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Purcell-modified Doppler cooling of quantum emitters inside optical cavities
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Standard cavity cooling of atoms or dielectric particles is based on the action of dispersive optical forces
in high-finesse cavities. We investigate here a complementary regime characterized by large cavity losses,
resembling the standard Doppler cooling technique. For a single two-level emitter a modification of the cooling
rate is obtained from the Purcell enhancement of spontaneous emission in the large cooperativity limit. This
mechanism is aimed at cooling quantum emitters without closed transitions, which is the case for molecular
systems, where the Purcell effect can mitigate the loss of population from the cooling cycle. We extend our
analytical formulation to the many-particle case governed by small individual coupling, but exhibiting large
collective coupling.
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I. INTRODUCTION

There are many ways to control the motion of atomic-
sized objects via laser light and progress in cooling ions, and
atoms have seen the emergence of techniques such as Doppler
laser cooling, resolved sideband cooling, evaporative cool-
ing, sub-Doppler cooling, and so on [1–4]. In general, these
techniques make use of a cooling cycle between two elec-
tronic states where quick cycling of laser photons followed
by many spontaneous emission events (at rate γ ) removes
kinetic energy into the electromagnetic bath. There are also
alternatives which employ the enhanced coupling between a
single photon and a single atom allowed by the use of opti-
cal cavities, i.e., within the cavity quantum electrodynamics
(cQED) formalism [5–8]. Operation in a dispersive regime
circumvents spontaneous emission and kinetic energy is re-
moved via the loss of cavity photons (at rate κ) as proposed
and discussed [9–12] and experimentally realized both for
single atoms [13,14] as well as for ensembles [15,16].

Most of these techniques are not optimal for the cooling
of molecules owing to their large number of vibrational and
rotational sublevels where the population can migrate from
the cooling cycle and thus reduce the cooling performance.
In the context of cavity cooling, difficulties and mitigation
solutions have been extensively discussed [17]. In other con-
texts, progress has been made in laser cooling of the center
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of mass of small molecules such as diatomics (CaF and SrF)
[18–21], symmetric tops (CaOCH3) [22], and asymmetric top
molecules [23].

FIG. 1. (a) A variation of a standard one-dimensional Doppler
cooling scheme for many emitters. Each emitter moves with some
velocity v j and the coupling between emitter coherence β j and
the cavity mode α is spatially dependent via g(x j ), where g is the
light-matter coupling constant. The cavity is driven with ampli-
tude η. Spontaneous emission at rate γ and photon loss at rate κ

are assumed. We consider two types of electronic level schemes for
the emitters. (b) Electronic level scheme of a closed two-level system
with energy eigenstates |e〉 (excited) and |g〉 (ground). Driving with
amplitude � and detuning �a is assumed. (c) Possible electronic
level scheme mimicking a molecule with an additional level |i〉 to
which population is lost from the cycle transition (with negligible
repopulation rate 	).
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We investigate here a hybrid scenario of Doppler-like cool-
ing inside an optical cavity in the dissipative regime, where
the rate of spontaneous emission of an atom or molecule is
enhanced when operating in the Purcell regime of cQED,
i.e., in the bad-cavity regime. This is inspired by experiments
showing that the branching ratio of spontaneous emission in
molecules can be strongly manipulated via optical cavities
[24], albeit in solid-state environments where molecules are
fixed in a host matrix. Extending this argument to molecules
in a gas phase or in solvents can provide a mechanism to
increase the cycling of photons and thus close the cooling
cycle by reducing the rate of population loss into additional
rotational or vibrational levels. We do not utilize dispersive
optical forces as in standard cavity cooling, but simply employ
the cavity as an additional dissipation channel for the emitters.
This intuition is indeed validated for single quantum emit-
ters, both with closed and nonclosed transitions in the regime
where the cavity cooperativity is larger than unity. However,
we find that extensions to many-particle systems, where the
Purcell effect stems from a collective coupling to the cavity
mode, indicates that individual loss of energy is not positively
affected by collective properties. Our aim is solely in deriving
a modified cooling or slowing down rate and to identify the
mechanism via which the cavity can enhance it. The question
of final temperature is not included in our formalism.

The paper is organized as follows. In Sec. II we proceed
with computing analytical expressions for the cooling rates of
quantum emitters with either closed or nonclosed transitions
inside the one-dimensional geometry illustrated in Fig. 1. The
results are compared to the standard situation of Doppler cool-
ing in free space in the counterpropagating wave geometry.
We identify the emitter-cavity cooperativity C = g2/(κγ ) as
the main tuning knob for speeding up the cooling process and
maximizing the cooling time (for nonclosed transitions) with
C � 1. We then generalize in Sec. III to the many-particle
case, where the single-particle cooperativity is small (C � 1),
but the collective cooperativity is large (NC � 1). We derive
analytical results for the cooling rate of each particle, which
indicate that the collective Purcell regime with NC � 1 does
not positively affect the loss of kinetic energy at the individual
particle level.

II. SINGLE-PARTICLE COOLING

Consider a one-dimensional scenario of a moving two-
level system of mass m with an electronic transition between
the ground state |e〉 and excited state |g〉 with frequency sep-
aration ω0. We will first address the standard Doppler cooling
scenario for a closed transition system in a standing wave.
We refer to a closed transition system as one consisting of
only two levels as in Fig. 1(b) where the excited state can
undergo spontaneous emission only to the ground state. Next
we consider the effect of placing the closed system within
the confined electromagnetic volume of an optical cavity. We
then depart from the closed system description by including
an additional level in the electronic structure, which is exclu-
sively populated via spontaneous emission from the excited
state [see Fig. 1(c)]. We refer to the system as a nonclosed
transition system. Again, we consider free space and cavity
scenarios.

In the standard understanding of Doppler cooling, the con-
dition of red-detuning �a = ω0 − ω� > 0 of the laser beam
at frequency ω� with respect to the electronic transition is
required. The cooling mechanism consists of the stimulated
absorption of a photon below the resonance frequency, fol-
lowed by spontaneous emission at the natural frequency. The
energy difference then translates into a loss of kinetic energy
and thus cooling. To derive a cooling rate, a semi-classical
approach suffices, where an effective drag coefficient for the
particle’s momentum is derived that shows dependence on
the driving power, detunings, and spontaneous emission rate.
We start by reviewing such fundamental steps which we then
expand to include the cavity scenario for both closed and non-
closed transition systems as depicted in Figs. 1(b) and 1(c).

