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Fock-space relativistic coupled-cluster calculations of clock-transition properties in Pb2+
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We implement an all-particle multireference Fock-space relativistic coupled-cluster theory to probe the
6s2 1S0–6s6p 3Po

0 clock transition in an even isotope of Pb2+. We compute the excitation energy for several
low-lying states, E1 and M1 transition amplitudes, and the lifetime of the clock state. Moreover, we also
calculate the ground-state dipole polarizability using perturbed relativistic coupled-cluster theory. To improve the
accuracy of results, we incorporate the corrections from the relativistic and QED effects in all our calculations.
The contributions from triple excitations are accounted perturbatively. Our computed excitation energies are in
excellent agreement with the experimental values for all the states. Our result for lifetime, 9.76 × 106 s, of clock
state is approximately 8.5% larger than the previous value using a combined method of configuration-interaction
and many-body perturbation theory [Phys. Rev. Lett. 127, 013201 (2021)]. Based on our analysis, we find
that the contributions from the valence-valence correlations arising from higher-energy configurations and the
corrections from the perturbative triples and QED effects are essential to get accurate clock transition properties
in Pb2+. Our computed value of dipole polarizability is in good agreement with the available theoretical and
experimental data.
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I. INTRODUCTION

Optical atomic clocks are one of the most accurate time
measurement instruments in existence today [1,2]. Due to
their unprecedented accuracies as frequency and time stan-
dards, they can serve as important probes of fundamental
phenomena in physics and function as key components in
technological applications. Some examples where atomic
clocks are of vital importance include measuring the variation
in fundamental constants [3–5], probing physics beyond the
standard model of particle physics [6,7], navigation systems
[8,9], quantum computers [10,11], the basis for redefining
the second [5,12], and others [1,2]. For the single-ion opti-
cal clocks, the hyperfine-induced 3s2 1S0–3s3p 3Po

0 (267.4 nm)
transition based 27Al+ is demonstrated to be one of the best
clocks, with a fractional frequency uncertainty of 9.4 × 10−19

[13]. The high accuracy in 27Al+ could be attributed to the low
sensitivity to electromagnetic fields, narrow natural linewidth,
and small room-temperature blackbody radiation (BBR) shift
in the clock transition frequency [14–16]. Among the neutral
atoms, a lattice clock based on degenerate fermionic 87Sr
atoms with a hyperfine-induced 5s2 1S0–5s5p 3Po

0 (698 nm)
transition is reported to be one of the best neutral atom clocks.
The smallest fractional frequency error achieved is approxi-
mately equal to 2.0 × 10−18 [17,18].

In the quest for a new and improved frequency standard,
an optical clock based on the 6s2 1S0–6s6p 3Po

0 transition, me-
diated through a two-photon E1 + M1 channel, in a doubly
ionized even isotope of lead (Pb2+) could be a promis-

*Contact author: bkmani@physics.iitd.ac.in

ing candidate. Like in 27Al+, the clock transition is an
electric-dipole-forbidden transition between two J = 0 states,
providing a strong resistance to the environmental perturba-
tions. In addition, unlike 27Al+, the nuclear spin quantum
number I is zero. This is crucial, as it prevents clock transition
from the nonscalar perturbations which may arise through
the coupling between the electron and nuclear multipole
moments. Despite this important prospect with Pb2+ as an
accurate optical atomic clock, the properties of the relevant
transition have not been explored in detail. For example,
in terms of theoretical calculations, we are aware of only
one study on the lifetime of the clock state [19]. The work
[19], employing a combined configuration-interaction (CI)
and many-body perturbation theory (MBPT) method, com-
puted the lifetime τ of the clock state 3Po

0 as 9.0 × 106 s.
Considering that there are no experimental data, additional
theoretical calculations, especially using the accurate methods
such as the relativistic coupled-cluster (RCC) method, would
be crucial to get better and accurate insights into the clock
properties. Moreover, the inclusion of relativistic and QED
corrections in the calculations of properties is essential to
obtain reliable results. It can thus be concluded that there is
a clear gap in the research in terms of the scarcity of results
for accurate properties of the 1S0-3Po

0 clock transition of Pb2+.
In this work we implement an all-particle multireference

Fock-space relativistic coupled-cluster (FSRCC) theory to
compute the clock transition properties of Pb2+ accurately. It
should be noted that the RCC theory is one of the most reliable
quantum many-body theories for atomic structure calcula-
tions. It accounts for electron correlation effects to all orders
of residual Coulomb interaction and has been employed to
obtain accurate results in several closed-shell and one-valence
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atoms and ions [20–23]. The application of the RCC theory for
two-valence atomic systems, such as the present case of Pb2+

clock transition, however, is limited to a few studies [24–26].
The reason for this is perhaps the complications associated
with the implementation of the FSRCC theory for multiref-
erence systems [16,24–26]. To address the clock transition
properties in a comprehensive way, using the FSRCC theory
[16,26], we carry out precise calculations of the excitation
energies and E1 and M1 transition amplitudes associated with
the 1S0-3Po

0 transition in Pb2+. Using these results, we then
calculate the lifetime of the 3Po

0 clock state. In addition, as
electric dipole polarizability is a crucial parameter for esti-
mating the BBR shift in clock frequency, we also calculate the
ground-state polarizability of Pb2+ using perturbed relativistic
coupled-cluster (PRCC) theory [23,27]. Moreover, in all these
calculations of properties, we incorporate and analyze the
contributions from the Breit interaction, QED corrections, and
perturbative triples.

The remainder of the paper is organized as follows. In
Sec. II we provide a brief description of the FSRCC theory
for two-valence atomic systems. We give the coupled-cluster
working equation for two-valence systems. In Sec. III we
provide and discuss the expression for the E1M1 decay rate.
The results obtained from our calculations are presented and
analyzed in Sec. IV. Theoretical uncertainty in our computed
results is discussed in Sec. V. We summarize in Sec. VI.
Unless stated otherwise, all results and equations presented
in this paper are in atomic units (h̄ = me = e = 1/4πε0 = 1).

