
PHYSICAL REVIEW A 110, 013112 (2024)

Photoionization microscopy in the time domain: Classical atomic chronoscopy
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The glory effect is one of the characteristic manifestations of the divergence of the classical scattering cross
section, which occurs whenever the deflection function goes through zero for a nonzero impact parameter. This
effect, companion of the more frequently discussed rainbow effect, occurs in particular in atomic photoionization
in the presence of an external electric field, where it manifests itself by the appearance of an intense peak at the
center of the photoelectron momentum distribution transversely to the field. Above the field-free ionization
threshold where solely continuum Stark states exist (while quasibound ones are absent), the intensity of the
glory signal, extracted from high-resolution momentum distribution images, oscillates as a function of energy.
These oscillations exhibit a spectral frequency that increases with increasing energy, and Fourier analysis allows
the extraction of time-dependent information from them. In this work we present a detailed analytical study of
the dynamical aspects of classical electron trajectories in atomic Rydberg states in the presence of an external
electric field. We demonstrate the strong connection between those classical properties and the spectral signatures
of the glory signal. This close link provides a brilliant illustration of the correspondence principle in a complex
situation where the quantum system is in the continuum and exhibits characteristic frequencies that vary with
the excitation energy.
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I. INTRODUCTION

The electron motion in bound atomic Rydberg states con-
stitutes an internal clock of arbitrarily adjustable frequency.
Owing precisely to its bound nature, however, it is not directly
accessible other than via a destructive procedure, typically
following a pump-probe ionization scheme. By contrast, the
electron motion, and particularly its time properties, may
be, at least in principle, directly measured when continuum
atomic states are involved. In the case of a free atom, without
any external influence, the intrinsic properties of the electron
clock are in general lost and no time information may be
extracted, apart from the trivial time of flight of the free
electron upon photoionization. On the contrary, nontrivial
time information can be obtained when an external static (dc)
electric field is applied, giving rise, under certain circum-
stances, to Stark resonances in the continuum. This leads to
a situation where one has, at the same time, a free electron
that can be detected, and a complex and tunable time de-
pendence arising from the peculiar properties of the motion
in the combined Coulomb and external dc fields. Therefore,
Stark states in the continuum just above threshold offer a
measurable electron clock, with an intrinsic degree of control,
the electronic energy E , and an additional external degree of
control, the static electric field strength. Though potentially
accessible, limitations in time responses of detectors imply
that the direct measurement of time properties of the elec-
tronic motion is hardly achievable. However, characteristics
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directly linked to this internal clock are more easily accessible
in the spectral domain, where short time corresponds to wide
spectral spacing. This is a rather general feature of atomic or
molecular spectra: energy spacings are inversely proportional
to the classical frequencies of the internal atomic or nuclear
motion. In the present case, however, we are not dealing with
a fixed frequency (e.g., molecular rotation or vibration) but
rather with sliding frequencies, changing with the degree of
excitation.

The peculiarity of our approach is that instead of recording
a simple Stark spectrum in the continuum, we record complete
2D maps of the electron momentum. These maps display the
measured electron signal as a function of both the energy E
and the electron momentum transversely to the dc field (see
for example Ref. [1]). They provide complex 2D information
exhibiting composite spectral structures from which time in-
formation may be recovered. The global treatment of these
maps is beyond the scope of the present work and will be the
subject of future efforts. In the present paper we focus exclu-
sively on one of the most characteristic features of these data,
namely the glory oscillation. The glory signal corresponds
to electrons with null transverse momentum and manifests
itself as an intense peak at the center of the photoelectron
momentum distribution images. The glory effect is a common
feature of atomic scattering. Similarly to the rainbow effect,
it is the signature of the divergence of the classical scattering
cross section. Whereas the rainbow results from an extremum
in the deflection function, the glory effect appears when the
deflection function cancels out while the impact parameter
is nonzero [2]. More precisely, in the present case, the glory
signal occurs when the transverse electron momentum is zero
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for a nonzero (or non-π ) value of the electron ejection angle
β with respect to the external electric field. Classical and
semiclassical glory scattering has been described in some
detail [3] in the case of photoionization microscopy (PM) [4].
In addition, a recent PM experiment employing two-photon
ionization of ground-state Mg atoms [5] showed that the glory
signal exhibits strong oscillations and beating effects over
an appreciable energy range below, as well as above, the
static-field-free ionization limit. In fact, a comparison with a
two-photon ionization hydrogenic model revealed that many
features of the process are essentially atom independent. Com-
plex time information was extracted from the glory spectrum
and compared to the numerically computed time dependence
of classical electron trajectories. In particular, it was shown
that the experimental glory spectrum carries a signature of the
classical time-of-flight differences among the several trajecto-
ries associated with the glory effect, which can be extracted
by Fourier analysis of the glory spectrum.

The main purpose of the present work is to provide a
comprehensive analysis of the dynamical aspects of classical
electron motion in the combination of a Coulomb and a static
electric field F. We provide all the details on the analytical
calculation of classical time delays that were not previously
available in the literature. Through these results and hydro-
genic quantum calculations it is subsequently demonstrated
quantitatively that glory oscillations in the ionization contin-
uum of an atom in the presence of F indeed exhibit striking
signatures of the electron motion clock.