The derivation is based on stating the master equation for
the quantum emitter including motion from which we derive
the equations of motion of the classical expectation val-
ues. Electronic transitions are described by the Pauli ladder
operator σ̂ = |g〉 〈e| and its Hermitian conjugate. The free
Hamiltonian is

Ĥ0 = p̂2

2m
+ h̄�aσ̂

†σ̂ , (1)

consisting of the kinetic energy operator and the two-level sys-
tem Hamiltonian in a frame rotating with the laser frequency
ω�, which we specify later. The spontaneous emission at rate
γ is incorporated as a Lindblad superoperator

Lem[ρ̂] = γ [2σ̂ ρ̂σ̂ † − σ̂ †σ̂ ρ̂ − ρ̂σ †σ̂ ]. (2)

The rate of spontaneous emission given by
γ = ω3

0d2
eg/(6πc3ε0) where deg is the transition dipole matrix

element, ε0 denotes the vacuum permittivity, and c is the speed
of light in the vacuum. The dynamics of the system are then
described by a master equation i ˙̂ρ = [Ĥ0, ρ̂]/h̄ + Lem[ρ̂] for
the system’s density operator ρ̂. The approach in terms of
a Lindblad master equation as written in Eq. (2), neglects
the effect of recoil in spontaneous emission. We will only
consider operator averages and due to the isotropy of
spontaneous emission, no momentum is imparted onto the
emitter on average. However, the momentum imparted onto
the emitter in spontaneous emission has nonzero variance,
which results in a limit on the final temperature (Doppler
temperature). We do not derive any modified temperature
limits.

A. Free-space Doppler cooling of a closed transition system

Adding a classical laser drive with frequency ω� and Rabi
frequency � with a standing wave spatial structure leads to
a position-dependent Rabi frequency �(x) = � cos (k�x). In
a frame rotating at ω�, the time-independent Hamiltonian
becomes

Ĥ = Ĥ0 + h̄�(x̂)[σ̂ + σ̂ †]. (3)

The dynamics of the expectation values of system operators
such as β = 〈σ̂ 〉, p = 〈p̂〉, and x = 〈x̂〉 can be deduced from
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the master equation with Ĥ as the total system Hamiltonian

β̇ = −(γ + i�a)β − i�(x), (4a)

ṗ = −h̄�′(x)[β + β∗], (4b)

ẋ = p/m. (4c)

We made the low-excitation approximation where
〈σ̂ †σ̂ − σ̂ σ̂ †〉 ≈ −1 and factorized quantum correlations
between motional and internal degrees of freedom
〈x̂σ̂ 〉 = 〈x̂〉〈σ̂ 〉. To solve the equation of motion for the
emitter coherence β we perform a Floquet expansion in the
spatial harmonics of the driving field β = ∑∞

n=−∞ bneink�x,

where the coefficients bn are still time dependent. However,
we assume that the expansion coefficients are stationary,
which is a good approximation as long as the cooling rate
is small compared to the rate of spontaneous emission γ .
Inserting the expansion into the equation of motion Eq. (4a)
gives only nonzero contributions for the harmonics of first
order, i.e., bn with n = ±1, which are not coupled in free
space. We obtain the following set of equations:

bn[γ + i(�a + nk�v)] = − i�

2
(δn,+1 + δn,−1), (5)

where v = ẋ is the instantaneous velocity of the emitter. The
equations are solved by the following coefficients:

b±1 = −i�

2[γ + i(�a ± k�v)]
. (6)

For small Doppler shifts k�v � �a, the coefficients may be
approximated by

b±1 ≈ −i�

2[γ + i�a]
± −�

2[γ + i�a]2
k�v (7)

up to first order in k�v/�a. The equation for the motion of the
emitter momentum contains products of the gradient of the
oscillating drive �′(x) and the oscillating emitter coherence
β(x). This leads to the occurrence of both constant terms and
terms which oscillate at two times the fundamental spatial fre-
quency of the standing wave. The constant term is a spatially
independent force proportional to the emitter velocity (cooling
force) and on timescales larger than half of the Doppler period
π/(k�v) the oscillating terms average out, such that merely the
cooling force remains. This results in an exponential decay of
the emitter velocity v̇ ≈ −ξfsv. With the introduction of the
recoil frequency ωrec = h̄k2

� /(2m), the cooling rate takes the
following standard expression [25–29]:

ξfs = 4�2ωrec�aγ[
γ 2 + �2

a

]2 . (8)

The validity of the analytical expression is illustrated in Fig. 2.
The exponential cooling behavior is well captured in the
regime where the Doppler shift is small compared to the
emitter detuning. In the optimal regime, an additional effect
of power broadening has to be taken into account limiting
the applicable laser drive strength and an optimal detuning
�a close to the value of γ emerges. For smaller decay rates
and some fixed �a � γ the expression above instead shows
a linear scaling with γ . This is the premise for using an
optical cavity to enhance the rate of spontaneous emission and
subsequently improve the cooling rate.

FIG. 2. Illustration of different cooling regimes obtained from
numerical simulation of the master equation for a particle initially
exhibiting a large Doppler shift. Within the regime of validity of the
small shift approximation k�v � �a, the exponential decay is well
captured by the theoretical analysis. Finally, when the kinetic energy
of the emitter is lower than the potential energy at a maximum of the
standing wave (v < vtrap), the emitter gets trapped around a potential
minimum and starts oscillating around it. Parameters in units of γ :
� = 1, �a = 10, ωrec = 0.5, k�v0 = 18.

B. Purcell-modified Doppler cooling
of a closed transition system

Let us now assume that the two-level system is posi-
tioned inside an optical cavity and coupled to the spatially
confined light field via the position-dependent light-matter
coupling g(x) = gcos(kcx), where kc (corresponding fre-
quency ωc) is the wave vector of the cavity mode and g
quantifies the maximum coupling at an antinode of the optical
mode. For a two-level transition g = deg

√
ωc/(2ε0V ) where

V is the optical mode volume. Furthermore, the cavity is
driven with an amplitude η and frequency ω�. The descrip-
tion of the single-mode cavity is performed in terms of the
bosonic annihilation operator â satisfying [â, â†] = 1. The
time-independent Hamiltonian (in a frame rotating at ω�) is
given by

Ĥ = Ĥ0 + h̄�câ†â + ih̄η[â − â†] + h̄g(x̂)[σ̂ †â + σ̂ â†], (9)

where �c = ωc − ω� is the cavity detuning and the last two
terms are the cavity drive and the light-matter coupling ac-
cording to the Jaynes-Cummings model. Loss from the cavity
at rate κ is described by the Lindblad superoperator

Lc[ρ̂] = κ[2âρ̂â† − â†âρ̂ − ρ̂â†â]. (10)

We assume low excitation and factorizations of expectation
values as in Eqs. (4). Additionally, we factorize light and
matter expectation values 〈âσ̂ 〉 = 〈â〉〈σ̂ 〉, with the notation
α = 〈â〉. Under these assumptions, we derive the following
equations of motion:

α̇ = −(κ + i�c)α − ig(x)β − η, (11a)

β̇ = −(γ + i�a)β − ig(x)α, (11b)

ṗ = −h̄g′(x)(βα∗ + β∗α), (11c)