II. TWO-VALENCE FSRCC THEORY

Since the clock transition in Pb2+ involves atomic state
functions of two-valence nature, we need an accurate mul-
tireference theory to calculate these wave functions and
corresponding many-body energies. In the present work we
employ a FSRCC theory for two valence [16,26] to obtain
the many-body wave function and corresponding energy. In
Refs. [16,26,28], we discussed in detail the implementation of
FSRCC theory in the form of sophisticated parallel codes and
also gave the working equations and Goldstone diagrams con-
tributing to the theory. So here, for completeness, we provide
a very brief description of the FSRCC theory for two-valence
atoms and calculations of properties using it in the context of
Pb2+.

The atomic state function for a two-valence atom or ion is
obtained by solving the many-body Schrödinger equation

HDCB|�vw〉 = Evw|�vw〉, (1)

where |�vw〉 is the exact many-body wave function and Evw is
the corresponding exact energy; the indices v and w represent
the valence orbitals; and HDCB is the Dirac-Coulomb-Breit
no-virtual-pair Hamiltonian used in all calculations, expressed
as

HDCB =
N∑

i=1

[cαi · pi + (βi − 1)c2 − VN (ri )]

+
∑
i< j

(
1

ri j
+ gB(ri j )

)
, (2)

where α and β are the Dirac matrices and 1/ri j and gB(ri j )
are the Coulomb and Breit interactions, respectively. In the
FSRCC theory, |�vw〉 is written as

|�vw〉 = eT
[
1 + S1 + S2 + 1

2

(
S1

2 + S2
2
) + R2

]|�vw〉, (3)

where |�vw〉 = a†
wa†

v|�0〉 is the Dirac-Fock reference state for
a two-valence system; operators T , S, and R are the electron
excitation operators, referred to as the coupled-cluster (CC)
operators, for closed-shell, one-valence, and two-valence sec-
tors, respectively; and the subscripts 1 and 2 with these
operators represent the single and double excitations, referred
to as the coupled-cluster with singles and doubles (CCSD) ap-
proximation. The FSRCC theory with CCSD approximation
subsumes most of the electron correlation effects in atomic
structure calculations and provides an accurate description of
the calculated properties. In the second quantized representa-
tion, the CC operators are expressed as

T1 =
∑
ap

t p
a a†

paa, T2 = 1

2!

∑
abpq

t pq
ab a†

pa†
qabaa, (4a)

S1 =
∑

p

sp
va†

pav, S2 =
∑
apq

spq
vaa†

pa†
qaaav, (4b)

R2 =
∑

pq

rpq
vwa†

pa†
qawav. (4c)

Here the indices a, b, . . . and p, q, . . . represent the
core and virtual orbitals, respectively, and t ···

··· , s···
···, and r···

···
are the cluster amplitudes corresponding to T , S, and R
coupled-cluster operators, respectively. The diagrammatic
representation of these operators is shown in Fig. 1. It should
however be mentioned that the dominant contributions from
triple excitations are also included using the approach of per-
turbative triples [16].

The operators for closed-shell and one-valence sectors are
obtained by solving the set of coupled nonlinear equations dis-
cussed in Refs. [21,29], respectively. The two-valence CC
operator R2 is obtained by solving the CC equation [16,26]

〈
�pq

vw

∣∣H̄N + {H̄NS′} + {H̄NR2}|�vw〉
= E att

vw

〈
�pq

vw

∣∣[S′ + R2]|�vw〉. (5)

Here, for compact notation, we use S′ = S1 + S2 + 1
2 (S2

1 +
S2

2 ). In addition, E att
vw is the two-electron attachment energy,

which is expressed as the difference between the correlated
energy of the (n − 2)-electron (closed-shell) and n-electron
(two-valence) sectors Evw − E0.

Figure 2 shows the Goldstone diagrams contributing to
the linearized FSRCC theory for two-valence systems. These
are obtained by considering the terms with only one order
of CC operators in Eq. (5) and then contracting the residual
Coulomb interaction with these CC operators using Wick’s
theorem. The CC diagrams in Figs. 2(l)–2(n) are referred to
as the folded diagrams and they arise due to renormalization
terms on the right-hand side of Eq. (5). The presence of folded
diagrams in open-shell systems constitutes one of the main
differences from the CC theory of closed-shell systems. The
rectangular portion represents the effective energy diagrams
arising from the one-valence [Fig. 2(l)] and two-valence
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FIG. 1. Diagrammatic representation of closed-shell, one-valence, and two-valence single and double CC operators.

[Figs. 2(m) and 2(n)] sectors. The Goldstone diagrams in
Fig. 2 correspond to the algebraic expression

〈HN〉pq
vw + 〈HNT 〉pq

vw + 〈HNS′〉pq
vw + 〈HNR2〉pq

vw

− 〈
E att

vwS′〉pq

vw
− 〈

E att
vwR2

〉pq

vw
= gpqvw + gpqrwsr

v

− gaqvwt p
a + g̃pavrsrq

aw + gpqvwεp + gpqrsr
rs
vw

− gaqvrspr
aw + gabvwt pq

ab − gaqrwsr p
va − E att

w rpq
vw

− E att
vwsp

v − E att
vwrpq

vw, (6)

where g̃i jkl = gi jkl − gi jlk . Since we use Dirac-Fock orbitals
in our calculations, Fig. 2(f) does not contribute and therefore
is not included in the expression.