The paper is organized as follows. In Sec. II we de-
scribe the experimental framework in which our subsequently
developed calculations are embedded, introducing both the
experimental principles and the definitions of the parameters
and variables that will be used in the following. In Sec. III, we
summarize the properties of classical trajectories and explic-
itly develop analytical expressions for classical times of flight
in the context of photoionization. In Sec. IV, the quantitative
calculation of the glory angles (launch angles corresponding
to electron trajectories contributing to the glory signal) and
of the corresponding times of flight are presented. The lat-
ter are also discussed in connection with the simple case of
photodetachment. These results are subsequently compared
in Sec. V, with an exact calculation performed in the frame-
work of nonrelativistic quantum theory following an approach
similar to the one used in Ref. [5], namely by comparing
calculated classical time delays with the Fourier analysis of
the calculated quantum glory spectrum. Finally, we conclude
by giving some hints on possible continuations of this work.

II. PRINCIPLE AND BASIC DEFINITIONS

Although primarily theoretical, this paper is also deeply
connected with laboratory experiments. Therefore, it is cru-
cial to introduce the experimental principle underlying the
present discussion and the definitions of basic quantities used
in the following. It should be stressed that the reasoning de-
veloped in this work only arises in situations where we are
able to spatially resolve the electron current resulting from
photoionization of a simple atomic system in the presence of
a static electric field, or more precisely, to accurately map
the electron momentum perpendicular to the applied field.

FIG. 1. Schematic principle of the experiment. The atom inter-
acts with photons of energy hν at the center O of a velocity map
imaging spectrometer (VMIS). Electrons are ejected at a launch
angle β with respect to the electric field F and are further detected
on a position-sensitive detector (PSD). The PSD is made of a tandem
microchannel plate (MCP) detector followed by a phosphor screen
perpendicular to the electric field. Electron impacts are captured by
a CCD camera and accumulated over several thousand laser shots in
order to build the image. See text for details.

By spatial resolution we mean that not only the classical
envelope of the photoelectron current is measured, but also its
intimate structure arising from quantum interferences. These
conditions correspond strictly to what is defined as photoion-
ization microscopy, an experimental method introduced first
as a thought experiment by Russian physicists in the early
80s [6] that one of us has contributed to develop as an actual
experimental method in the early 2000s [4].

A schematic view of the experiment is given in Fig. 1.
Atoms are excited by a number of photons of energy hν at the
center O of a velocity-map imaging spectrometer (VMIS) [7]
equipped with a magnifying lens [8]. The latter is not drawn
in Fig. 1, but it represents a necessary addition for resolving
the spatial modulation of the slow (0–100-meV) photoelectron
current due to quantum interferences. The excitation laser
beam is oriented along the Ox axis and perpendicular to the
electric field F of strength F present in the VMI and oriented
along the Oz axis. This field is inhomogeneous by design. It
may, however, be approximated by a homogeneous one over
the very limited size of the interaction region. Upon absorp-
tion of N photons (most frequently one or two), according to
the chosen excitation scheme, atoms are excited at energy E
with respect to the ionization limit in the absence of the field
(i.e., the zero-field ionization limit). In practice, E is chosen
to lie just above the field-induced ionization threshold and,
therefore, the electron is excited in the ionization continuum.
Electrons are ejected at a launch angle β with respect to F. The
electrons are detected by a position-sensitive detector (PSD)
made of tandem microchannel plates (MCPs) followed by a
phosphor screen whose surface is perpendicular to the electric
field. A charge-coupled device (CCD) camera records the 2D
distribution of light spots on the screen. Recorded images are
transferred to a PC, where they are accumulated over several
thousand laser shots resulting in images of the photoelectron
momentum distribution transversely to the electric field. The
MCP detector is located at a distance |zdet| from the excitation
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point. The glory signal corresponds to the electron signal
at the center O′ of the image. Details about the actual im-
plementation of this experimental principle were previously
given in Refs. [1,9], as well as in Ref. [5] for the specific
glory study, and, with the exception of the information that is
absolutely relevant to the present study, we will not describe
it any further.

III. PROPERTIES OF THE CLASSICAL MOTION

A. The classical Coulomb-Stark problem

Exact expressions for the classical electron trajectories un-
der the combined action of an attractive nucleus (Coulomb
field) and a homogeneous static electric field F = Fz have
been amply detailed in earlier works. This classical problem is
fully integrable, and the nature of the planar motion solutions
was extensively studied by Beletzky [10] in the context of
celestial mechanics. Demkov et al. adapted these solutions for
situations related to atomic physics [6,11]. The peculiarities
of the classical planar trajectories were subsequently ana-
lyzed in the context of slow photoelectron imaging [12,13]
and photoionization microscopy [4,14,15]. However, in all
of these previous photoionization-oriented works, attention
was given only to the geometric properties of the trajecto-
ries, while explicit expressions for the electron time of flight
were not provided. More recently, Lantoine et al. [16] studied
the most general case of motion in the context of celestial
mechanics, and introduced general analytical formulas for
expressing satellite times of flight. Their results can be used in
the context of atomic physics at the cost of several technical
manipulations. This is exactly the central point of the present
section, with particular attention on the analysis of the glory
signal and the corresponding time delays.

To this end, let us briefly recall that for the Coulomb-
Stark potential [6,11] given below (in atomic units, h̄ = e =
me = 1),

VCS(r) = −Z/r + Fz, (1)

with r = [x2 + y2 + z2]1/2, and Z the atomic charge of
the ion core (hereafter set equal to Z = 1), the classi-
cal equations of electron motion are separable in parabolic
coordinates [17,18]:

ξ = r + z � 0; η = r − z � 0; φ = tan−1(y/x). (2)

This separation requires the introduction of the reduced-
time variable τ , related to the physical time variable t via the
definition [11]

dτ = dt/r. (3)

The corresponding equations of motion and parametric
expressions of ξ , η, and φ as a function of τ are given in the
Appendix. In the following, we restrict the discussion to those
trajectories where the electron is ejected and escapes from the
Coulomb center towards the PSD, whose plane is perpendic-
ular to the z axis and located at z = zdet = –ηdet/2 < 0.