ẋ = p/m. (11d)
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The equations of motion in Eqs. (11) are a set of coupled
nonlinear differential equations, such that already for a sin-
gle particle a general analytical solution is nontrivial, if not
impossible. However, from the physical problem considered
(Doppler cooling in the Purcell regime) a clear hierarchy
of timescales for the different degrees of freedom emerges,
enabling an analytical treatment. The Purcell regime is char-
acterized by large cavity losses κ � (g, γ ), such that the
cavity field evolves on the shortest timescale. Furthermore, as
we are interested in the Doppler cooling process, where the
upper bound of the cooling rate is the recoil frequency ωrec,
the change in velocity corresponds to the longest timescale.
We therefore start by eliminating the cavity field, proceed
by determining the emitter coherence, and at last solve the
motion of the emitter. Formal integration of the equation of
motion for the cavity mode α to first order in g/κ gives
(details in Appendix A 1)

α = − η

κ + i�c
− ig(x)β

κ + iδ
, (12)

with δ = ω0 − ωc, the emitter-cavity detuning. We now see
that the cavity field consists of two contributions, first the
response to the direct drive and second the induced field of the
emitter. The first term in Eq. (12) leads to the same dynamics
as in the free space, i.e., a spatially dependent drive of the
emitter coherence. The second term is therefore the crucial
one, resulting in an effective cavity-mediated self-interaction
of the emitter. The Floquet expansion of β now leads to a
system of equations for the Floquet coefficients bn of the form

bn[γ + i(�a + inkcv)] + g2

4κ
(bn+2 + bn−2 + 2bn)

= − i�

2
(δn,+1 + δn,−1) (13)

for the cavity resonant with the atom δ = 0 and the drive
� = −gη/(κ + i�c). The cavity couples all odd Floquet co-
efficients bn since only the coefficients b±1 are directly driven
and only coefficients with an index separated by ±2 are cou-
pled. The physical interpretation is the following. The cavity
mode is driven with constant amplitude (in the rotating frame)
and couples to the emitter via light-matter coupling with a
standing wave spatial profile. Due to the nonzero velocity of
the emitter any exchange of excitation between emitter and
cavity results in a shift in frequency by the Doppler shift ±kcv.
Elimination of the cavity field then results in an effective
description where the emitter is directly driven with fre-
quency components ±kcv and an effective coupling between
the frequency components separated by ±2kcv is obtained.
The coupling corresponds to processes where a photon is
emitted and then reabsorbed, such that the total Doppler shift
either adds ±kcv ± kcv = ±2kcv, resulting in the coupling
between bn and bn±2 or cancels ±kcv ∓ kcv = 0, resulting in a
modification of bn. The equations for the Floquet coefficients
given by Eq. (13) can be cast into a matrix form with tridi-
agonal shape with constant sub and superdiagonal elements
and nonconstant diagonal. In principle, the equations can be
solved up to any order. However, we find that a reduction
to a two-dimensional subspace involving only components
b±1 suffices for Cγ /�a � 1 and allows for the derivation

FIG. 3. Comparison between the numerical simulation of the
emitter velocity obtained from the mean-field equations inside the
cavity to free space, which confirms the scaling of the cooling rate in
Eq. (15). (a) For large detuning �a � γ (1 + C) the cooling rate ξc

is enhanced compared to free space and scales linearly with the
cooperativity. (b) For �a = γ the cooling rate is reduced inside the
cavity compared to free space. Parameters in units of γ for (a) g =
155, κ = 1000, �a = �c = 200, η ≈ 132, ωrec = 2.5, kcv0 = 30
and for (b) g = √

500, κ = 1000, �a = �c = 1, η ≈ 6, ωrec = 0.02,
kcv0 = 0.15. Note the large difference in ωrec for the two cases.

of simple scaling laws of the cooling rate. An approach to
include all bn is sketched in Appendix A 1. We obtain the
free-space case given by Eq. (5) from Eq. (13) by fixing the
drive � and let g2/κ → 0.

Solving the reduced two-dimensional system leads to the
following coefficients:

b±1 = − i�

2

1

γ (1 + C/4) + i(�a ± kcv)

×
[

1 + g2

4κ

∑
±

1

γ (1 + C/4) + i(�a ± kcv)

]−1

. (14)

Just as in free space we only keep terms in the equation of
motion for the momentum which do not oscillate spatially, as
the oscillating terms average to zero. Expanding Eq. (14) to
first order in kcv/�a yields the cavity modified cooling rate

ξc = 4|�|2ωrec�aγ (1 + C/2)[
�2

a + γ 2(1 + C/4)2][�2
a + γ 2(1 + 3C/4)2] . (15)

For large detuning �a � γ (1 + C) an expected linear in-
crease in the cooling rate stemming from the Purcell-modified
emission rate is obtained. We test this result against numerical
simulation of the mean-field equations in Fig. 3(a) where an
increase by a factor of 1 + C/2 in the cooling rate is observed.
However, the improvement with C only holds in the regime
�a � γ (1 + C) which is suboptimal, but might be relevant
for faster particles where the large Doppler shift requires
higher detunings to allow for their capture, as kcv � γ . In
the regime �a = γ the cooling rate decreases with increasing
cooperativity, which is confirmed with numerics in Fig. 3(b)
for small cooperativity where our analytical approach is valid.
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C. Free-space Doppler cooling of a nonclosed transition system

We now consider a �-type three-level system, as displayed
in Fig. 1(c) in free space. We assume that the drive couples
solely to the transition between the ground state |g〉 and the
excited state |e〉. Spontaneous emission, however, takes place
between both excited state |e〉 and ground state |g〉 at rate
γ and excited state |e〉 and intermediate state |i〉 at rate γ ′.
One could, in principle, assume an additional mechanism for
population transfer from the intermediate state to the ground
state at rate 	. For molecules in a gas phase, this could cor-
respond to population trapping in the rovibrational manifold
and the value of 	 could be negligible (and we therefore
neglect it in the following). This results in population trapping
in the intermediate level and subsequently an effective loss
of population from the cooling cycle. Since the intermediate
state only couples via spontaneous emission from the excited
state the Hamiltonian in Eq. (3) is unchanged and we merely
include an additional Lindblad superoperator with collapse
operator σ̂ ′ = |i〉 〈e| at rate γ ′. The corresponding mean-field
equations including the populations of ground state ng, excited
state ne, and intermediate state ni read

β̇ = −(γ + γ ′ + i�a)β − i�(x)[ng − ne], (16a)

ṅg = 2γ ne − i�(x)[β − β∗], (16b)

ṅe = −2(γ + γ ′)ne + i�(x)[β − β∗], (16c)

ṅi = 2γ ′ne, (16d)

ṗ = −h̄�′(x)[β + β∗], (16e)

ẋ = p/m. (16f)