III. E1M1 DECAY RATE USING FSRCC THEORY

Since I = J = F = 0 for the 1S0-3Po
0 clock transition in

Pb2+, it is allowed through a two-photon E1 + M1 channel.
As shown in the schematic diagram in Fig. 3, in the first route,
the initial state |�i〉 can couple to a same-parity state through
a magnetic dipole operator (photon with energy ω1) and then
connect to the final state |� f 〉 through an electric dipole opera-
tor (photon with energy ω2). Alternatively, in the second route,

(a) (b) (c)

(e) (f) (g)

(d)

(i) (j) (k)

(h)

(m)

(l)

(n)

FIG. 2. The CC diagrams contributing to the linearized FSRCC
theory for two-valence atomic systems. Diagrams (l)–(n) are referred
to as the folded diagrams and arise from the renormalization terms in
CC equations for multireference systems.

the initial state |�i〉 can couple to an opposite-parity state via
an electric dipole operator first and then connect to the ground
state through a magnetic dipole operator. Mathematically, the
E1 + M1 decay rate from |� f 〉 to |�i〉 can be expressed in
terms of the reduced matrix elements of electric and magnetic
dipole operators as [30,31]

	E1M1 = 8

27π
α6

∫ ∞

0
dω1ω

3
1

∫ ∞

0
dω2ω

3
2

×
∣∣∣∣∣
∑

n

〈� f ||D||�n〉〈�n||M1||�i〉
En + ω1 − Ei

+
∑

n̄

〈� f ||M1||�̄n〉〈�̄n||D||�i〉
En̄ + ω2 − Ei

∣∣∣∣∣
2

× δ(Ei + ω1 + ω2 − E f ). (7)

Here, for Pb2+, |�i〉 = 6s6p 3Po
0 , |� f 〉 = 6s2 1S0, |�n〉 =

6s6p 3Po
1 , 6s6p 1Po

1 , and |�̄n〉 = 6s7s 3S1, 6s6d 3D1. Since the
transition is allowed through two photons, the energy dif-
ference between final and initial states satisfies the relation
E f − Ei = ω1 + ω2. Additionally, since all intermediate states
3Po

1 , 1Po
1 , 3S1, and 3D1 have energy higher than that of 3Po

0 , the
decay rate equation will not exhibit any poles.

The reduced matrix elements in Eq. (7) are calculated using
the FSRCC theory. The calculation of properties using the
FSRCC theory is explained in detail in Ref. [16]. However,
to illustrate it briefly in the present work, we consider the
example of dipole matrix elements. Using the RCC wave
function from Eq. (3), the dipole matrix elements is

〈� f |D|�n〉 =
∑

kl

c f
k

∗
cn

l [〈�k|D̃ + D̃(S′ + R2) + (S′ + R2)†D̃

+(S′ + R2)†D̃(S′ + R2)|�l〉], (8)
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FIG. 3. Schematic energy-level diagram for the 6s2 1S0 →
6s6p 3Po

0 clock transition in Pb2+ via a two-photon E1 + M1
transition.
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where the coefficients c f
k represent the mixing coefficients in

the expansion of a multireference configuration state func-
tion |� f 〉. These are obtained by diagonalizing the HDCB

matrix within the chosen model space. The dressed operator
D̃ = eT †DeT is a nonterminating series in the closed-shell CC
operator T . Including all orders of T in the dressed operator
is practically challenging. In Ref. [29] an algorithm was de-
veloped to include a class of dominant diagrams to all orders
in T , iteratively, in the dressed Hamiltonian. Based on this
study, we concluded that the terms higher than quadratic in T
contribute less than 0.1% to the properties. So in the present
work we truncate D̃ after the second order in T and include
the D̃ ≈ D + DT + T †D + T †DT terms in the calculation of
properties.

IV. RESULTS AND DISCUSSION

A. Single-particle basis and convergence of properties

An accurate description of single-electron wave functions
and corresponding energies is crucial to obtain the reliable
results using the FSRCC theory. In the present work we use
the Gaussian-type orbitals (GTOs) [32] as the single-electron
basis for FSRCC calculations. The GTOs are used as the finite
basis sets in which the single-electron wave functions are ex-
pressed as a linear combination of the Gaussian-type functions
(GTFs). More precisely, the GTFs of the large component of
the wave function are expressed as

gL
κ p(r) = CL

κir
nκ e−αpr2

, (9)

where p = 0, 1, 2, . . . , N is the GTO index, with N the total
number of GTFs. The exponent αp is further expressed as
α0β

p−1, where α0 and β are the two independent parameters.
The parameters α0 and β are optimized separately for each
orbital symmetry so that the single-electron wave functions
and energies match well with the numerical values obtained
from the GRASP2K [33]. The small components of wave func-
tions are derived from the large components using the kinetic
balance condition [34].

In Table I we provide the optimized values of α0 and β

parameters for Pb2+ and compare the values of single-electron
and self-consistent field (SCF) energies with GRASP2K [33]
and B-spline [35] results. It should be mentioned that the
single-electron basis used in the calculations of properties
also incorporates the effects of Breit interaction, vacuum po-
larization, and self-energy corrections. As evident from the
table, the single-particle and SCF energies are in excellent
agreement with GRASP2K and B-spline results. The largest
differences at the level of SCF and single-particle energies are
0.0001% and 0.0003%, respectively.

Since GTOs are a mathematically incomplete basis, con-
vergence of the properties results with basis size must be
checked to get reliable results using the FSRCC method. To
show the convergence of results, in Table II we list the values
of electric dipole polarizability and E1 and M1 transition
reduced matrix elements with increasing basis size. To ob-
tain a converged basis, we start with a moderate basis size
and add orbitals systematically to each symmetry until the
change in the properties is less than or equal to 10−3 in
respective units. For example, as evident from the table, the

TABLE I. Single-particle and SCF energies (in a.u.) from GTOs
compared with GRASP2K and B-spline results. The optimized α0 and
β parameters for the even-tempered basis used in our calculations are
also provided.