Note that VCS(r) exhibits a local maximum along the z
axis [19]. This so-called saddle-point energy Esp defines the
boundary between the bound (E < Esp) and the free (E � Esp)

motion. It writes in atomic units as

Esp = −2F 1/2. (4)

The energy range E � Esp where ionization is classically
allowed includes the zero-field ionization limit at E = 0. In
addition, we define a dimensionless variable that will be used
throughout the paper, namely the reduced energy ε:

ε = E

|Esp| . (5)

Furthermore, it should be emphasized that the momentum
pφ along coordinate φ, that is, the projection of the orbital an-
gular momentum on the dc-field axis, is a constant of motion.
The quantum counterpart of pφ is the magnetic quantum num-
ber m, as referenced with respect to the dc-field axis, which
is a good quantum number of the quantum Stark problem.
For pφ �= 0 the glory effect cannot occur because nonzero
centrifugal terms emerge in the equations governing ξ (τ ) and
η(τ ) and prevent the presence of the electron on the z axis, just
as they prevent the electron from being arbitrarily close to the
core (r = 0). Hence, the glory effect appears only for pφ = 0
[3], this value corresponding to the planar electron motion and
to a time-independent coordinate φ = φ0 = constant. The
discussion that follows is restricted to the pφ = m = 0 case,
and the trajectory of an electron under the influence of VCS(r)
is entirely determined by its initial position (ξ0, η0, φ0), its
total energy E, and the angle β between its initial velocity and
the field z axis. The initial position is assumed to be the origin
(ξ0 = 0, η0 = 0), i.e., at the center O of the Coulomb force at
r = 0. The potential energy diverges at this point; however,
this divergence does not imply any singularity in the electron
motion in this specific case. Note that the launch angle is
restricted to the interval 0 � β � π , and from Fig. 1 we see
that β = 0 denotes ejection along the field direction (+z) and
β = π ejection opposite to the field (−z) and towards the
PSD plane.

B. Trajectories, reduced arrival times, and coordinates
of impact on the detection plane

The analytical expressions ξ (τ ) and η(τ ) can be conve-
niently written solely in terms of the aforementioned angle
β, the reduced energy ε as defined in Eq. (5) above, and the
external electric field strength F . The complete expressions
of ξ (τ ) and η(τ ) in the case of open motion (ionization) are
given in the Appendix, Eqs. (A3)–(A11).

For φ = φ0 = constant the trajectory is confined to a plane
inclined by φ0 with respect to the x − z plane. By further
fixing the values of Z = 1, F, and ε, the trajectory towards the
detector can be traced parametrically in τ and for any given
angle β, in either parabolic [ξ (τ ), η(τ ), φ0 ] or Cartesian
coordinates:

x(τ ) = [ξ (τ ) η(τ )]1/2 cos φ0

y(τ ) = [ξ (τ ) η(τ )]1/2 sin φ0

z(τ ) = [ξ (τ ) − η(τ )]/2. (6)

It turns out that the motion of the electron along parabolic
coordinate ξ is bound at any energy and periodic in τ , with
period Tξ whose expression is given explicitly in Eq. (A7).
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In other words, the parabolic coordinate ξ is zero whenever
τ = τk = (k + 1)Tξ , with k = 0, 1, 2, . . . a positive or zero in-
teger. Furthermore, by making use of Tξ , the trajectories may
be conveniently parametrized by means of the dimensionless
scaled reduced-time variable τd defined as the ratio

τd ≡ τ/Tξ . (7)

Along the η coordinate and for –1 � ε < 0 the electron
escapes and reaches the PSD only for the angles β � βc ≡
2 arcsin |ε|. For β < βc the electron does not escape from the
attractive center, while for positive energies (ε � 0) there are
no such restrictions and βc = 0. For the trajectories leading
to ionization the reduced time required for the electron to
reach the detector, i.e., the reduced arrival time, is denoted
as τ = Tη. Accordingly, the coordinates of electron impact
on the detector plane located at a position zdet < 0 from the
source are denoted as ξdet = ξ (Tη ) and ηdet = η(Tη ). Then, it
holds that

ξdet − ηdet = −2|zdet|, (8)

while the radius of impact on the detector is given by

ρ(F, |zdet|, ε, β ) =
√

ξdet ηdet. (9)

In the general case of finite |zdet|, and given the complex-
ity of the expressions for both coordinates [Eqs. (A3) and
(A8)], the exact Tη value must necessarily be determined by
numerical inversion. For most practical situations, however,
the distance |zdet| is many orders of magnitude larger than the
typical atomic dimensions. When this holds one can apply the
asymptotic approximation, |zdet| → ∞. In practice it suffices
for |zdet| to be finite but large with respect to the absolute value
of the location zsp = −F−1/2 of the saddle point at energy Esp.
Then, satisfactory analytical expressions for Tη may be found
under the quite realistic |zsp| � |zdet| condition that remains
valid even for small field strengths F, where |zsp| may become
macroscopic. In turn, this finite-|zdet| approximation implies
also that ηdet � ξdet and ηdet � η+, where η+ [given in Eq.
(A9)] denotes the “amplitude” of η(τ ). Under this approxi-
mation Eq. (8) simplifies to

ηdet ≈ 2|zdet| � η+; for
∣∣zsp

∣∣ � |zdet|, (10)

and by defining the ratio

� ≡ ηdet

η+
≈ 2|zdet|

η+
� 1, (11)

we find that

Tη =

⎧⎪⎨
⎪⎩

1
F 1/4

1
[2 sin(β/2)]1/2 arccn

(
1−�
1+�

|mη

)
for |ε| � sin (β/2)

1
F 1/4

21/2

[ε+[ε2−sin2(β/2)]
1/2

]
1/2 arcsn

(√
�

1+�
|mη

)
for ε � sin (β/2)

(12a)

(12b)

where arccn and arcsn denote inverse Jacobi elliptic functions
[20], and mη is given in Eq. (A11).