In such a case, the system of equations are very similar to the
ones for the closed transition system with the difference that
the drive of the emitter coherence β has a term proportional to
ng for ne � ng. This simply suggests that the cooling rate for
the nonclosed system is similar to the closed system case, with
the distinction that it has an additional dependence on ng such
that it subsequently gets reduced to zero in time as population
is lost to the intermediate state. We now solve Eqs. (16) under
the assumption of low excitation ne � ng. Therefore, we can
assume that the populations evolve much slower than the emit-
ter coherence (ṅg � γ + γ ′), such that we can directly solve
Eq. (16a) in a similar fashion as already sketched out in the
previous subsection. The Floquet coefficients of the emitter
coherence now have a slow time dependence via the time-
dependent ground-state population. Under the assumption of
steady state for the excited-state population we obtain for the
ground-state population

ṅg = − γ ′�2

�2
a + γ 2

tot
ng = −μfsng, (17)

where we define the total spontaneous decay rate γtot=γ+γ ′.
The effective loss rate in Eq. (17) is simply the excitation
probability times the rate of spontaneous emission into the in-
termediate state. The time-dependent ground-state population,
which approaches 0 for t → ∞, results in a time-dependent

cooling rate of the form

v̇ = −ξfsng(t )v = −ξfse
−μfstv, (18)

with the solution

v(t ) = v0 exp

[
ξfs

μfs
(e−μfst − 1)

]
, (19)

where ξfs has the same form as in Eq. (8) but with γ replaced
by γtot. For t → ∞ when all population is lost to the interme-
diate state the final velocity is given by

vfs,final = v0 exp

(
− ξfs

μfs

)
= v0 exp

[
− 4ωrecγtot�a

γ ′(�2
a + γ 2

tot

)
]
. (20)

The lowest final velocity is reached for �a = γtot. In the
regime �a � γtot the final velocity scales exponentially with
the spontaneous decay rate γtot.

D. Purcell-modified Doppler cooling
of a nonclosed transition system

We continue with the nonclosed transition system, now
inside a cavity. The mean-field equations of motion derived
from the Hamiltonian in Eq. (9) including populations and the
spontaneous emission rates indicated in Fig. 1(c) read

α̇ = −(κ + i�c)α − ig(x)β − η, (21a)

β̇ = −(γ + γ ′ + i�a)β − ig(x)α[ng − ne], (21b)

ṅg = 2γ ne − ig(x)[βα∗ − β∗α], (21c)

ṅe = −2(γ + γ ′)ne + ig(x)[βα∗ − β∗α], (21d)

ṅi = 2γ ′ne, (21e)

ṗ = −h̄g′(x)[βα∗ + β∗α], (21f)

ẋ = p/m. (21g)

Again the equations of motion for the nonclosed system
closely resemble the closed transition system, but with time-
dependent populations. With the populations evolving much
slower than the emitter coherence and the cavity, we can again
utilize our solution for the closed transition system in terms
of the Floquet coefficients which are now time dependent via
the ground-state population. The population dynamics of the
ground state are then dictated by the equation

ṅg = − γ ′|�|2
γ 2

tot(1 + 3Cng/4)2 + �2
a

ng, (22)

where we define the cooperativity as C = g2/(κγtot ). Let us
now distinguish two regimes: (i) γtotC/(4�a) � 1, in which
case the reduced two-dimensional description of the Floquet
coefficients suffices and analytical results are tractable and
(ii) γtotC/(4�a) � 1, in which case many Floquet coefficients
have to be taken into account. An approach to include Floquet
coefficients to arbitrary order is sketched in Appendix A 2. In
regime (i), for sufficiently large �a, Eq. (22) becomes equiv-
alent to Eq. (17), such that the time evolution of the ground
state is not modified by the cavity. This is confirmed with
numerics in Fig. 4(b). Furthermore, the cooling rate scales
linearly with the cooperativity in this regime. The reduction
of ground-state population ng(t ) = exp(−μfst ) will then lead
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FIG. 4. Time evolution of (a) velocity and (b) ground-state
population in regime (i) γtotC/(4�a) � 1 with �a = 200γtot and
C = 24. (a) Due to the Purcell-enhanced cooling rate in the
strong detuned regime the final velocity is now reduced. (b) The
loss of population to the intermediate state shows no Purcell
modification in regime (i), as expected from Eq. (22). Time
evolution of (c) velocity and (d) ground-state population in
regime (ii) γtotC/(4�a) � 1 with �a = γtot and C = 24. (c) The
cooling rate inside the cavity is decreased compared to free
space, but due to the reduced loss of population (d), the fi-
nal velocity is still reduced. Numerical parameters for (a), (b)
in units of γtot: γ = 0.85, g = 155, κ = 1000, �a = �c = 200,
η ≈ 132, ωrec = 2.5, kcv0 = 30 and for (c), (d): γ = 0.85, g = 155,
κ = 1000, �c = �a = 1, η ≈ 0.9, ωrec = 0.04, kcv0 = 0.15. The
performance in the different regimes is only similar due to the large
difference in ωrec.

to an exponential reduction in the cooling rate and an expo-
nential reduction of the Purcell modification of the cooling
rate with rate 2μfs [see Eq. (23)]. We can explicitly write the
equation of motion for the velocity as

v̇ = −ξc(t )v = −ξfs

[
ng(t ) + C

2
n2

g(t )

]
v, (23)

with the following solution:

v = v0 exp

{
ξfs

μfs

[
(e−μfst − 1) + C

4
(e−2μfst − 1)

]}
. (24)

We check the validity of Eq. (24) against the numerics in
Fig. 4(a). The final velocity reached inside the cavity is then

reduced due to the Purcell-enhanced cooling rate, while the
loss of population is not modified. The performance of the
Purcell-modified cooling mechanism compared to free space
can then be quantified by the ratio of the final velocities when
all population is lost to the intermediate state

vc,final

vfs,final
= exp

(
− ξfs

μfs

C
4

)
. (25)

In the regime (ii) Cγtot/�a � 1 we show only numerical
results of the dynamics [see Figs. 4(c) and 4(d)], as the re-
striction to the Floquet coefficients b±1 is no longer valid. The
loss of population to the intermediate state is now reduced
by the Purcell effect inside the cavity, departing from the
purely exponential decay [see Fig. 4(d)]. We see in Fig. 4(c)
that the cooling rate inside the cavity is reduced compared to
free space, as expected from the cooling rate for the closed
transition system in Eq. (15). However, due to the reduction
in population loss, the cooling time is increased and therefore
a lower final velocity is reached, despite the reduced cooling
rate. We have now identified two mechanisms by which the
cavity can enhance the cooling process of a nonclosed tran-
sition system, i.e., increase the amount of removed kinetic
energy. First, an increase in the cooling rate which appears in
the regime �a � γtot(1 + C), where the population dynamics
are not modified by the cavity. Second, a decrease in the
loss of population from the cooling cycle which appears most
prominently in the regime �a ≈ γtot, where the cooling rate is
reduced.