Orbital GTO GRASP2K B-spline

1s1/2 −3257.41150 −3257.40298 −3257.41571
2s1/2 −589.39795 −589.39605 −589.39835
2p1/2 −565.00395 −565.00364 −565.00295
2p3/2 −484.41530 −484.41512 −484.41548
3s1/2 −145.26466 −145.26400 −145.26472
3p1/2 −134.31668 −134.31639 −134.31638
3p3/2 −116.10663 −116.10639 −116.10665
3d3/2 −98.32473 −98.32446 −98.32473
3d5/2 −94.48445 −94.48420 −94.48445
4s1/2 −35.49304 −35.49280 −35.49305
4p1/2 −30.72284 −30.72269 −30.72276
4p3/2 −26.20738 −26.20725 −26.20737
4d3/2 −18.43141 −18.43130 −18.43141
4d5/2 −17.57859 −17.57861 −17.57859
4 f5/2 −7.44501 −7.44494 −7.44502
4 f7/2 −7.25330 −7.25331 −7.25331
5s1/2 −7.63856 −7.63855 −7.63857
5p1/2 −5.94459 −5.94458 −5.94458
5p3/2 −5.09665 −5.09664 −5.09666
5d3/2 −2.62373 −2.62373 −2.62373
5d5/2 −2.51852 −2.51852 −2.51852

ESCF −20910.40152 −20910.37469 −20910.40151
α0 β GTOs

s 0.00450 1.805 40
p 0.00478 1.792 38
d 0.00605 1.855 34
f 0.00355 1.845 28

change in E1 amplitude of the 〈1S0||D||1Po
1 〉 transition is of

the order of 10−3 a.u. when the basis is augmented from 158
(24s21p18d13 f 8g7h) to 169 (25s22p19d14 f 9g8h) orbitals.
So to minimize the computation time, we consider the basis
set with 169 orbitals as optimal and use it for further FSRCC
calculations where the corrections from the Breit interaction,
vacuum polarization, and self-energy are incorporated.

B. Excitation energy

The eigen energies obtained from the solution of the many-
electron Schrödinger equation (1), using the FSRCC method,
are used to calculate the excitation energies. The excitation
energy of a general state nln′l ′ (2S+1)LJ is defined as

Enln′l ′ (2S+1)LJ
= Enln′l ′ (2S+1)LJ

− Ens2 1S0
, (10)

where Ens2 1S0
and Enln′l ′ (2S+1)LJ

are the exact energies of the
ground and excited states, respectively. In Table III we list the
excitation energies from our calculations along with other the-
oretical and experimental data for comparison. To account for
valence-valence correlations more accurately, we also include
6p2, 6s6d , and 6s7s configurations in the model space. For
a quantitative assessment of electron correlations, we list the
contributions from Breit and QED corrections separately.
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TABLE II. Convergence trend of α, and E1 and M1 matrix elements as a function of basis size.

No. of orbitals Basis α 〈1S0||D||1Po
1 〉 〈3Po

1 ||M1||3Po
0 〉

96 20s15p12d7 f 4g0h 15.919 2.0512 1.3158
103 19s16p13d8 f 3g2h 15.660 2.0268 1.3153
114 20s17p14d9 f 4g3h 14.979 1.9966 1.3198
125 21s18p15d10 f 5g4h 14.467 1.9873 1.3134
136 22s19p16d11 f 6g5h 14.274 1.9888 1.3126
147 23s20p17d12 f 7g6h 14.205 1.9883 1.3121
158 24s21p18d13 f 8g7h 14.175 1.9875 1.3118
169 25s22p19d14 f 9g8h 14.173 1.9854 1.3117

As evident from the table, our computed energies are in
excellent agreement with the experimental results. The largest
relative error in our calculation is approximately equal to
0.9%, which corresponds to the 3Po

0 state. However, for other
states, especially for those which contribute to the lifetime of
the clock state, the errors are much smaller. The states 3Po

1 ,
1Po

1 , 3S1, and 3D1, which couple either via the E1 or M1
operator in the clock transition, have relative errors of 0.06%,
0.13%, 0.07%, and −0.10%, respectively. This is crucial, as
these energies contribute to the lifetime of the clock state.
Among all the previous theoretical results listed in Table III,
Ref. [37] is close to ours in terms of the many-body methods
used, however, with an important difference. Reference [37]
uses a linearized CCSD method, whereas the present work

employs a nonlinear CCSD method, which accounts for elec-
tron correlation effects more accurately in the calculation. The
relative errors in the reported excitation energies for 3Po

1 , 1Po
1 ,

3S1, and 3D1 states in Ref. [37] are 1.08%, 0.53%, 0.73%,
and 0.63%, respectively. The remaining results are mostly
based on the multiconfiguration Hartree-Fock theory and its
variations and in general are not consistent in terms of treating
electron correlations.

Examining the contributions from high-energy configura-
tions, we observe an improvement in the excitation energies of
3Po

1 and 1Po
1 states due to accounting for the valence-valence

correlation more accurately. We find that the relative error
reduces from 0.7% (0.6%) to 0.4% (0.3%) for the 3Po

1 (1Po
1 )

state. Among the contributions from Breit interaction, vacuum

TABLE III. Two-electron removal energy of 1S0 (cm−1) and excitation energies of some low-lying excited states of Pb2+. For quantitative
analysis of electron correlations, contributions from Breit and QED corrections are given separately. Here DC denotes Dirac-Coulomb and VP
denotes vacuum polarization.

States DC-CCSD Breit Self-energy VP Total Other calculations NISTa % error

6s2 1S0 599355.44 12.00 −0.67 188.97 599556 600984b 598942 0.1
6s6p 3Po

0 59624.80 121.57 −0.58 81.41 59827 61283,b 60653c 60397 0.94
6s6p 3Po

1 64146.99 116.92 −0.53 82.84 64346 65089,b 65683d 64391 0.06
60387,e 58905f

64609c

6s6p 3Po
2 79478.69 83.67 −0.33 90.27 79652 80029,b 79024c 78985 −0.8

6s6p 1Po
1 95045.89 83.07 −0.63 84.30 95213 95847,b 97970d 95340 0.13

91983,e 95537f

95535c

6p2 3P0 142922.33 236.01 −1.41 169.97 143327 143571b 142551 −0.54
6s7s 3S1 149898.62 4.90 −0.32 64.10 149967 151183b 150084 0.07
6s6d 1D2 152651.06 108.27 −0.70 135.00 152894 153614b 151885 −0.6
6s7s 1S0 153901.92 3.47 −0.28 62.88 153968 155054b 153783 −0.12
6p2 3P1 155401.22 189.27 −1.16 170.87 155760 156610b 155431 −0.2
6s6d 3D1 157523.12 17.37 −0.55 92.43 157632 158439b 157444 −0.1
6s6d 3D2 157902.47 5.93 −0.48 87.81 157996 159134b 157925 −0.04
6s6d 3D3 159147.60 0.04 −0.38 86.03 159233 160530b 158957 −0.17
6p2 3P2 164987.49 117.07 −0.99 143.34 165247 165898b 164818 −0.26
6p2 1D2 179412.09 139.08 −1.17 166.70 179717 179646b 178432 −0.7
6p2 1S0 189714.06 161.46 −1.17 179.67 190054 190061b 188615 −0.7