In the asymptotic approximation |zdet| → ∞, the expres-
sions of Eqs. (12a) and 12(b) merge with Eq. (A12) and
become

Tη = T ∞
η = 21/2

F 1/4

K
(
mη

)
[sin (β/2)]1/2 , (13)

where mη is given by Eq. (A11a) and K (m) is the complete
elliptic integral of the first kind [20]. Equation (13) holds for
ε � −1.

By means of any of the above equations (12a), 12(b),
or (13), and using expressions given in the Appendix, both
parabolic (ξdet, ηdet, φ0) and Cartesian (xdet, ydet, zdet ) coordi-
nates of the electron impact point on the detector may be
calculated.

C. Glory effect and glory angles

The distribution of photoelectron impacts on the PSD can
be computed via ξdet and ηdet (and φ0). For an isotropic elec-
tron source [12] and for the planar motion discussed here, it
suffices to calculate the classical differential ionization cross
section R as a function of the impact radius ρ(F, |zdet|, ε, β )
on the detector. This is defined as [5]

R(ρ) ≡ dσ

dA
(ρ) = σ0

4π

∑
j

sin β j

ρ

∣∣∣∣ dρ

dβ j

∣∣∣∣
−1

, (14)

where dA = 2πρdρ is the elementary detector surface and σ0

is the total ionization cross section. The summation in Eq. (14)

runs over all ejection angles β j leading to the same radius ρ.
Glory scattering, resulting in a high-intensity central peak in
the photoelectron images, occurs whenever ρ(F, |zdet|, ε, β )
goes through zero while sin β �= 0 and Eq. (14) exhibits a
singularity. Evidently, the angles β = 0 and β = π cannot
contribute to the effect, since then the conditions sin β = 0
and ρ → 0 are simultaneously fulfilled. For a given reduced
energy ε, the contributions to the glory signal stem from the
trajectories corresponding to launch angles leading to ξdet =
0 (and ρ = 0), that is, to those trajectories whose source-
to-detector reduced times-of-flight are an integer number of
periods Tξ [Eq. (A7)] along ξ . For the computation of these
glory angles, it is convenient to use the number Q of ξ oscil-
lations performed until the electron reaches the detector,

Q ≡ Tη

Tξ

. (15)

The integer part of Q is the number of zeros of the func-
tion ξ (τ ) along the electron trajectory, or in other words
the number of crossings between the electron trajectory
and the dc-field axis. Furthermore, the quantity Q also
represents the maximum value of the aforementioned dimen-
sionless scaled reduced-time variable τd defined in Eq. (7),
i.e., 0 � τd � Q. If the source-to-detector distance |zdet| is
finite, Q may depend on it, as well as on the field strength
F , and needs to be computed numerically. On the contrary,
in the asymptotic limit of a detector at infinity (ηdet → ∞,
|zdet| → ∞) this quantity, labeled as Q∞, can be expressed
analytically [see Eq. (A13)]. In either case, the glory angles
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FIG. 2. Evolution of the glory angles βG
k (ε) for k = 0−3 and

of the critical angle βc as a function of the reduced energy ε. The
trivial value β = π is not plotted. The angle βG

0 (ε) is defined for
ε � ε0,thr ≈ −0.775, while for k � 1 angles βG

k (ε) are defined practi-
cally for all energies ε > −1 [see Eq. (18)]. The logarithmic vertical
scale is chosen in order to emphasize the large magnitude difference
between the angles βG

k (ε) as k increases. Inset: glory trajectories at
ε = 0 for glory orders k = 0, 1, and 2.

βG
k (ε) are given by the roots of the equations:

Q
(
F, |zdet|, ε, βG

k (ε)
) = k + 1, k = 0, 1, 2 . . . (16)

Note that since Q∞ depends solely on ε and β, in the
asymptotic limit the angles βG

k (ε) depend on the field only
implicitly through ε. Consequently βG

k (ε) remains unchanged
for any field value [in contrast to βG

k (E ) ]. On the other hand,
to the best of our knowledge, there are no analytical solutions
of Eq. (16) and the solutions βG

k need to be found in a purely
numerical way. Nevertheless, it is easy to show that there is
an energy threshold εk,thr for each glory-angle order, below
which this angle cannot be defined. This threshold actually
corresponds to the limit βG

k (εk,thr ) = π, and for |zdet| → ∞
one finds

K

(
1

2
− εk,thr

2

)
= 2 k

π

√
2

εk,thr
. (17)

Numerical resolution of the above equation for the lowest
orders gives

ε0,thr ≈ −0.775 156

ε1,thr ≈ −0.995 642 (18)

ε2,thr ≈ −0.999 948 . . .

Note that in earlier works [12,15], the threshold ε0,thr was
introduced as the onset of the so-called “direct” trajectories
(defined as electron trajectories never crossing the z axis)
and denoted as εdir. Also note that as soon as k � 1, angles
βG

k (ε) are defined for practically all energies ε � −1. Figure 2
illustrates the general evolution of the various glory angles in
the asymptotic limit as a function of the reduced energy in the
range [–1,1], together with the critical angle βc defined above.

