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Exploring valence-electron dynamics of xenon through laser-induced electron diffraction
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Strong-field ionization can induce electron motion in both the continuum and valence shell of the parent
ion. Here we report on a joint theoretical and experimental investigation of laser-induced electron diffraction
in xenon. We explore the interplay of electron recollision with spin-orbit dynamics in the valence shell of
the xenon cation. On the theory side, the electron-hole potentials for two different states are constructed, and
the quantitative rescattering model is used to calculate the photoelectron momentum distributions (PMDs) for
high-order above-threshold ionization of xenon. Measurements were carried out using 40-fs laser pulses with a
central wavelength of 3100 nm and a peak laser intensity of 6 × 1013 W/cm2. The simulated PMDs describe well
the features of the measured angular distributions of photoelectrons. Our study reveals a theoretical distinction
between the electron signals resulting from rescattering off the m = 0 and |m| = 1 hole states, particularly noting
a distinct change along the backward scattering angles. However, to fully identify the contributions of the hole
states, a more accurate agreement between theory and experiment will be needed.
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I. INTRODUCTION

Laser-induced electron diffraction (LIED) has been es-
tablished as a powerful alternative to conventional electron
diffraction; see Refs. [1,2] for recent reviews. The technique
relies on the laser-driven elastic rescattering [3] of a photo-
electron emitted by strong-field ionization, which gives rise
to high-order above threshold ionization (HATI), the basic
strong-field phenomenon underlying LIED. The rescatter-
ing process provides LIED with two interesting properties:
first, an ultrahigh current density, allowing imaging on the
single-molecule level [4] and, second, perfect synchronization
between ionization and scattering events, allowing (attosec-
ond) time-resolved experiments [5–7].

The LIED signal can be described by the atomic scatter-
ing cross sections and a molecular interference term [4,8,9].
Numerous LIED experiments have focused on the measure-
ment of the molecular interference term, and the accurate,
and time-dependent, retrieval of molecular bond lengths has
been demonstrated [6,7,10]. Notably, these measurements re-
quire the recolliding electron to possess a sufficiently short
de Broglie wavelength and correspondingly large momen-
tum. For this reason, long driving wavelengths (λ � 2 m) are
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favorable to drive LIED experiments for molecular struc-
ture retrieval. In the case of atoms or lower recollision
momentum, the scattering signal is governed by the differen-
tial elastic electron scattering cross sections (DCSs), which
depend on the valence electron distribution [11]. Good agree-
ment between measured LIED patterns and DCSs known
from conventional electron diffraction experiments has been
obtained [12,14].

Specifically, strong-field driven tunnel ionization is not
only the primary step in HATI and LIED but can also initiate
electronic and nuclear dynamics inside the parent ion, thus
acting as a “pump.” This has enabled ultrastable pump-probe-
type experiments: attosecond time resolution is obtained by
exploiting the perfect synchronization between the laser field
and the recolliding electron [3]. As the returning electron
wave packet is chirped, an energy-resolved measurement of
the returning electron, acting as a probe, provides access
to different pump-probe delays. This principle has been ex-
ploited for time-resolved measurements of nuclear dynamics
in high-harmonic spectroscopy [15,16] and LIED experiments
[6,7]. While the prospect of employing high-harmonic gen-
eration (HHG) for probing [15,17] is inherently appealing, a
significant challenge arises from the strong impact of phase
matching on HHG [18–20]. In contrast, LIED is insensi-
tive to phase matching, representing a promising alternative.
However, to the best of our knowledge, LIED experiments
revealing electron-hole dynamics have not yet been reported.
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Here we study the interplay of continuum and bound elec-
tron dynamics in the HATI process. Our approach is best
illustrated by viewing laser-induced recollision as a pump-
probe experiment [21,22]: tunnel ionization takes the role of
a pump pulse which essentially starts two clocks: a laser-
dependent one that corresponds to the field-driven motion of
free electrons undergoing elastic rescattering, and a target-
dependent one that relates to the bound electron dynamics.
Both clocks are read at the time of recollision when the rec-
olliding electron probes the hole density of the ion by elastic
scattering.

