We have
also investigated the anisotropy of the atomic delay in pho-
todetachment processes, previously studied numerically in
Ref. [40] from the orientation-averaged perspective. Our re-
sults show that the anisotropy is as pronounced as in the
photoionization case, since it appears as an imprint of the
universal centrifugal potential on the scattering phase.

Eventually, we exploited the classical insight offered by the
WKB approximation to highlight an intuitive interpretation of
Fano’s propensity rules in terms of momentum conservation
[24], by evaluating the transition matrix elements with the
saddle-point approximation. The simplicity of the analytical
formulas obtained here offers a promising framework for the
investigation of photoemission time delays in atomic systems
from initial states carrying a nonzero orbital quantum number
[19,42] and more generally in systems with additional degrees
of freedom [15,43–45] and beyond the RABBIT regime [46].
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APPENDIX: ZEROTH-ORDER DERIVATIONS
AND PREDICTIONS

In this Appendix we recall the theory of Refs. [7,9] to
approximate the radial two-photon transition matrix elements
in Eq. (5). We then show the predictions it leads to in terms
of photoemission time delays, regardless of the WKB approx-
imations used in the present paper.

Using the paper’s notation, the continuum wave functions
in Eq. (5) are approximated by asymptotic Coulombic wave
functions

RkL(r) = 1√
k

sin
[
S∞

kL(r)
] + O(r−1), (A1a)

ρkα1(r) = 1√
kα

eiS∞
kα1(r) + O(r−1), (A1b)

where the expression of S∞
κ	 (r) is defined in Eq. (8). Substitut-

ing Eqs. (A1) in Eq. (5) leads to radial two-photon transition
matrix elements of the form

T α
L (k) 
 −iL

√
kkα

ei[η1(kα )−ηL (k)] (2kα )iZ/kα

(2k)iZ/k

�(2 + is)

2(−i�k)2+is
. (A2)

As a consequence, in this case, all radial two-photon matrix
elements are related through

iLT α
L (k)eiηL (k) = T α

0 (k)eiη0(k), (A3)

for all L. The relation (A3) has drastic consequences in the
angularly resolved atomic time delay and the one obtained
from the integrated RABBIT measurements that are intrinsic
to the approximation (A1) that we detail below. Substituting
Eq. (A3) in Eq. (4), we obtain

Mα (k) = (8π )5/2 ieiη0(k)T α
0 (k)

6
√

kkα

∑
L=0,2

iLCL0YL0(k̂). (A4)

The atomic phase from Eq. (2) simplifies to

�φA(k) = arg
[
T a

0 (k)
] − arg

[
T e

0 (k)
]
. (A5)

Therefore, it is independent of the asymptotic momentum
angle k̂, i.e., τW (k) and τcc(k) are isotropic.

We now turn to the atomic phase obtained from the angu-
larly integrated RABBIT scheme whose expression is given in
Eq. (24). Here again we use the relation (A3) and we obtain

�φA(k) = arg
[
T a

0 (k)
] − arg

[
T e

0 (k)
]
. (A6)

Hence, �φA(k) = �φA(k) and τcc(k) = τ cc(k). In the soft-
photon limit discussed in Sec. III C, we find in this case

lim
ω0→0

τ cc(k) = Z

k3

[
γ + ln

(
ω0

2k2

)]
, (A7)

which differs significantly from the empirical formula given
by Eq. (26) and the one derived in this article (25). Moreover,
for the photodetachment described in Sec. IV B, i.e., for Z =
0, all terms on the right-hand side of Eq. (A2) become real
except the ones coming from the scattering phase. Hence,

�φA(k) = η1(ka) − η1(ke), (A8)

which is the Wigner phase delay, and τcc(k) = 0 for all asymp-
totic momenta. In contrast, it is nonvanishing in the numerical
simulations [40] for intermediate k.

To conclude, features observed in the numerical simu-
lations [16] and the experiments [23] are not present in
the approximation used in [7,9] and summarized in this
Appendix. The main issues are the following: The continuum-
continuum time delay τcc(k) is isotropic (including for Z =
0), the soft-photon regime is not well reproduced, and τcc(k)
vanishes for Z = 0, including near threshold. These features
cannot be captured by the approximation (A1) because they
result from the long-range behavior in r−1 of the continuum
wave functions included in our approach, as demonstrated in
the main text. Note that they are still not captured if the cor-
rection r−1 is included only in the amplitude of the continuum
wave functions (and not in their phase) as in Ref. [9], except
for the soft-photon regime as described below Eq. (25).
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