Typical (finite) glory trajectories are displayed in the inset to
clarify the discussion. In practice, for calculations performed
with a finite source-to-detector distance, glory angles are nu-
merically calculated explicitly as a function of |zdet |, ε and F
without any approximation.

Once the glory angles are known, one may obtain the cor-
responding reduced times-of-flight by introducing them into
Eqs. (12a) and 12(b), or (13). It is finally remarkable that when
dealing with glory trajectories arriving at point O′, Eq. (10) is
not an approximation, since then the expression ηdet = 2|zdet|
is exact.

D. Time dependence of electron trajectories

One of the objectives of the present work is to find explicit
expressions for the photoelectron physical time t for every tra-
jectory point and under the assumption of an electron launch
at τ = t = 0. From these expressions one may subsequently
derive the time of flight of the electron from the ion core
towards the plane of detection located at z = zdet. According
to the definition of the reduced time τ , Eq. (3), the physical
time t (τ ) is determined as follows:

t (τ ) =
∫ τ

0
r(τ ′) dτ ′ = 1

2

∫ τ

0
(ξ (τ ′) + η(τ ′)) dτ ′

= tξ (τ ) + tη(τ ), (19)

where the second equality defines the two components tξ (τ )
and tη(τ ). In order to derive general scaling laws, it is ad-
vantageous to express the integrals in terms of the scaled
reduced-time variable τd introduced in Eq. (7). In either case,
the physical time t may be obtained by calculating its compo-
nents tξ and tη, i.e., by integrating the analytical expressions
ξ (τ ) and η(τ ) [or ξ (τd ) and η(τd ) ].

Hence, integration of ξ (τd ) leads to the explicit general
expression of the contribution tξ (τd ) (valid for ε � −1):

tξ (τd ) = Tξ

2

∫ τd

0
ξ (τ

′
d ) dτ

′
d

= 1

F 3/4
{dn(yξ |mξ )(2[ε2 + cos2(β/2)]

1/2
E (yξ |mξ )

− ([ε2 + cos2(β/2)]
1/2 − ε)yξ )

− ([ε2 + cos2(β/2)]
1/2 + ε)cn(yξ |mξ )sn(yξ |mξ )},

(20)

where

yξ ≡ 2K
(
mξ

)
τd , (21)

dn(x|m), cn(x|m), and sn(x|m) are the respective Jacobi
elliptic functions and E (x|m) the incomplete elliptic integral
of the second kind [20]. Finally, the argument mξ (ε, β ) is
given in Eq. (A6) of the Appendix.

Accordingly, integration of η(τd ) provides the contribu-
tion tη(τd ). In the energy range |ε| � sin(β/2) (range I), this
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contribution writes as

t I
η(τd ) = Tξ

2

∫ τd

0
η(τ

′
d ) dτ

′
d

= [2 sin (β/2)]1/2

F 3/4

{
sn(yη,I |mη )dn(yη,I |mη )

1 + cn(yη,I |mη )

− E (am(yη,I |mη )|mη ) + yη,I

}
, (22)

where

yη,I ≡ 2K
(
mη

) τd

Q∞ , (23)

where am(x|m) is the Jacobi amplitude and mη(ε, β ) is given
by Eq. (A11a).

As for the energy range II where ε � sin(β/2), we obtain

t II
η (τd ) = 21/2[ε + [ε2 − sin2(β/2)]1/2]

1/2

F 3/4

× {sc(yη,II |mη )dn(yη,II |mη )

− E (am(yη,II |mη )|mη )}, (24)

where

yη,II ≡ K (mη )
τd

Q∞ , (25)

with the Jacobi elliptic function sc(x|m) = sn(x|m)/cn(x|m)
[20] and mη(ε, β ) is now given by Eq. (A11b).

The set of Eqs. (20)–(25) is formally equivalent to
Eqs. (73), (78), and (79) of Ref. [16], where they are given
with a substantially different notation by Lantoine and Rus-
sell in their chapter 2.5 (precisely entitled “Stark equation,”
though dealing with spacecraft trajectories). Nevertheless, go-
ing from their expressions to the above set of Eqs. (20)–(25)
is by no means a trivial task and the present form is more con-
venient and suitable in the context of atomic photoionization.

IV. CALCULATION OF CLASSICAL TIMES OF FLIGHT
AND TIME DELAYS

A. General evolution of the time of flight

The expressions of Eqs. (20)–(25) provide the physical
time for every given point on the photoelectron trajectory.
When this point is the impact point on the detector, they pro-
vide the electron’s physical source-to-detector time of flight
(TOF), which is defined as

TOF ≡ t (τ = Tη ) = t (τd = Q), (26)

where the second equality clearly shows the connection be-
tween TOF and the parameter Q defined in Eq. (15). Explicit
use of the finite detector-distance expressions for Tη or Q leads
to finite TOFs. On the other hand, as expected, for a detector at
infinity (|zdet| → ∞, τ = T ∞

η , and τd = Q∞ [see Eqs. A(12)
and A(13)] the contributions t I

η(Q∞) and t II
η (Q∞) diverge, and

evidently the same holds for TOF itself. Nevertheless, the rela-
tive delays between given pairs of electron trajectories remain

FIG. 3. Absolute electron time of flight TOF(ε, β ) in photoion-
ization in the presence of an external electric field F = 680 V/cm.
The time of flight is evaluated at distance |zdet| = 1 mm at selected
reduced-energy values within the range ε ∈ [−1, 1] as a function of
the launch angle β (bold black: ε = −0.8; bold gray: ε = −0.6;
dashed black: ε = −0.4; dashed gray: ε = −0.2; dashed-dotted
black: ε = 0.0; dashed-dotted gray: ε = 0.5; and thin black: ε =
1.0). The inset on the right upper part of the figure represents the
difference TOF(ε, β ) = TOF(ε, β ) − TOF(ε, π ) in polar form.
The polar plot shows more explicitly strong oscillations, particularly
visible at ε = 0, each oscillation being related to the presence of a
glory angle.

finite. However, before focusing on these relative delays it is
important to first examine the general finite TOF evolution as
a function of energy and launch angle.