In this work we consider the xenon (Xe) atom. The ground
state of the Xe cation has two fine-structure components:
the 2P3/2 and 2P1/2 that are separated by �ESO = 1.3 eV
due to spin-orbit interaction. Both ion states are coherently
populated by tunnel ionization, thus creating a wave packet
[13]. As the spin-orbit wave packet evolves, the 5p5 electron-
hole (vacancy) in the valence shell oscillates between the
m = 0 state and the |m| = 1 (m is the magnetic quantum
number) states of the valence shell of the Xe+ ion with the
period TSO = h/�ESO (3.2 fs) [23]. The spatial hole density
in the valence shell is described by the orbitals for m = 0
(“peanut shape”) and |m| = 1 (“donut shape”). At integer
n and half-integer (n + 1

2 ) multiples of the spin-orbit pe-
riod (where n = 0, 1, 2, 3, . . .), the hole alternately populates
the m = 0 and |m| = 1 orbitals, respectively. The oscillating
hole density has been tracked in Kr using attosecond tran-
sient spectroscopy [24]. For the Ne and Ar ion momentum
spectroscopy [25] or momentum imaging of direct electrons
[26,27] has been applied. Recently, the spin-orbit wave packet
in Xe has been probed using sequential double ionization in
an elliptically polarized near-infrared laser field [28]. Here
we employ elastic rescattering in a midinfrared field (λ =
3100 nm) with an optical period of T = 10.5 fs. Owing to
the relatively long optical period, the returning electron wave
packet spans several femtoseconds, allowing us, in princi-
ple, to probe the evolution of the spin-orbit wave packet
in xenon.

The article is structured as follows. In Sec. II the theoretical
model is introduced, including the strong-field approximation.
We describe the method to construct the electron-hole po-
tential and outline the quantitative rescattering theory (QRS)
model used to calculate the photoelectron momentum dis-
tributions (PMDs) for HATI. Based on the QRS model, the
simulated results are shown and discussed in Sec. III. Finally,
Sec. IV contains conclusions and outlook.

Unless indicated otherwise, atomic units (me = e = h̄ =
4πε0 = 1) are used throughout the paper.

II. THEORETICAL MODEL

A. The strong-field approximation

In the strong-field approximation (SFA) [29,30], the first
two terms of the perturbation series, called direct (SFA1)
and rescattering (SFA2) amplitudes, respectively, express the
momentum-dependent ionization amplitude as

f SFA(p) = f SFA1(p) + f SFA2(p), (1)

where p is the momentum of the detected photoelectron. The
direct ionization amplitude in Eq. (1) is given by

f SFA1(p) = −i
∫ ∞

−∞
dt〈χp(t )|r · F(t )|�i(t )〉, (2)

where F(t ) = −∂A(t )/∂t is the laser electric field, and �i(t )
is the initial ground state wave function. The Volkov state
χp(t ) in Eq. (2) is given by

〈r|χp(t )〉 = 1

(2π )3/2
ei[p+A(t )]·re−iS(p,t ), (3)

where the action S reads as

S(p, t ) = 1

2

∫ t

−∞
dt ′[p + A(t ′)]2. (4)

The second term in Eq. (1), the so-called rescattering am-
plitude, accounts for laser-induced elastic scattering of the
returning electron from the parent ion. This rescattering am-
plitude can be expressed as

f SFA2(p) = −
∫ ∞

−∞
dt

∫ ∞

t
dt ′

∫
dk〈χp(t ′)|V |χk(t ′)〉

× 〈χk(t )|r · F(t )|�i(t )〉, (5)

where V is the scattering potential. It takes the form

V (r) = Ṽ (r)e−αr, (6)

where α is a screening factor introduced to avoid the singu-
larity in the integrand in Eq. (5) and Ṽ (r) is the atomic model
potential that can be written in the form

Ṽ (r) = −1 + a1e−a2r + a3re−a4r + a5e−a6r

r
. (7)

The parameters ai(i = 1, 3, 5) can be found in Ref. [31]. As
can be seen from Eq. (5), the rescattering amplitude involves
three steps by the electron under laser field: the initial tunnel
ionization, propagation in the laser field, as well as elastic
scattering with the parent ion.