To understand how the effects of the cavity on cooling
rate and population loss compete, we derive an analytical
result for the final velocity, in regime (i) γtotC/(4�a)�1,
but now considering the Purcell modification of the dy-
namics of the ground-state population given by Eq. (22).
The derivation, detailed in Appendix A 2, indicates that
v(t → ∞) = v0 exp{− ∫∞

0 ξ [ng(t )]dt}, where the exponent is
approximated to first order in Cγtot/�a by∫ ∞

0
ξc[ng(t )]dt ≈ ξfs

μfs

[
1 + C�2

a

4
(
γ 2

tot + �2
a

)
]
. (26)

Therefore, already in regime (i) γtotC/(4�a) � 1 we see the
onset of the behavior observed in Figs. 4(c) and 4(d), where
the reduction of population loss at the expense of a reduced
cooling rate leads to a reduction in the final velocity. This
behavior differs from free space, where an increase in the
rate of spontaneous emission is expected to reduce the final
velocity for �a = γtot [see Eq. (20)]. Furthermore, Eq. (26)
indicates that the lowest final velocity relative to free space is
obtained for �a = γtot, i.e., in the regime where the cooling
rate is reduced. We perform numerical simulations of the
final velocity beyond the validity of the analytical results
(see Fig. 5), which show that the lowest final velocity is indeed
obtained for �a ≈ γtot.

III. MANY-PARTICLE COOLING INSIDE
OPTICAL CAVITIES

Let us now consider the case of N particles inside an
optical cavity, where the single-particle cooperativity is small
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FIG. 5. (a) Performance of the cooling of a single nonclosed tran-
sition system inside the cavity compared to free space as a function
of the cooperativity. The dashed lines correspond to the analytical
scaling in Eq. (26) and the markers are obtained from numerical
simulation of the mean-field equations. In (b) we show the rectangle
marked in (a) for small cooperativity. For regime (i) Cγtot/�a � 1
the scaling with the cooperativity given by Eq. (26) is confirmed.
However, for large cooperativity the scaling of the final velocity
with the cooperativity is generally lower than expected, but still, the
final velocity remains reduced. Numerical parameters in units of γtot:
γ = 0.85, κ = 1000, �c = �a, η = √

0.01(�2
a + γ 2

tot )(κ2 + �2
c )/g2,

ωrec = 0.04, kcv0 = 0.2�a.

C � 1 but the collective cooperativity is large NC � 1. The
aim is to elucidate whether the large collective cooperativity
CN can influence the cooling dynamics of an individual emit-
ter or whether it is solely the single-particle cooperativity C
which is relevant for cooling.

A. Purcell-modified Doppler cooling of N
closed transition systems

The total Hamiltonian for a set of N identical particles is
the direct extension of the Hamiltonian of Eq. (9) where we
now sum over the particle index j = 1, . . . ,N . Similarly to
the procedure in the previous section, we derive the set of
coupled equations for the factorized expectation values in the
low excitation regime

α̇ = −(κ + i�c)α − i
N∑
j=1

g(x j )β j − η, (27a)

β̇ j = −(γ + i�a)β j − ig(x j )α, (27b)

ṗ j = −h̄g′(x j )[β jα
∗ + β∗

j α], (27c)

ẋ j = p j/m. (27d)

We proceed by performing a formal integration of the cavity
mode in first order in g/κ to yield the N emitter equivalent of
Eq. (12). In addition, each particle coherence is expanded in
the harmonics of the cavity field β j = ∑∞

n=−∞ b j,neinkcx j (see
Appendix B2). This now gives a system of equations where
all Floquet coefficients bj,n are coupled, where we again
truncate to b j,±1 as in Sec. II B. The coupling is explicitly

given by⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

a1,− 1 . . . . . . 1 1

1 . . .
. . . 1

... 1 aN ,− 1
...

... 1 a1,+ 1
...

1 . . .
. . . 1

1 1 . . . . . . 1 aN ,+

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

b1,−
...

bN ,−
b1,+

...

bN ,+

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

= −2iκ�

g2

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1
...

1
1
...

1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

(28)

with a j,± = [γ + i(�a ± kcv j )]4κ/g2 + 2. The matrix can be
inverted using the Sherman-Morrison formula [30], yielding
the following coefficients:

b j,±1 = − i�

2

1

[γ (1 + C/4) + i(�a ± kcv j )]

×
⎡
⎣1 + g2

4κ

N∑
m,±

1

[γ (1 + C/4) + i(�a ± kcvm)]

⎤
⎦

−1

.

(29)

The Floquet coefficient b j,±1 depends on all velocities vm,
which leads to a coupling of the equations of motion for all
emitters. However, b j,± is an even function in all velocities
vm = j , whereas it has both even and odd parts in v j . Therefore,
a Taylor expansion up to first order in kcvm/�a removes the
dependency of b j,±1 on all velocities vm with m = j, resulting
in a diagonal equations of motion for the velocities. The phys-
ical interpretation is illustrated in Fig. 6(c). Truncating the
Floquet coefficients b j,n to n = ±1 corresponds to the black
rectangle in Fig. 6(c). Under this approximation a contribution
to coefficient b j,−1 is obtained from every coefficient bi,±1, as
indicated by the black arrows. This corresponds to processes
where a photon is either directly absorbed by the emitter from
the cavity, or the photon is absorbed by an emitter, reemitted
into the cavity, and then absorbed again. As the Doppler shift
from absorption and reemission in our approximation cancels,
the coefficient b j,−1 only depends on −kcv j . We can thus write

b j,±1 ≈ b(0) ± kcv jb
(1), (30)

where we defer the explicit expression to Appendix B 1
Eq. (B4). With Eq. (30) we determine β j and therefore also
α. We obtain for α

α = − η

κ + i�c
− ig

κ
Nb(0), (31)

where we omitted terms which oscillate with the Doppler
frequency. Collective effects appear both in b j,±1, see Eq. (29),
and in α, see Eq. (31). We obtain the cooling rate

ξc = 4|�|2ωrec�aγ (1 + C/2)[
γ 2(1 + C/4)2 + �2

a

]{
γ 2[1 + C(2N + 1)/4]2 + �2

a

} .