aReference [36].
bCI + all-order [37].
cMulticonfiguration Dirac-Hartree-Fock calculation [38].
dCI relativistic Hartree-Fock (CIRHF) + CP [39].
eCIRHF + CP [40].
fMulticonfiguration relativistic random-phase approximation (MCRRPA) [41].
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TABLE IV. The (a) E1 and (c) M1 reduced matrix elements (a.u.) and (b) oscillator strengths for some allowed transitions in Pb2+. For
comparison, data from experiments and other theoretical calculations are also provided. Numbers in square brackets denote multiplication by
powers of 10.

States DC-CCSD Breit + QED P-triples Total Other calculations Expt.

(a)

〈1S0||D||3Po
1 〉 0.5319 −0.0007 −0.0024 0.5288 0.706,a 0.644b

〈1S0||D||1Po
1 〉 1.9854 0.0003 −0.0327 1.9530 2.350,a 2.384b

〈3S1||D||3Po
0 〉 0.5362 0.0120 −0.0123 0.5359 0.963b

〈3D1||D||3Po
0 〉 −1.4796 0.0171 −0.0355 −1.4980 −1.516b

(b)

〈1S0||D||3Po
1 〉 5.5071[−2] 0.0026[−2] −0.4950[−2] 5.4602[−2] 8.11[−2],b 7.40[−2],c 5.44[−2],d (7.3 ± 0.5)[−2]e

7.55[−2],f 6.15[−2],g 6.15[−2]h

5.52[−2]i

〈1S0||D||1Po
1 〉 1.1369 0.0023 −0.0371 1.1021 1.65,b 1.24,c 1.64,d 1.51,f (1.01 ± 0.20)j

2.45,f 1.42,g 1.43h

〈3S1||D||3Po
0 〉 0.0788 0.0034 −0.0036 0.0786 0.229c

〈3D1||D||3Po
0 〉 0.6504 −0.0156 0.0315 0.6663 0.93c

(c)

〈3Po
1 ||M1||3Po

0 〉 −1.3117 −0.0005 0.0006 −1.3116 −0.674a

〈1Po
1 ||M1||3Po

0 〉 0.4972 0.0002 0.0001 0.4975 0.205a

〈1S0||M1||3S1〉 0.0044 −0.0003 0 0.0041
〈1S0||M1||3D1〉 −0.0143 −0.003 0.0004 −0.0169

aCI + MBPT [19].
bCI + all-order [37].
cIntermediate coupling (IC) + relativistic Hartree-Fock (RHF) + CP [42].
dCIRHF + CP [39].
eReferences [43,44].
fCI Dirac-Fock with model potential wave functions [45].
gMCRRPA [41].
hMCRRPA [46].
iCIRHF + CP [40].
jReference [47].

polarization, and self-energy corrections, the first two are ob-
served to contribute more. The largest cumulative contribution
of about 0.3% from Breit interaction and vacuum polarization
is observed in the case of 3Po

0 . Self-energy contributions are of
opposite phase and are negligibly small.

C. E1 reduced matrix elements

Table IV lists the values of E1 reduced matrix elements
from our calculations for all dominant transitions which con-
tribute to the lifetime of the clock state. Since there are
more data on oscillator strengths in the literature, we have
converted E1 reduced matrix elements to oscillator strength
and tabulated the data for comparison with experiments and
other theoretical results. The contributions from Breit + QED
and triples are provided separately in the table. As evident
from the table and as to be expected, the DC-CCSD results
are the dominant contribution to all the matrix elements. The
contributions from Breit interaction, QED, and perturbative
triples are important to obtain accurate results. A quantitative
analysis is presented later in the section.

From the literature we could find two previous works,
Refs. [19] (CI + MBPT) and [37] (CI + all-order), for
comparison of the E1 reduced matrix elements. The val-
ues of our E1 reduced matrix elements are slightly smaller

than those in Refs. [19,37] for all the listed transitions. The
reason for this could be attributed to the different treat-
ment of electron correlations in these methods. In Ref. [19],
MBPT is used to treat core-core and core-valence corre-
lations, whereas valence-valence correlation is incorporated
with the CI method. In Ref. [37], however, the core-core
and core-valence correlations are accounted for using a lin-
earized CCSD method. The present work, however, employs
a nonlinear CCSD theory to account for the core-core and
core-valence correlations and therefore is more accurate. The
valence-valence correlation is however treated in the same
way as in Refs. [19,37]. The other two important inclusions
in the present work are the use of energetically higher con-
figurations (6p2, 6s7s, and 6s6d) in the model space and the
corrections from the Breit interaction, QED, and perturbative
triples.

For the oscillator strength, there are several results in the
literature from previous studies for the 〈1S0||D||3Po

1 〉 and
〈1S0||D||1Po

1 〉 transitions for comparison. As evident from
Table IV, there is however a large variation in the reported
values. For example, for the 〈1S0||D||3Po

1 〉 transition, the low-
est result 5.44 × 10−2 from Ref. [39] differs by approximately
33% from the highest result 8.11 × 10−2 reported in Ref. [37].
A similar trend is also observed for the 〈1S0||D||1Po

1 〉
transition. The lowest value 1.24 [42] is close to half the
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highest value 2.45 [41]. The reason for the large variation
could be attributed to the different many-body methods em-
ployed in these calculations. It should be noted that none of
the previous calculations use the FSRCC theory, like in the
present work. Except for Ref. [37], which uses CI + all-order,
the other calculations are mostly based on the MCDF theory
and its variations. The large difference among the results
clearly indicates the inherent dependence of the results on the
choice of configurations in the MCDF method to incorporate
electron correlation effects. For the 〈1S0||D||3Po

1 〉 transition,
our result 5.46 × 10−2 lies within the range of the previous
results, whereas for the 〈1S0||D||1Po

1 〉 transition, our result
1.10 is lowest among all the results listed in the table.