Figure 3 shows calculated times of flight for different
ejection angles β, at selected reduced energy ε values within
the [−1, 1] interval and for a finite but macroscopic distance
|zdet| (equal to 1 mm in the present case). The numerically
computed times of flight refer to a field strength of 680 V/cm,
which is among the typical field values employed in slow
photoelectron imaging experiments. Nonetheless, the general
shapes of the curves TOF(F, |zdet|, ε, β ) remain the same due
to their common scaling with F that is to be discussed be-
low. These shapes exhibit a number of features that deserve
to be mentioned. Note first that there are mostly two regimes
in the evolution of TOF. For β → βc (that is, β → 0 at
positive energy), TOF increases drastically and even diverges
at the small-angle limit, corresponding to an electron launched
in the direction opposite to the detection plane. On the other
hand, when β → π the evolution of TOF is relatively flat
and the time of flight tends smoothly towards its minimum
value reached at β = π . A second feature is more visible in
the inset of Fig. 3 representing the time of flight in polar
coordinates. The occasionally observed strong oscillations of
TOF, particularly visible at ε = 0, relate to the glory angles.
Indeed, it can be shown that the second derivative d2TOF

dβ2 of the
time of flight vanishes in the vicinity of the glory angles for
symmetry reasons.

Further, it is interesting to compare the evolution of
TOF(F, |zdet|, ε, β ) in photoionization with the equivalent
quantity TOFphotodet (F, |zdet|, ε, β ) corresponding to photode-
tachment, that is, without the presence of any Coulomb field.
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In that case the exact expression is trivial and writes as

TOFphotodet (F, |zdet|, ε, β )

= 1

F 3/4
[2ε1/2 cos β + [4εcos2β + 2F 1/2|zdet|]1/2

], (27)

where the reduced energy ε is introduced for a closer compar-
ison, even though the saddle-point energy concept does not
apply here. The evolution of TOFphotodet is smooth and does
not present any peculiarities compared to TOF. Equation (27),
however, is quite useful for estimating the time-of-flight order
of magnitude and for revealing its scaling laws with respect
to the electric field. For example, at large detector distances
the term containing |zdet| dominates and represents the main
contribution to the time of flight, which may be approximately
expressed as

TOFphotodet ≈
[

2|zdet|
F

]1/2

. (28)

On the other hand, Eq. (27) also shows nicely that the time-
of-flight difference between two trajectories corresponding to
launch angles β1 and β2 is practically independent of |zdet|.
Indeed, this difference can be simply approximated as

TOFphotodet (ε, β1, β2) = TOFdet (ε, β1) − TOFdet (ε, β2)

≈ 2 ε1/2(cos β1 − cos β2)

F 3/4
. (29)

These two essential results are also expected to be valid in
photoionization. Of course, the dimensionality of all combi-
nations F−1/2 [|zdet|]1/2 and F−3/4ε1/2 ∝ F−1E1/2 (expressed
in atomic units) is physical time. Therefore, when the latter
is expressed in conjunction with the dimensionless parameter
ε, an F−3/4 scaling law is to be expected. This can be also
confirmed by simple inspection of Eqs. (20)–(25), where,
apart from their F−3/4 scaling, these physical time expressions
depend on F only implicitly through ε.

B. Electron time delays at glory angles

The above equations allow for the connection between the
reduced energy ε, the electron ejection angle β, the time of
flight of the corresponding trajectory, and the impact radius
ρ on the detector. For a given energy, each radius is reached
by several trajectories corresponding to different values of β

according to the number of electron oscillations along the ξ

coordinate. The present work focuses on those electron tra-
jectories that lead to ρ = 0 and contribute to the glory effect,
thus allowing the link between classically calculated time-of-
flight differences and quantum glory oscillations. Hence, at
present a major part of the image is discarded. Nevertheless,
much information can be already obtained by examining the
information provided solely by the glory signal.

As Eq. (16) implies, there is an infinite series of glory an-
gles ±βG

k (ε). However, only the lowest orders, typically with
k = 0, 1, and 2, contribute to the final result proportionally to
the corresponding solid angle d�G

k (ε, βG
k ) :

d�G
k

(
ε, βG

k

) = 2π sin βG
k dρ

(
dρ

dβ

)−1

β=βG
k

, (30)

which vanishes rapidly when the integer k increases.