(32)

The collective cooperativity CN only appears in the denomi-
nator of the cooling rate ξc, which implies worse cooling for
increased collective cooperativity and hence particle number.
The effects which lead to the form of ξc in Eq. (32) are
schematically represented in Fig. 6. The cavity field drives
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FIG. 6. (a) The cavity mode drives each emitter, i.e., induces a
dipole moment and provides an additional decay channel (Purcell
effect). The induced dipole moment of each emitter in turn reduces
the amplitude of the cavity field. (b) The velocity of particle j evolves
according to the interaction of its coherence with the cavity field
[see Eq. (27c)]. The collective modification of the emitter coherence
β j leads to a collective enhancement of the emitter decay rate [see
Eq. (29)]. However, due to the collective reduction of the cavity field
by the emitters [see Eq. (31)], an increase in the amount of emitters
always leads to a reduced cooling rate [see Eq. (32)]. (c) Illustration
of the coupling between different Floquet coefficients, as described
in the main text. On the single-particle level the exchange of a photon
between the emitter and the cavity results in a frequency shift ±kcv,
depending on whether the photon is absorbed from or emitted to the
left or right. This is indicated by the solid coloured arrows. For many
particles this results in a coupling between the Floquet coefficients
of different particles. The black arrows indicate the contribution to
bj,−1 from bj,+1, bi,±1. In the many-emitter case coupling to Floquet
coefficients bj,n with |n| > 1, results in the generation of noninteger
frequency components kc(nv j + mvi ), as vi = v j , indicated by the
translucent arrows.

each emitter coherence and provides an additional decay
channel. In turn, the field generated by the emitters reduces
the cavity field, such that the force component on particle
j obtained from the interaction with the field generated by
particle i with i = j effectively corresponds to heating rather
than cooling.

B. Purcell-modified Doppler cooling of N
nonclosed transition systems

We now extend the results for N closed transition systems
inside a cavity to N nonclosed transition systems and again
derive the equations of motion for the factorized expectation
values. As for the single nonclosed transition system we in-

FIG. 7. (a) Numerical simulation of the mean-field equations for
N = 400 nonclosed transition emitters with C = 0.15 and CN =
60. The initial velocity distribution is Gaussian while the initial
position distribution is uniform over 2π/kc. Despite the collective
reduction of the cooling rate, as obtained from Eq. (32), the final
velocity reached inside the cavity is almost identical to free space,
as the cavity inhibits population migration from the cooling cycle.
However, the reduction in the final velocity is only a single-particle
effect ∝ C with C � 1, as derived in Eq. (35). The scale on the y axis
is logarithmic. (b) Collective Purcell inhibition of population loss
showing departure from the exponential dynamics in free space. The
semi-analytical curve is a numerical simulation of Eq. (34). Numeri-
cal parameters normalized to γtot: γ = 0.7, g = 7.5, η = 50, �a =
�c = 10, κ = 375, ωrec = 0.5, kc〈v0〉 = 1.5,

√
k2

c (〈v2
0〉 − 〈v0〉2) =

0.1.

clude the equations of motion for the populations, such that
we obtain

α̇ = −(κ + i�c)α − i
N∑

m=1

g(xm)βm − η, (33a)

β̇ j = −(γ + γ ′ + i�a)β j − ig(x j )α[n j,g − n j,e], (33b)

ṅ j,g = 2γ n j,e − ig(x j )[β jα
∗ − β∗

j α], (33c)

ṅ j,e = −2(γ + γ ′)n j,e + ig(x j )[β jα
∗ − β∗

j α], (33d)

ṅ j,i = 2γ ′n j,e, (33e)

ṗ j = −h̄g′(x j )[β jα
∗ + β∗

j α], (33f)

ẋ j = p j/m. (33g)

Again we follow the steps outlined in Sec. II D to derive a
differential equation for the ground-state population

ṅg = − γ ′|�|2
γ 2

tot[1 + (2N + 1)Cng/4]2 + �2
a

ng, (34)

where we dropped the particle index since the population
transfer is position and velocity independent within our
approximations and therefore identical for each particle. Nu-
merical simulation of this equation shows agreement with the
simulation of the full mean-field equations, as illustrated in
Fig. 7(b). The reduced population loss, as already derived
for a single particle in Eq. (22) shows now a dependence on
the collective cooperativity CN , instead of the single-particle
cooperativity C, i.e., it hints towards the possibility of a
collective Purcell enhancement. A full analytical solution of
the dynamics remains intractable. However, we can again find
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an exact expression within our approximations for the final
velocity, as already for the single nonclosed transition system
(details in Appendix B 2). Here, we give the expression in
leading order in the single-particle cooperativity

vc,final = exp

[
− ξfs

μfs

(
1 + C�2

a

4
(
�2

a + γ 2
tot

)
)]

. (35)

The final velocity is independent of the number of emitters
N since the collective effects in the cooling rate in Eq. (32)
and population transfer in Eq. (34) cancel, such that only the
single-particle effects remain. We confirm this with numerics
in Fig. 7(a). Since we have small single-particle cooperativity
C � 1 the reduction of the final velocity inside the cavity
compared to free space is insignificant.

IV. DISCUSSION AND CONCLUSION

We addressed the question of Purcell-modified Doppler
cooling of quantum emitters, both with closed and nonclosed
electronic transitions. The main effect, at the single-particle
level, is the Purcell enhancement of spontaneous emission,
which occurs when the cavity losses are high. This can lead
to an improvement of cooling rates for both closed and non-
closed transition systems under far detuned conditions. In
the regime of optimal cooling the cooling rate is not im-
proved. However, for the nonclosed transition system, the
Purcell effect leads to a reduction of population loss, which
results in a lower final velocity when all population is lost to
the intermediate state. At the level of many closed-transition
systems, we show analytically how the cooling rate can be
simply computed and find that the collective coupling does
not lead to an enhancement of the cooling rate at the indi-
vidual particle level, rather a collective decrease. For many
nonclosed transition systems we show that the final velocity
when all population is lost to the intermediate state is inde-
pendent of the amount of emitters, i.e., shows no collective
modification.

An extension of the one-dimensional treatment to three
spatial dimensions can be envisioned using our equations by
considering configurations of mirrors defining cavity modes
in all three dimensions. Alternatively, one can simply reduce
the kinetic energy along one direction and provide a thermal-
ization mechanism which would lead to equipartition in all
three dimensions.

We can also imagine scenarios where this extra effect
of cooling via cavity Purcell enhancement of spontaneous
emission could be implemented. For example, microfluidic
devices could be integrated with optical cavities, and single
molecule-photon coupling with cooperativity of the order of
50 could be reached as in Ref. [24]. For molecules moving in
solutions, the cavity effect could enhance the cooling of their
ballistic motion. Additionally, we will in the future address the
reduction of temperature characterized by diffusive motion by
supplementing our equations with classical Brownian noise
terms based on a Wiener increment formalism.
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APPENDIX A: DOPPLER COOLING OF A SINGLE
QUANTUM EMITTER

Let us sketch the procedure we follow to derive the cooling
rate for closed and nonclosed transition quantum emitters
inside an optical cavity.