From experiments, there is one result each for oscillator
strength for the 〈1S0||D||3Po

1 〉 [43] and 〈1S0||D||1Po
1 〉 [47] tran-

sitions. Both of these experiments use the beam-foil technique
to study atomic spectra. For the 〈1S0||D||3Po

1 〉 transition, our
calculated result 5.46 × 10−2 has the same order of magnitude
as the experimental result (7.3 ± 0.5) × 10−2 but is about
25% smaller. Among the previous theoretical calculations, the
MCDF calculations in Refs. [42,45] are closer to the experi-
ment. For the 〈1S0||D||1Po

1 〉 transition, however, among all the
theoretical results listed in Table IV, our result 1.10 has the
best match with the experimental result 1.01 ± 0.20 [47].

D. M1 reduced matrix elements

For the clock transition, the theoretical estimate of the M1
matrix elements is the other important component to calcu-
late the lifetime of the clock state. So we next compute the
M1 reduced matrix elements of the transitions which con-
tribute dominantly to τ . These are listed in Table IV. As to
be expected, like the case of E1 matrix elements, the most
dominant contribution is from the DC-CCSD theory for all
the transitions. The cumulative contribution from Breit inter-
action, QED, and perturbative triples is small but important to
get reliable results for the transition properties.

Unlike the E1 matrix elements, only a few results of M1
are available in the literature for comparison. There is only one
theoretical result calculated using CI + MBPT [19], which
reports the values of M1 reduced matrix elements for the
〈3Po

1 ||M1||3Po
0 〉 and 〈1Po

1 ||M1||3Po
0 〉 transitions. Interestingly,

unlike the E1 reduced matrix elements where the two works
are comparable, our results for M1 reduced matrix elements
differ by a factor of 2 or more from Ref. [19]. This leads
to a difference of approximately 6.7% between the lifetimes
calculated using the two data. Our calculated value of τ with
the 6s2 + 6s6p configuration is 9.6 × 106 s, whereas the value
reported in Ref. [19] is 9.0 × 106 s. As this work reports
our first implementation and computation of the M1 matrix
element for the two-valence system using the FSRCC theory,
it is essential to cross-check and validate our results with
previous works. For this we compute and compare the results
of other atoms since there are no previous theoretical or ex-
perimental results for Pb2+ other than Ref. [19]. In particular,
we consider the M1 transition rate for the 〈3Po

2 ||M1||3Po
1 〉

transition in neutral Yb. This was studied in Ref. [6], using
a combined method of configuration interaction and perturba-
tion theory, and reported a value as 6.7 × 10−2 s−1. From our
implementation we obtain 5.3 × 10−2 s−1. The reason for this

TABLE V. Lifetime of the clock state 3Po
0 . The values listed in

the first, second, and third rows represent the separate contributions
from 6s2 + 6s6p, 6s7s, and 6s6d configurations, respectively. The
contributions from the Breit, QED, and perturbative triple-excitation
corrections are also provided separately.

Configurations or method τ (×106 s)

6s2 1S0 + 6s6p 3Po
1 + 6s6p 1Po

1 9.595
6s7s 3S1 0.029
6s6d 3D1 0.248
total CCSD 9.872
CCSD(T) 9.654
CCSD(T) + Breit + QED 9.761
recommended (9.76 ± 0.47)
others 9.0a

aReference [19].

small difference could be attributed to the better consideration
of electron correlations in the FSRCC theory. In another work,
Ref. [48], the transition rate for 〈3Po

2 ||M1||3Po
1 〉 of Sr was com-

puted using CI + random-phase approximation. It reported
the value as 8.26 × 10−4, which matches very well with our
result of 8.88 × 10−4. The difference is only 7%, which could
again be due to better accounting of electron correlations
in the FSRCC theory. Yet another seminal work, Ref. [49]
carried out a second-order MBPT calculation of M1 reduced
matrix elements for 〈3Po

0 ||M1||3Po
1 〉 and 〈3Po

0 ||M1||1Po
1 〉 tran-

sitions in Fe22+. The reported values 1.40 and 0.22 are in
good agreement with our computed values 1.37 and 0.28,
respectively. Thus, from the comparison with the previous
theoretical results for different systems, we can infer that our
implementation of the M1 matrix element computation with
the FSRCC theory gives reliable results.

E. Lifetime of the clock state

The lifetime of the clock state can now be estimated theo-
retically using the results discussed above. Using the E1 and
M1 reduced matrix elements listed in Table IV and excitation
energies from Table III in Eq. (7), we obtain the E1M1 decay
rate 	 for the 6s2 1S0 → 6s6p 3Po

0 clock transition and its
inverse is τ . The τ obtained from our calculations is given
in Table V. To assess the effect of valence-valence correlation,
we have separated the contributions from 6s6p, 6s7s, and 6s6d
configurations. Our computed lifetime 9.76 × 106 s is approx-
imately 8.5% larger than the only other theoretical result [19].
The reason for this could be attributed to the more accurate
treatment of electron correlations in our calculations. It should
be noted that our calculations also incorporate the contribu-
tions from E1 and M1 matrix elements from higher-energy
states 6s6d 3D1 and 6s7s 3S1. This has a significant cumula-
tive contribution of approximately 3.3% to the total lifetime.
The other key difference from Ref. [19] is the inclusion of
the corrections from Breit interaction, QED, and perturbative
triples in our calculations. The contribution from the pertur-
bative triples is approximately −2.3% to the lifetime. This is
consistent with the trend observed in our previous work on the
Al+ atomic clock [16]. The contributions from the Breit and
QED corrections are also significant; they jointly contribute
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FIG. 4. (a) Convergence of transition amplitudes with basis
size. Dominant percentage contributions from (b) Breit, perturbative
triples, and QED corrections to the reduced matrix elements and
(c) lifetime of the clock state. (d) Dominant contributions from core
orbitals to the dipole polarizability.

approximately 1.1% of the total τ . As discernible from the
Fig. 4(c), the Dirac-Fock (DF) calculation alone contributes
approximately 33% of the total value. The most significant
contribution arises from the electron correlations associated
with the residual Coulomb interaction through the FSRCC
theory within the CCSD framework. The combined contri-
bution from the DF and CCSD calculations is about 101%
of the total lifetime. Alternatively, to get an estimate of the
lifetime using experimental energies, we calculate τ using the
NIST energies listed in Table III. From this we get the value of
the lifetime as 8.4 × 106 s, which is smaller by approximately
13% than the ab initio value 9.8 × 106 s. The reason for this
difference could be attributed to the inconsistencies associated
with the accuracies of the E1 and M1 matrix elements and the
energy denominator.