B. Elastic differential cross sections

In this section we briefly summarize the standard poten-
tial scattering theory, which has been well documented in
the textbook [32]. The scattered wavefunction of an electron
by a spherical potential V (r) satisfies the time-independent
Schrödinger equation

[∇2 + k2 − U (r)]ψ (r) = 0, (8)

where U (r) = 2V (r) is the reduced potential and k is the
electron momentum, related to the electron energy by k =√

2E . For a short-range potential which falls faster than r−2

as r → ∞, the wave function of the scattered electron in the
asymptotic region is given by

ψ+(r)r→∞ = 1

(2π )3/2

[
eik·r + f (θ )

eikr

r

]
, (9)

where f (θ ) is the scattering amplitude and θ is the polar angle
measured from the incident direction.
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To obtain the scattering amplitude, we solve Eq. (8) by
expanding the scattered wave function in partial waves,

ψ+(r) =
√

2

π

1

kr

∑
lm

ilul (k, r)Ylm(r̂)Y ∗
lm(k̂), (10)

where Ylm is a spherical harmonic. The continuum waves are
normalized to δ(k − k′). The radial equation ul (k, r) satisfies[

d2

dr2
+ k2 − l (l + 1)

r2
− U (r)

]
ul (k, r) = 0. (11)

For a plane wave when V (r) = 0, the radial component
ul (k, r)/kr in Eq. (10) is a standard spherical Bessel function
jl (kr).

When r → ∞, the boundary condition satisfied by ul (k, r)
for V (r) = 0 is

ul (k, r) = sin
(
kr − 1

2 lπ
)
, (12)

while for a short-range potential V (r),

ul (k, r) = e(iδl ) sin
(
kr − 1

2 lπ + δl
)
, (13)

where δl is a phase shift that displays the influence of the
interaction.

By matching the coefficients of the outgoing spherical
waves in Eqs. (9) and (10), and using Eqs. (12) and (13), the
scattering amplitude is given by

f (θ ) =
∞∑

l=0

2l + 1

k
eiδl sin(δl )Pl (cos θ ), (14)

where Pl (cos θ ) are the Legendre polynomials.
The scattering by a Coulomb potential,

Vc(r) = Z1Z2

r
, (15)

where Z1 and Z2 are the charges of the projectile and the target,
can be treated in parabolic coordinates and the scattering
amplitude can be obtained analytically,

fc(θ ) = −ηe2iσ0
e−iηln[sin2(θ/2)]

2k sin2(θ/2)
, (16)

where

σ0 = −arg[�(1 + iη)], η = Z1Z2

k
. (17)

In order to mimic the partial screening of the nuclear
charge by the electrons, a short-range potential V (r) is added
to a Coulomb potential Vc(r), using partial-wave expansion.
The scattering amplitude for V (r) can be expressed by

f̂ (θ ) =
∞∑

l=0

2l + 1

k
e2iσl eiδl sin(δl )Pl (cos θ ). (18)

Thus, the scattering amplitude for the general case is
given by

f (θ ) = fc(θ ) + f̂ (θ ), (19)

and the elastic scattering DCS for a given energy reads

dσel (k, θ )

d�r
= | f (θ )|2. (20)

C. The electron-hole potential

Here the scattering potentials used in the numerical cal-
culations are given. We consider the elastic scattering of
electrons with the Xe+ ion. The DCSs for the m = 0 and
|m| = 1 vacancy states are calculated using standard potential
scattering theory, as detailed above.