1. Single closed transition system inside a cavity

Formal integration of the cavity mode amplitude expec-
tation value from Eqs. (11), assuming free evolution of the
emitter coherence β and linearized position x = vt , yields

α = −
∫ t

0
ig[e−(κ+i�c )(t−s) cos(kcvs)β(t )e−(γ+i�a )(s−t )

+ ηe−(κ+i�c )(t−s)]ds

= −igβ
∑
±

[
1

2

e±ikcvt

κ−γ+i(δ ± kcv)
− 1

2

e−(κ−γ+i(δ±kcv))t

κ−γ+i(δ ± kcv)

]

− η

κ + i�c
+ ηe−(κ+i�c )t

κ + i�c

≈ − ig(x)β

κ + iδ
− η

κ + i�c
, (A1)

with δ = �c − �a. Furthermore, we utilized the assumption
that κ � γ , kcv and neglected the transient contributions due
to large cavity loss in the Purcell regime. Inserting the final
result of Eq. (A1) into the equation of motion for β with
the cavity resonant to the emitter δ = 0 and performing a
temporal Fourier transform with linearised position x = vt
gives a discrete spectrum of the form

iωβ(ω) = −(γ + i�a)β(ω)

− g2

4κ
[β(ω + 2kcv) + β(ω − 2kcv) + 2β(ω)]

− i�

2
[δ(ω − kcv) + δ(ω + kcv)]. (A2)

Therefore, the emitter coherence contains only discrete fre-
quencies and leads us to performing a Floquet expansion of
the emitter coherence of the form

β =
∞∑

n=−∞
bneinkcx, (A3)

which then gives an infinite set of coupled differential equa-
tions

ḃn + bn[γ + i(�a + nkcv)] + g2

4κ
(bn+2 + bn−2 + 2bn)

= − i�

2
(δn,+1 + δn,−1). (A4)
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We require the solution of β to derive the force acting on the particle. As the emitter velocity evolves much more slowly than the
electronic degrees of freedom we may solve the differential equations for the Floquet coefficients bn in the steady state ḃn = 0.
In matrix notation the steady-state solution for the Floquet coefficients takes the form⎛

⎜⎜⎜⎜⎜⎜⎜⎝

. . .
. . .

. . .
. . .

. . .

0 c a−3 c 0
0 c a−1 c 0

0 c a+1 c 0
0 c a+3 c 0

. . .
. . .

. . .
. . .

. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

...

b−3

b−1

b+1

b+3
...

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

= − i�

2

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

...

0
1
1
0
...

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, (A5)

with an = [γ + i(�a + kcnv)] + g2/(2κ ) and c = g2/(4κ ). Neglecting couplings to harmonics of higher order (b|n|>1 = 0)
reduces the problem to a 2×2 linear system with coupled coefficients b±1,(

a−1 c
c a+1

)(
b−1

b+1

)
= − i�

2

(
1
1

)
. (A6)

Inverting this matrix yields the solution

b±1 = − i�

2[γ (1 + C/4) + i(�a ± kcv)]

[
1 +

∑
±

g2

4κ

1

[γ (1 + C/4) + i(�a ± kcv)]

]−1

. (A7)

Expansion to first order in kcv/�a gives

b±1 ≈ − i�

2[γ (1 + 3C/4) + i�a]
± −�

2[γ (1 + C/4) + i�a][γ (1 + 3C/4) + i�a]
kcv. (A8)

However, one is not restricted to the approximation of two sidebands only, which holds for free space emitters but not
when taking into account the interaction with the cavity for Cγ /� � 1. We can cast the equations for the steady-state Floquet
coefficients in the following form

(A + ikcvD)�b = ��, (A9)

with A a symmetric tridiagonal Toeplitz matrix, D a diagonal matrix and �� = −i�(δn,+1 + δn,−1)/2 the drive of the spatial
harmonics of first order. In matrix notation⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

. . .
. . .

. . .
. . .

. . .

0 c a c 0
0 c a c 0

0 c a c 0
0 c a c 0

. . .
. . .

. . .
. . .

. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+ ikcv

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

. . .

−3
−1

+1
+3

. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

...

b−3

b−1

b+1

b+3
...

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

= − i�

2

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

...

0
1
1
0
...

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

(A10)

with a = (γ + i�a) + g2/(2κ ) and c = g2/(4κ ). As we are merely interested in a solution to linear order in kcv/�a, which gives
the cooling or friction-like force, we take a perturbative approach in the Doppler shift

�b = [A + ikcvD]−1 �� ≈ [A−1 − ikcvA−1DA−1] �� = �b(0) − ikcv�b(1). (A11)

The emitter coherence can then be written as

β =
∞∑

n=−∞
b2n+1eikc (2n+1)x =

∞∑
n=0

{
2b(0)

2n+1 cos [(2n + 1)kcx] + 2kcvb(1)
2n+1 sin [(2n + 1)kcx]

}
. (A12)
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For sufficiently high harmonic order n the perturbative expan-
sion in the Doppler shift breaks down since the perturbation
diverges, i.e., nkcv/�a > 1 for some n. However, from the
formal integration of α to order g/κ we obtain the force

ṗ = −h̄g′(x)[βα∗ + β∗α]

= h̄gkc sin(kcx)

[
β

(
− η

κ − i�c
+ ig(x)

κ − iδ
β∗
)

+ β∗
(

− η

κ + i�c
− ig(x)

κ + iδ
β

)]
, (A13)

such that for δ = 0 we obtain the spatially averaged force
ṗ ≈ 2h̄k2

c v�(�∗b(1)
+1). So when the cavity is resonant with

the emitter only coefficients b(1)
n with n = ±1 contribute with

nonzero spatial average. This justifies the perturbative ap-
proach. The elements of the inverse of the tridiagonal Toeplitz
operator A are given by [31]

〈i| A−1 | j〉 = 4κ

g2

λ|i− j|+1

λ2 − 1
, (A14)

with

λ = (−a +
√

a2 − 4c2)/(2c)

= −1 − 2κ (γ + i�a)

g2

⎛
⎝1 −

√
1 + g2

κ (γ + i�a)

⎞
⎠. (A15)

The coefficients are given by

b(0)
2n+1 = − i�

2

4κ

g2

λn+1

λ − 1
with n ∈ N, (A16a)

b(1)
+1 = − i�

2

(
4κ

g2

)2
λ2(λ2 + 1)

(λ2 − 1)3
. (A16b)

The Floquet coefficients b(0)
2n+1 will be relevant for the pop-

ulation transfer in the nonclosed transition system and the
coefficient b(1)

+1 gives the cooling rate.

2. Single nonclosed transition system inside a cavity

The Floquet coefficients of first order to leading order in
kcv/�a now have the following grounds-state dependency:

b±1 ≈ − i�ng

2[γ (1 + 3Cng/4) + i�a]

± −�ng

2[γ (1 + Cng/4) + i�a][γ (1 + 3Cng/4) + i�a]
kcv.