F. Dipole polarizability

The electric dipole polarizability α of an atom or ion is
a measure of the response to an external electric field. It
is related to properties which serve as signatures of several
fundamental properties [5,50,51]. In the present work α is
required in calculating the BBR shift of the clock transition
frequency. In Table VI we present our theoretical result on
α for the ground state of Pb2+ and compare it with results
available in the literature. To calculate α, we use the PRCC
theory developed and presented in our previous works [23,27].
Table VI also list the contributions from various correlation
terms subsumed in the PRCC theory. The term estimated
identifies the contribution from the orbitals from i, j, and k
symmetries. As to be expected, the dominant contribution is
from the DF term. It contributes approximately 116% of the
total value. The PRCC value is approximately 13% lower than

TABLE VI. Value of α (a.u.) for the ground state 6s2 1S0 of Pb2+

from the PRCC calculation in the present work. The available data
from experiment and other theoretical calculations are also provided
for comparison.

Method α

DF 16.246
PRCC 14.173
PRCC(T) 14.166
PRCC(T) + Breit 14.173
PRCC(T) + Breit + QED 14.064
estimated 14.016
recommended 14.02 ± 0.21
other calculations 13.3 ± 0.4a

experiment 13.62 ± 0.08b

aCI + all-order [37].
bExperiment [52].

the DF value. The reason for this is the cancellation due to
opposite contributions from electron correlation.

From the literature, we could find one result each from the
experimental and theoretical studies. On comparing the re-
sults, our recommended value 14.02 is in good agreement with
the experimental value 13.62 ± 0.08 reported in Ref. [52].
The difference from the experimental result is approximately
3%. In the theoretical work of Safronova et al. [37], the
reported value of 13.3 is obtained using the method of CI
+ all-order. Our recommended result is approximately 6%
larger than that in Ref. [37]. As mentioned earlier, the reason
for this difference could be attributed to the more accurate
treatment of electron correlations in the present calculation.
The other important advantage of the present calculation is
that it does not employ the sum-over-state approach [53,54] to
incorporate the effects of perturbation. The summation over
all the possible intermediate states is accounted for through
the perturbed cluster operators [16,23]. In addition, the present
work also incorporates the effects of Breit, QED, and pertur-
bative triple-excitation corrections in the calculation of α.

G. Electron correlations in FSRCC and PRCC theories and
corrections from Breit interaction, QED, and

perturbative triples

To get insights into the correlation effects, we now analyze
and present the trend of contributions from various correlation
terms in FSRCC and PRCC theories as well as the contri-
butions from the Breit and QED corrections. As mentioned
earlier, the FSRCC method is used to calculate the lifetime
of the metastable clock state, whereas the PRCC theory is
employed to calculate α for the ground state of Pb2+.

Table VII lists the termwise contributions from the FSRCC
theory for selected E1 and M1 matrix elements. As expected,
the DF result is the leading-order (LO) term for both matrix
elements. It contributes approximately 109% and 104% of
the total value for 〈1S0||D||1Po

1 〉 and 〈3Po
1 ||M1||3Po

0 〉, respec-
tively. The next-to-leading-order (NLO) contribution of the
two matrix elements shows different trends. For 〈1S0||D||1Po

1 〉,
the NLO contribution of opposite phase of approximately
−20% arises from the one-valence sector. In contrast, for
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TABLE VII. Termwise contributions to E1 and M1 reduced
matrix elements (a.u.) from different terms in FSRCC theory. The
operator Ô represents the electric or magnetic dipole operator.

Terms + H.c. 〈1S0||D||1Po
1 〉 〈3Po

1 ||M1||3Po
0 〉

DF 2.1575 −1.3586
1v diagrams −0.4014 −0.0122
ÔR2 0.1064 0.0199
R2ÔR2 0.0735 0.0423
S1ÔR2 + S2ÔR2 + S2

1ÔR2 0.0101 −0.0081
ÔS2 0.0065 0.0003
S2ÔS2 + S2ÔS1 + S2ÔS2

1 0.0320 0.0046
T1ÔR2 −0.0001 0
S2ÔT2 + S2ÔT1 0.0007 0
T2ÔT2 + T1ÔT2 0.0003 0
total 1.9855 −1.3118

〈3Po
1 ||M1||3Po

0 〉, the NLO contribution is from the two-valence
sector, with the R2ÔR2 term giving a contribution of approx-
imately −3%. As the next dominant contribution, the term
ÔR2 + H.c. contributes approximately 5% and 1.5% to the
〈1S0||D||1Po

1 〉 and 〈3Po
1 ||M1||3Po

0 〉 matrix elements, respec-
tively.

For the contributions from the Breit and QED corrections
to matrix elements, the largest contribution is observed in the
case of the 〈1S0||M1||3D1〉 transition. The Breit interaction
contributes approximately 13.0%, whereas the contribution
from QED is approximately 5.0% of the total value. The
largest contribution from the perturbative triples is observed to
be approximately 2.4% in the case of 〈3D1||D||3Po

0 〉. Combin-
ing these two, the largest consolidated contribution from Breit
+ QED + perturbative triples is approximately 20%. Consid-
ering the high accuracies associated with atomic clocks, this
is a significant contribution. Hence, it is important to include
these to obtain reliable clock properties from theoretical cal-
culations.