The static potential V (r) of the Xe+ ion is structured as

V (r) = −Z

r
+ V DFS(r) − V1m0,1 (r), (21)

where Z is the nuclear charge of the target, V DFS(r) is the
Dirac-Fock-Slater potential where the summation runs over
all orbitals (electrons) [33]. The term V1m0,1 (r) is a hole poten-
tial that describes the Coulomb interaction between projectile
electron and the orbital (l, m) = (1m0,1) in the ion. It is
given by

V1m0,1 (r) =
∫

|ψ5,1(r′)|2 1

|r − r′| dr′, (22)

where r and r′ are the position vectors of the projectile and
the bound state electrons with respect to the nucleus. ψ5,1(r′)
is the wave function of the hole state, represented as the anti-
symmetrized Hartree-Fock wave function expressed in terms
of Slater-type orbitals

�5,1(r) = R5,1(r)Y1m0,1 (r̂), (23)

where Y�m(r̂) are the spherical harmonics and Rn,� is the radial
wave function given by

Rn,�(r) =
Mn,�∑
i=1

ci
1√

(2ni )!
(2ξi )

ni+1/2rni−1e−ξir . (24)

The parameters ci, ni, ξi, and Mn,� for each of the orbitals are
given by Clementi and Roetti [34].

As a result, the hole potential for the m = 0 and |m| = 1
vacancy states in the Xe+ is expressed as

V1,0(r) =
∫ |P5,1(r′)|2

r>

dr′ + 2

5

∫
|P5,1(r′)|2 (r<)2

(r>)3
dr′

V1,1(r) =
∫ |P5,1(r′)|2

r>

dr′ − 1

5

∫
|P5,1(r′)|2 (r<)2

(r>)3
dr′,

(25)

where Pn,�(r′) = rRn,�(r′) is the radial wave function, for
Xe+ with n, � = 5, 1. Furthermore, r< = min(r, r′) [r> =
max(r, r′)], which represents the smaller (larger) value of r
or r′.

It is worth noting that in this work, we ignore the polariza-
tion of the hole states by the laser field in the simulations. It
was found in previous work [12,35,36] that these effects are
negligible for the relatively large electron energies used in the
present work. We have verified this by including polarization
potential in our simulations and find only small differences
compared to the results without polarization potential pre-
sented below.

D. The QRS model for HATI

According to the QRS theory [37–39], the detected pho-
toelectron momentum distributions can be factorized as a
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product of the momentum distribution of the recolliding wave
packet (RWP) and the differential cross section (DCS) for
elastic scattering of the returning electron from the parent ion.
By defining the HATI photoelectron momentum distribution
obtained from the SFA as

D HATI
SFA2(p) = | f SFA2(p)|2, (26)

the QRS model for HATI reads [11]

D HATI
QRS (p, θ ) = WSFA2(pr )

dσ el(pr, θr )

d�r
, (27)

where dσ el(pr, θr )/d�r is the DCS for elastic scattering
of the returning electron with the parent ion obtained from
Eq. (20). WSFA2(pr ) is the RWP describing the momen-
tum distribution of the returning electron, which can be
obtained by

WSFA2(pr ) = D HATI
SFA2(p, θ )

/
dσ el

PWBA(pr, θr )

d�r
(28)

and is independent of the rescattering angle θr . We make the
common choice of a large scattering angle θr = 178◦ [37].
Here dσ el

PWBA(pr, θr )/d�r is evaluated using the plane-wave
first-order Born approximation, and p, pr , θ , and θr are the
detected momentum, rescattering momentum, detected angle,
and rescattering angle, respectively.

The detected momentum p and rescattering momentum pr
are related by

p = pr − Ar, (29)

where the additional momentum Ar is the vector poten-
tial of the laser field at the recollision time. We use the
approximation

Ar = pr/1.26, (30)

and this relation is determined approximately by solving
Newton’s equation of motion for an electron in a monochro-
matic laser field [37]. As a result, the momentum distribution
DHATI(p, θ ) can be understood as a superposition of circles
with radii pr and centers Ar . Tracing the angular distribution
on these circles gives access to the DCSs.