(A17)

The differential equation for the ground state under steady-
state assumption for the excited state ṅe = 0 is given by

ṅg = − |�|2γ ′ng

γ 2
tot(1 + ng3C/4)2 + �2

a

. (A18)

This equation is separable and integrable, but not solvable for
ng(t ). We thus determine the final velocity when all population
is lost to the intermediate state

v(t → ∞) = v0 exp

[
−
∫ ∞

0
ξ (ng(t ))dt

]
. (A19a)

We solve the integral by carrying out the integra-
tion over the ground-state population with ng(0) = 1 and
ng(t → ∞) = 0,∫ ∞

0
ξc(ng(t ))dt =

∫ 0

1
ξc(ng)

dt

dng
dng

= 2h̄k2
c �aγtot

γ ′�2
a

∫ 1

0

(1 + C/2ng)[
1 + γ 2

tot
�2

a
(1 + Cng/4)2

]dng

≈ 4ωrec.�aγtot

γ ′(γ 2
tot + �2

a

)
[

1 + C�2
a

4
(
�2

a + γ 2
tot

)
]
,

(A20)

where the last step is a Taylor expansion in Cγtot/�a � 1,
which is already required for the cut-off of the Floquet
expansion.

We can consider the population dynamics without restric-
tion to the two-dimensional system of Floquet coefficients,
i.e., consider the Floquet coefficients given by Eq. (A16).
Elimination of the excited state ṅe = 0 yields

ṅg = − γ ′

γtot
ig(x)[βα∗ − β∗α], (A21a)

ṅi = γ ′

γtot
ig(x)[βα∗ − β∗α], (A21b)

where we insert the formal integration for the cavity mode to
obtain

ṅg = γ ′

γtot

[
2�(�∗(x)β ) + 2g2(x)

κ
|β|2

]
. (A22)

As β now contains all Floquet coefficients 2n + 1 with n ∈ N,
calculating the second term in the drive ∝ g2(x)|β|2 leads to
geometric series. Once again invoking the previous argument
that we can perform a spatial average to keep only constant
terms

〈g2(x)|β|2〉x = g2

2

∞∑
m=0

[
b(0)

2m+1b(0)∗
2m+1δm,0 + 2b(0)

2m+1b(0)∗
2m+1

+ b(0)
2m+3b(0)∗

2m+1 + b(0)
2m+1b(0)∗

2m+3

]
. (A23)

Calculating the geometric series we obtain the differential
equation for the ground state

ṅg = γ ′

γtot

2κ|�|2
g2

|λ2|(4 + λ + λ∗) + λ + λ∗

|λ − 1|2(1 − |λ|2)
, (A24)

where λ now has the following ground-state dependency:

λ = −1 − 2κ (γtot + i�a)

g2ng

⎛
⎝1 −

√
1 + g2ng

κ (γtot + i�a)

⎞
⎠.

(A25)

APPENDIX B: DOPPLER COOLING
OF N QUANTUM EMITTERS

We now proceed with the treatment of an arbitrary number
of emitters N . As stated in the main text, we then assume that
the single-particle cooperativity is small C � 1, whereas the
collective cooperativity CN � 1 is large.
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1. N closed transition emitter inside a cavity

Formally integrating and inserting α into the equation of motion for β j and expanding it in the Floquet coefficients of the
cavity field

β j =
∞∑

n=−∞
b j,neinkcx j , (B1)

leads to the following set of coupled equations for the steady-state Floquet coefficient bj,n for particle j of the nth-order harmonic

b j,n[γ + i(�a + nkcv j )]

= − i�

2
(δn,+1 + δn,−1)− g2

4κ

N∑
i=1

∞∑
m=−∞

bi,m
[
eikc[(m+1)xi−(n−1)x j ] + eikc[(m+1)xi−(n+1)x j ] + eikc[(m−1)xi−(n−1)x j ] + eikc[(m−1)xi−(n+1)x j ]

]

≈ − i�

2
(δn,+1 + δn,−1)

− g2

4κ

N∑
i=1

∞∑
m=−∞

bi,m
[
eikc[(m+1)vi−(n−1)v j ]t + eikc[(m+1)vi−(n+1)v j ]t + eikc[(m−1)vi−(n−1)v j ]t + eikc[(m−1)vi−(n+1)v j ]t

]

≈ − i�

2
(δn,+1 + δn,−1) − g2

4κ
[b j,n−2 + b j,n+2 + 2b j,n] − g2

4κ

N∑
i = j

[δn,1(bi,1 + bi,−1) + δn,−1(bi,1 + bi,−1)]. (B2)

From numerical simulations we find that this holds in the relevant parameter regime, i.e., for small single-particle cooperativity
C � 1, such that Floquet coefficients b j,n with |n| > 1 can be neglected. Under the restriction to Floquet coefficients of first order
b j,±1 these equations may be cast into matrix form, as shown in Eq. (28), and inverted using the Sherman-Morrison formula.
From this procedure we obtain the expression

b j,±1 = − i�

2

1

γ (1 + C/4) + i(�a ± kcv j )

⎡
⎣1 + g2

4κ

N∑
m,±

1

[γ (1 + C/4) + i(�a ± kcvm)]

⎤
⎦

−1

. (B3)

Expanding the coefficient bj,±1 for particle j up to first order in all velocities kcvi/�a gives

b j,±1 ≈ − i�

2

1

γ (1 + C(2N + 1)/4) + i�a
± −�

2

1

[γ (1 + C/4) + i�a][γ (1 + C(2N + 1)/4) + i�a]
kcv j, (B4)

which shows a collectively modified decay rate, similar to the single-particle case [see Eq. (A8)]. Inserting this solution into the
steady-state solution for α gives

α ≈ − η

κ + i�c
− igNb(0)

κ
= − η

κ + i�c

[
1 − g2N

2κ

1

γ (1 + (2N + 1)C/4) + i�a

]
, (B5)

where we invoke the spatial averaging argument again, for N spatial variables x j this time. The amplitude of the cavity field is
now reduced.

2. N nonclosed transition systems inside a cavity

The final velocity reached inside the cavity can be calculated analogous to the single-particle case. The collective modifica-
tions cancel in the final velocity leaving only single-particle effects. Explicitly we obtain∫ ∞

0
ξc(ng(t ))dt =

∫ 0

1
ξc(ng)

dt

dng
dng

= 8h̄k2
c γtot

mγ ′

∫ 1

0

(1 + ngC/2)
[
�2

a + γ 2
tot(1 + ng(2N + 1)C/4)2

]
[
�2

a + γ 2
tot(1 + ngC/4)2

][
�2

a + γ 2
tot(1 + ng(2N + 1)C/4)2

]dng

= 4ωrec.�aγtot

γ ′�2
a

∫ 1

0

(1 + ngC/2)[
1 + γ 2

tot
�2

a
(1 + ngC/4)2

]dng, (B6)

which is now equivalent to the single emitter case.
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