As mentioned above, the time of flight depends on the
distance from the detector. Most of this time, however, is spent
far from the Coulomb center and under the action of the dc
field only. This part of the flight is more or less common
to all trajectories and is not relevant here. The most natu-
ral way of obtaining time information fairly independent of
|zdet| is by defining an appropriate reference trajectory and
its corresponding reference time of flight in order to calculate
differences between times of flight that are more representa-
tive of an internal electronic clock. As such, here we choose
as an internal reference time of flight for a given energy ε,
the shortest one corresponding to β = π . Specifically, we
introduce the relative time of flight at glory angles defined as

TOFG
k (F, ε) ≡ TOF

(
F, |zdet|, ε, βG

k (ε)
)

− TOF(F, |zdet|, ε, π ). (31)

Evidently, TOFG
k (F, ε) corresponds to Q = k + 1

[Eq. (16)] and can be split into its ξ - and η components, i.e.,

TOFG
k = TOFG

ξ,k + TOFG
η,k . (32)

Given that tξ (ε, β = π ) = 0, one then finds

TOFG
ξ,k (F, ε) = (1 + k)

4
[
ε2 + cos2

(
βG

k

/
2
)]1/4

F 3/4
{E (mξ,k )

− K (mξ,k )(1 − mξ,k )}, (33)

where mξ,k = mξ (ε, β = βG
k ) [see Eq. (A6)] and E (m) is the

complete elliptic integral of the second kind [20]. Dealing now
with the η component, and under the assumption of a detector
at infinity, one first carefully separates the diverging from the
nondiverging parts of tη(τd = Q∞). It turns out that the former
parts diverge irrespective of the values of the reduced energy
and angle. These parts, therefore, do not contribute to any
time-of-flight differences, and by applying the definition of
Eq. (31) this exercise finally gives

TOFG
η,k (F, ε) = 21/2

F 3/4

{[
sin

(
βG

k

/
2
)]1/2

[K (mη,k )

− 2E (mη,k )] −
[

K

(
1 − ε

2

)

− 2E

(
1 − ε

2

)]}
, (34)

where mη,k = mη(ε, β = βG
k ) and where mη is given exclu-

sively by Eq. (A11a). Equations (33) and (34) are valid for
ε � −1, that is, for either energy range I or II [i.e., either for
|ε| � sin(β/2) or ε � sin(β/2) ]. Moreover, it is important to
note that contrary to Eq. (33) which is valid only for integer
values of Q and thus only for the glory angles, Eq. (34) is, in
fact, valid for any angle β within the [0, π ] interval.

The derivation of Eqs. (33) and (34), their analysis, and
their comparison with corresponding quantum-glory compu-
tations constitute essentially the core of the present work.
Furthermore, since these equations are derived for a PSD at
infinity, they are free of any approximation. Nevertheless,
numerical TOFG

k calculations performed for |zdet| = 1 mm
and field strength of 680 V/cm show an agreement better
than 0.5% with the above analytical results. Larger differences
(∼5%) are found only in the vicinity of ε ≈ −1 (for k > 0)
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where TOF diverges (see Fig. 3). In this range, however,
TOFG

k is already extremely small. It is finally verified that
numerically computed TOFG

k differences do not vary with
the distance between the atom and the detector as soon as |zdet|
is significantly larger than the atomic dimensions.

Figure 4(a) displays these TOFG
k curves (that is, the time

delays at glory angles) and their components TOFG
ξ,k and

TOFG
η,k for k = 0, 1, and 2, as given by Eqs. (32), (33),

and (34). The x axis is expressed in reduced energy ε. For
the y axis we employ the scaled quantity F 3/4 × TOFk (ε)
expressed in atomic units. In view of Eqs. (20)–(25), (33),
and (34), where the dependence of the physical time on the
external field is entirely contained in the F−3/4 term, this
scaling results in “universal” time-delay curves, irrespective
of the field value. At first glance, Fig. 4(a) shows that the
components TOFG

ξ,k largely dominate at ε � 0, yet their
contribution is still important (∼50%) at negative reduced
energies larger than −0.5. On the contrary, the components
TOFG

η,k completely dominate just above the saddle-point
energy, i.e., at ε � −1, while at positive energies and par-
ticularly for ε � 0.5 their contribution to TOFG

k does not
exceed 5%. Furthermore, the components TOFG

ξ,k are mono-
tonically increasing, while the components TOFG

η,k exhibit a
maximum which shifts towards ε = −1 as k increases. These
quite different functional forms and energy ranges of domi-
nance between the two delay components create two distinct
regimes of delay evolution, depending on whether the energy
is negative or positive. In the former case, ε < 0, the evolution
of delays TOFG

k differs significantly according to the order
k. Notice in particular the quasiplateau over a large fraction of
the negative energy region for k = 2. Consequently, there is
no obvious link among the delay curves for different k.

On the contrary, for ε � 0 the delays TOFG
k in-

crease monotonically due to the dominance of TOFG
ξ,k in

this energy range. For the sake of comparison, Fig. 4(a)
also includes the corresponding quantity in photodetach-
ment (where there is no glory effect) that describes the
time-of-flight difference between the two trajectories lead-
ing to ρ = 0. This curve is given by Eq. (29), namely,
F 3/4TOFphotodet (ε, β1 = 0, β2 = π ) = 4 ε1/2, and we can
observe that it almost matches TOFG

k=0(ε) at large pos-
itive ε values. In fact, the proportionality of TOF to
ε1/2 in the ε → ∞ limit [that, in fact, can be relaxed to
the ε � | cos(βG

k /2)| condition] is to be expected also for
TOFG

ξ,k and consequently TOFG
k , since then mξ,k → 1,

E (mξ,k ) → 1, K (mξ,k )(1 − mξ,k ) → 0, and Eq. (33) predicts
F 3/4TOFG

ξ,k ≈ 4(1 + k)ε1/2. This result implies that the
contributions TOFG

ξ,k should be proportional to each other
in the ε � | cos(βG

k /2)| limit. We examine this statement in
Fig. 4(b), which shows the F 3/4TOFG

ξ,k components divided
by Q = k + 1. The practically exact matching between the
k = 1 and k = 2 curves over the full −1 � ε � 2 interval
is striking. The k = 0 curve also matches exactly the other
two at positive energies, differing in the negative-energy part
due to its different appearance threshold [see Eq. (18)]. Thus,
the proportionality among TOFG