E. Experimental method

Experiments have been carried out using the mid-infrared
(MIR) laser [40] at the ELI-ALPS laser facility in Szeged,
Hungary. The laser provides 40 fs pulses centered around
λ = 3100 nm at a repetition rate of 100 kHz. A pair of wire
grid polarizers are used to obtain linearly polarized light
with adjustable power. The polarization direction is sub-
sequently adjusted using a motorized broadband half-wave
plate (B. Halle). The laser pulses are sent into a stereo-
graphic photoelectron time-of-flight spectrometer [41]. The
laser is back-focused ( f = 10 cm) in front of an effusive
nozzle injecting Xe gas into the vacuum chamber. Photo-
electrons created in the laser focus are detected within a
narrow solid angle (≈0.3◦) using microchannel plate detec-
tors mounted at a distance of 50 cm, on either side of the
spectrometer. Measurements of the photoelectron momentum
distribution in the polarization plane are sampled by rotating
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FIG. 1. (a) Schematic of the continuum and bound electron dy-
namics induced by tunnel ionization. The oscillation of the laser
electric field (solid black curve) is compared to the hole population
for the m = 0 (dotted red curve) and |m| = 1 (dotted blue curve)
vacancy states. The times t1 = 2.5 TSO and t2 = 3.0 TSO mark times at
which the hole populates dominantly the |m| = 1 and m = 0 states,
respectively. (b) Electron-hole potentials (V10 and V11 for the m = 0
and |m| = 1 vacancy states of Xe+, and the Dirac-Fock-Slater poten-
tial [33] representing the mean field of all electrons. The inset shows
the full scattering potential of the ion, i.e., including the Coulomb
term of Eq. (21).

the polarization axis of the laser and collecting time-of-flight
spectra at each angle. The experimental results presented be-
low are symmetrized with respect to reflection at the p⊥ = 0
axis. Small asymmetries observed in the raw data indicate a
slight ellipticity introduced by the half-wave plate used in the
experiment.

III. RESULTS AND DISCUSSION

Figure 1(a) illustrates the time evolution of the electric
field E (t ) and the hole-state density in the Xe+ ion in our
experiment. Near the peak of the laser field, around ts, an
electron tunnels from the atom and is subsequently acceler-
ated in the laser field. According to the classical recollision
model, the electron returns to the parent ion at a time t1,2,
roughly 3/4 ± 1/4 of an optical cycle after emission, and
carries a momentum pr (tr ) = −[A(ts) − A(tr )], where A(t ) is
the vector potential of the laser field. The travel time �t =
(tr − ts) of the returning electron corresponds to the delay
between electron emission (pump) and recollision (probe).
The second clock, corresponding to the spin-orbit wave-
packet motion, is also started at ts. Given the period TSO =
3.2 fs in Xe+, it is desirable to probe the wave packet at
times spanning over 1.6 fs apart. With the wavelength of
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FIG. 2. Momentum distribution of the recolliding wave packet
WSFA2(pr ) for the first returning electron computed from SFA2 for
single ionization of Xe by 3100 nm, 40 fs laser pulses at a peak
intensity of 6 × 1013 W/cm2.

3100 nm (optical period T = 10.5 fs), we identify the rec-
ollision times t1 and t2, corresponding to delays of �t1 =
2.5TSO = 8.0 fs and �t2 = 3.0TSO = 9.6 fs at which the hole
is expected to populate primarily the |m| = 1 or m = 0 states,
respectively.

Figure 1(b) presents the electron-hole potentials weighted
by the radial distance for Xe+ as well for comparison. It can be
seen from Fig. 1(b) that the potentials for m = 0 and |m| = 1
hole states, as well as the Dirac-Fock-Slater potential have the
same asymptotic behavior at r = ∞. However, as in Eq. (25),
it is noticed that the potentials of the m = 0 and |m| = 1
orbitals differ significantly at around r = 2. A similar trend
can also be observed for the constructed ion potential in the
inset of Fig. 1(b), where the ion potential with the |m| = 1
orbital is slightly larger than the ion potential for the m = 0
hole state around r = 2.