To understand the nature of electron correlations subsumed
in computations of α, the termwise contributions from the
PRCC theory are listed in Table VIII. As evident from the
table, the LO term T(1)†

1 D + H.c. contributes approximately
118% of the total value. This is expected, as it includes the
DF and dominant contribution from core polarization. For a
better illustration, in Fig. 4(d) we show the five dominant
contributions from core orbitals. As discernible from the fig-
ure, approximately 87% of the LO contribution arises from

TABLE VIII. Termwise contributions to α (a.u.) from different
terms in PRCC theory.

Terms + H.c. α

T(1)†
1 D 16.6849

T1
(1)†DT (0)

2 −1.0835
T1

(1)†DT (0)
1 −0.2746

T2
(1)†DT (0)

1 −0.0052
T2

(1)†DT (0)
2 0.4145

normalization −1.5633
total 14.1733

the 6s valence electrons through the dipolar mixing with the
6p states. This is due to the larger radial extent of the 6s
orbital. In the remaining LO contribution, a contribution of
approximately 8.5% is from the 5d core electrons, through
the dipolar mixing with 6p and 4 f electrons. The NLO term
is T1

(1)†DT (0)
2 , which contributes approximately 8%. It should

be noted that it accounts for the dominant pair-correlation
effects through the T (0)

2 operator. The next dominant contri-
bution of approximately 3%, which also include some part of
pair correlation, is from T2

(1)†DT (0)
2 .

The perturbative triples and Breit interaction each con-
tribute approximately 0.04% to α. The contribution from QED
is however significant, approximately 0.7%. So the cumula-
tive contribution from Breit + QED + perturbative triples
is approximately 0.8%. The contribution from the higher-
symmetry orbitals is estimated to be approximately 0.34% of
the total value.

V. THEORETICAL UNCERTAINTY

The theoretical uncertainty in the computed τ depends on
the uncertainties in the E1 and M1 matrix elements and the
energy denominators, as they contribute in Eq. (7). As the
experimental results are not available for all the E1 and M1
reduced matrix elements, we have identified four different
sources which can contribute to the uncertainty in E1 and
M1 matrix elements. The first source of uncertainty is due to
the truncation of the basis set in our calculation. As discussed
in Sec. IV A, our calculated values of E1 and M1 reduced
matrix elements converge to the order of 10−3 or smaller with
basis size. Since this is a very small change, we may neglect
this uncertainty. The second source of uncertainty arises from
the truncation of the dressed Hamiltonian H̃ e

hfs at the second
order of T (0) in the calculation of properties. In our earlier
work [29], using an iterative scheme, we found that the terms
with third and higher orders in T (0) contribute less than 0.1%.
So we consider 0.1% as an upper bound for this source. The
third source is due to the partial inclusion of triple excitations
in the calculation of properties. Since the perturbative triples
account for the leading-order terms of triple excitation, the
contribution from remaining terms will be small. Based on
the analysis from our previous works [23,55], we estimate the
upper bound from this source as 0.72%. The fourth source of
uncertainty could be associated with the frequency-dependent
Breit interaction, which is not included in the present calcu-
lations. However, in our previous work [56], using a series of
computations using GRASP2K, we estimated an upper bound
on this uncertainty as 0.13% in Ra. So for the present work
we take 0.13% as an upper bound from this source. There
could be other sources of theoretical uncertainty, such as the
higher-order coupled perturbation of vacuum polarization and
self-energy terms, quadruply excited cluster operators, etc.
However, in general, these all have much lower contributions
to the properties and their cumulative theoretical uncertainty
could be below 0.1%. Uncertainty in the energy denominator
is estimated using the relative errors in the energy difference
of 3Po

1 , 1Po
1 , 3S1, and 3D1 intermediate states with respect to

3Po
0 . Among all the intermediate states, 1Po

1 and 3D1 states
contribute dominantly, through routes 1 and 2, respectively,
to the lifetime. The relative errors in the energy difference
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of these states with 3Po
0 are 1.27% and 0.78%, respectively.

Since they correspond to the dominant contributions, we have
taken them as the uncertainty in the energy denominator. By
combining the upper bounds of all the uncertainties, the the-
oretical uncertainty associated with the lifetime of the clock
state is approximately 4.8%. It should however be noted that
the uncertainty in the value of α is much smaller, about 1.5%
[57].

VI. CONCLUSION

We have employed an all-particle multireference Fock-
space relativistic coupled-cluster theory to examine the clock
transition properties in Pb2+. We computed the excitation
energies of several low-lying states, and the E1 and M1 tran-
sition amplitudes for all the allowed transitions within the
model space considered. These were then used to calculate
the lifetime of the clock state. Moreover, using PRCC theory,
we also calculated the electric dipole polarizability for the
ground state of Pb2+. In all these calculations, to obtain accu-
rate properties results, we incorporated the corrections from
the relativistic and QED effects. The dominant contribution
from triple excitations was incorporated though perturbative
triples and a fairly large basis sets was used to achieve the
convergence of the properties.

Our computed excitation energies are in excellent agree-
ment with experimental values for all the states. Our result
of τ is about 8.5% larger than the previous result obtained

using CI + MBPT [19]. The reason for the higher τ in the
present calculation could partially be attributed to the better
inclusion of core-core and core-valence electron correlations
in the FSRCC theory. In addition, to account for the valence-
valence correlation more accurately, we also incorporated the
contributions from the higher-energy configurations 6s6d and
6s7s in our calculation. Based on our analysis, we found
that this contributes approximately 3.3% of the total lifetime.
In addition, from our study we found that the contributions
from the perturbative triples and Breit + QED corrections are
crucial to get reliable τ . They were observed to contribute
approximately −2.2% and 1.1%, respectively. Our recom-
mended value of dipole polarizability is in good agreement
with the available experimental value, with a small difference
of approximately 3%. Based on our analysis of theoretical
uncertainty, the upper bound on uncertainty for the calculated
lifetime is approximately 4.8%, whereas for polarizability it
is approximately 1.5%.
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