In Fig. 2 we present the momentum distributions of the
RWP that account for the weight of contributions from recol-
lisions concerning all energies. The RWPs are extracted from
the 2D momentum distributions for HATI of Xe, which were
calculated using SFA2. The RWP decreases dramatically at
low energies with increasing energy, followed by a plateau
in the high-energy region with oscillations until a cutoff is
reached.

In Fig. 3 we compare the photoelectron momentum distri-
butions for laser-induced ionization and scattering from Xe
obtained experimentally as shown in Fig. 3(a) with the results
of our modeling presented in Figs. 3(b) and 3(c). The exper-
imental data exhibit pronounced modulations in the angular
distribution of the photoelectrons. These are well reproduced
by the QRS results. Despite some discrepancies regarding
the electron yield, the good qualitative agreement between
experimental and theoretical data along the polarization axis
indicates that the DCSs used here are suitable for describing
laser-induced rescattering from Xe. However, the simulated
momentum distributions for the m = 0 and |m| = 1 vacancy
states are very similar to each other. These small differences
cannot be discerned in the experimental data.

Since the computational results for the two hole states are
nearly indistinguishable when viewed on the log scale, it is
instructive to represent in Fig. 4 the normalized difference of
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FIG. 3. Left: Measured photoelectron momentum distribution
for HATI of xenon using 40-fs laser pulses with a central wavelength
of 3100 nm and a peak laser intensity of 6 × 1013 W/cm2. Right:
Results of the QRS calculations for the m = 0 (up row) and |m| = 1
(below row). The red and blue circles correspond to trajectories with
travel times corresponding to 2.5 TSO (pr = 3.4 a.u.) and 3.0 TSO

(pr = 1.8 a.u.). The central region of the momentum distribution,
which is dominated by direct electrons, is removed in order to
improve the visibility of the momentum distribution of rescattered
electrons.

these spectra, which is defined as

A = Dm=0 − D|m|=1

Dm=0 + D|m|=1
, (31)

where Dm=0 (D|m|=1) are the momentum distributions cal-
culated for m = 0 (|m| = 1). In this way we isolate the

 3  4  5  6

p|| (a.u.)

 0

 1

 2

 3

p
⊥

 (
a.

u
.)

-0.1  0  0.1

2.5 TSO3.0 TSO

FIG. 4. The normalized difference between the calculated PMD
for the recollision of m = 0 and |m| = 1 states in the Xe+ ions.
The red and blue circular segments correspond to trajectories with
travel times corresponding to 2.5 TSO (pr = 3.4 a.u.) and 3.0 TSO

(pr = 1.8 a.u.).
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FIG. 5. DCSs for elastic electron scattering from Xe+ in the m = 0 (solid red curve) and |m| = 1 (dashed blue curve) hole states for
recollision momenta of (a) 1.8 a.u., (b) 2.2 a.u., (c) 2.8 a.u., (d) 3.2 a.u., (e) 3.4 a.u., respectively. The theoretical DCS values are compared to
experimental values extracted from the measured photoelectron angular distributions.

differences in the momentum distributions arising from elec-
tron scattering from the m = 0 and |m| = 1 vacancy states.
The maxima and minima in this normalized difference plot
provide information on where the photoelectron momentum
distributions provide contrast between the two vacancy states.
Specifically, for small values of p⊥, the maximum positive
contrast (more signal for m = 0) is obtained around the fi-
nal momenta of p|| = 3.5 a.u., while the maximum negative
contrast (more signal for |m| = 1) is observed at the final
momenta of p|| = 6.0 a.u.. These values coincide with the
scattering rings which correspond to the maximum contrast
in the population density, indicated as red and blue rings in
Figs. 3 and 4, respectively. The numerical results demon-
strate that the electron signals due to rescattering from the
m = 0 and |m| = 1 hole states are, in principle, distinguish-
able. However, the direct measurement of the normalized
difference, as presented in Fig. 4, is not at all straightforward.
It would require usage of a combination of different laser
wavelengths and accurately chosen intensities. Additionally,
one could exploit the fact that the spin-orbit period for Kr
(6.2 fs) is twice as long as for Xe.

For a quantitative analysis, we present the calculated DCS
values for the two hole states in Fig. 5 and compare them to
the values extracted from the experimental results at various
recollision momenta. The differences observed in Fig. 4 are
reflected in the DCS. For example, at low momenta pr ∼
2 a.u., the DCS at 180◦ is larger for m = 0 (cf. red signal in
Fig. 4). At higher momenta, pr ∼ 3 a.u., however, the DCS at
180◦ is larger for |m| = 1. Moreover, in the intermediate angle
range, a marked transition is observed in both experimental
and theoretical data: the maximum around 120◦ observed at
pr = 2.2 a.u. is gradually replaced by a maximum around 80◦
at momenta pr � 3.2 a.u.. The mismatch observed at pr =
2.8 a.u. is attributed to an uncertainty in the retrieval of the
experimental recollision momentum, which is based on the
classical recollision model.

While the comparison of the momentum distributions in
Fig. 3 indicates a good qualitative agreement between the
angular distributions observed in the experimental and numer-
ical results, it is evident that the agreement does not reach
the quantitative level necessary to distinguish between the
subtle differences observed in the theoretical results for the
two hole states. The reasons for the discrepancies between
the measured and calculated angular distribution may include
several experimental factors, such as the slightly elliptical

polarization mentioned above. Moreover, the experimental
results are subject to averaging over the spatial intensity
distribution in the focus, and the temporal variations of the in-
stantaneous intensity throughout the laser pulse. These effects
are not taken into account in the numerical simulations, which
are based on the SFA and QRS models. The QRS model used
here approximates the temporal variations of the rescattering
momentum and vector potential by Eq. (30), which affects the
resulting momentum distribution.

IV. CONCLUSIONS AND OUTLOOK

In this work we present a study on the interplay be-
tween bound and continuum electron dynamics initiated by
strong-field ionization of xenon. Specifically, we investigate
whether the ensuing spin-orbit electron dynamics in Xe+

can be probed through laser-induced electron diffraction. The
two-dimensional photoelectron momentum distributions for
HATI of Xe are calculated for rescattering from the m = 0 and
|m| = 1 hole states, using the QRS theory. The DCSs of free
electrons scattering off the target ion of Xe+ were calculated
with the standard potential scattering theory, and the momen-
tum distributions of returning electrons were evaluated by
SFA2. This work represents an initial attempt to experimen-
tally explore valence electron dynamics Xe through LIED.
While the numerical results agree with the experimental ones
on a qualitative level, they do not reach the quantitative
level necessary to distinguish between the rescattering signal
from the two hole states. Addressing this challenge likely
requires advanced theoretical approaches and more accu-
rate experimental data. If such data become available in the
future, an artificial intelligence approach may aid the inter-
pretation of the data and enable the observation of valence
electron dynamics by LIED. This intriguing problem under-
scores the need for future research to address spin-orbit effects
during LIED.

ACKNOWLEDGMENTS

The authors acknowledge fruitful discussions with S.
Carlström, J. M. Dahlström, and S. Patchkovskii. This re-
search has received funding from the Research School
of Advanced Photon Science (RS-APS) at the Helmholtz
Institute Jena, Germany and the Deutsche Forschungsgemein-
schaft (DFG, German Research Foundation) under the Emmy
Noether program, Project No. 437321733.

013118-6



EXPLORING VALENCE-ELECTRON DYNAMICS … PHYSICAL REVIEW A 110, 013118 (2024)

[1] U. De Giovannini, J. Küpper, and A. Trabattoni, J. Phys. B 56,
054002 (2023).

[2] K. Amini and J. Biegert, Adv. At. Mol. Opt. Phys. 69, 163
(2020).

[3] P. B. Corkum, Phys. Rev. Lett. 71, 1994 (1993).
[4] M. Meckel, D. Comtois, D. Zeidler, A. Staudte, D. Pavićić,
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