ξ,k curves approximately
holds for every energy ε � −1. However, at positive energies
TOFG

k is practically identical to TOFG
ξ,k and Fig. 4(b)

unambiguously shows that all glory delays are almost

FIG. 4. (a) Reduced energy dependence of the field-scaled dif-
ferences between the photoelectron time of flight of the trajectory
corresponding to glory angle βG

k (ε) and the trajectory of shortest
time of flight at angle β = π . The angles βG

k (ε) are obtained by
solving Eq. (16) for each glory order Q = k + 1, with k = 0 (black),
1 (cyan), and 2 (orange). These scaled photoionization time delays,
F 3/4TOFG

k (ε) (full lines), are defined in Eq. (31) and they are split
into their ξ - and η contributions [see Eqs. (32)–(34)], which are
drawn in the graph with dashed-dotted and dashed lines, respectively.
Equations (33) and (34) assume the detector is placed at infinity.
In general, the time delays are independent of the atom-to-detector
distance as soon as |zdet| is significantly larger than the atomic di-
mensions. Then, Eqs. (33) and (34) practically cover the finite |zdet|
distance case as well. (b) Field-scaling, accomplished by multiplying
the time-delay curves by F 3/4, ensures these curves are valid what-
ever the field strength. For comparison, the equivalent quantity in the
case of photodetachment, F 3/4TOFphotodet (ε, β1 = 0, β2 = π ) =
4 ε1/2 [see Eq. (29)], is also plotted for ε � 0 with white circles.
(b) Field-scaled ξ contributions [Eq. (33)] divided by the glory
order k + 1. For ε > 0 the curves are practically indistinguishable,
thus signaling the mutual proportionality between the undivided
F 3/4TOFG

ξ,k (ε) curves given in (a).

proportional to the shortest delay according to TOFG
k (ε) ≈

(k + 1) × TOFG
k=0(ε).

Having derived and analyzed the classical time delays
at glory angles and different orders k, the remaining task
of this work is to link these delays with the corresponding
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quantum-mechanical predictions of the glory effect. In par-
ticular, the time-delay curves need to be connected to the
complexity of the computed (as well as to the experimentally
observed) so-called glory spectra, that is, the variation of the
signal at the center of the images as a function of excitation
energy. This connection entails implications related to the
quantum-classical correspondence and it will be examined in
the next section.

V. COMPARISON WITH QUANTUM CALCULATIONS:
TIME DELAYS AND SPECTRAL FEATURES

A. General considerations on quantum-classical correspondence

The formal correspondence and link between the classical
frequency of motion and the transition frequency between
successive quantum states is a universal property of microsys-
tems. For example, in atomic physics we find the equivalence
between the perfectly periodic revolution period of a Ryd-
berg electron and the energy gap between successive Rydberg
levels. Similar examples concern molecular vibration and ro-
tation and it is commonly believed that this correspondence
holds almost exclusively for periodic or quasiperiodic motion.

Clearly, the problem examined in the preceding sections
of the present work deals with nonperiodic electron motion:
each glory order, (k + 1), corresponds to an extremely lim-
ited number of quasirevolutions around the core [typically ∼
(k + 1)/2 ] before the electron ionizes. Under these conditions
one would not expect to find any signature of the classical
timing information associated with electronic motion in the
corresponding spectral structures. And yet, on the contrary,
not only does this correspondence exists, but it is also very
robust and allows, at least in the region of positive energies, to
extract from the spectral data quite precise values of the time
delays at glory angles. This will be demonstrated by compar-
ing the classical time delays TOFG

k (ε) provided above with
time information extracted from a hydrogenic glory spectrum
calculated in the framework of a quantum model described in
Ref. [1]. In fact, rather than analyzing the detailed structure
of the glory spectrum, we are interested in extracting global
information from it. As compared to the experimental data [5],
the present comparison has the advantage of benefiting from
the arbitrarily high resolution and the superior signal-to-noise
ratio of the calculation. This additionally allows identifying
precisely features of classical or purely quantum origin.

B. Glory interference spectroscopy and its connection
to classical time delays at glory angles

The idea that interference phenomena exhibited by the
photoelectron momentum distribution R(ε, ρ ) may, under cer-
tain conditions, provide information on the ionization time
delays between classes of electron trajectories, was already
suggested in Ref. [21]. Here, the focus is on the spectral
characteristics of the glory signal R(ε, ρ = 0). To demonstrate
this, we employ the quantum-mechanical theory of the Stark
effect for the hydrogen atom. What is initially calculated is the
outgoing flux of electrons released by photoionization in the
presence of the static field, or, in other words, the probability

FIG. 5. Single-photon ionization of hydrogen atom out of its
ground state and under the presence of an external electric field
F = 680 V/cm. The linear laser polarization is parallel to the field
axis, resulting in the exclusive excitation of m = 0 final Stark states.
(a) Total ionization cross section σtot as a function of reduced energy
ε. (b) Glory signal divided by σtot as a function of reduced energy
(the scaled glory spectrum). Scaling minimizes the presence of the
sharp and intense resonances that belong to long-lived quasibound
Stark states and they are observed in (a) for ε < 0. The inset shows
the ε > 0 part of the scaled glory spectrum in more detail.

current density,

Jηdet (ξ, φ) = iπαω (ξ + η)−1/2

×
[
ψ

(
∂ψ∗

∂η

)
− ψ∗

(
∂ψ

∂η

)]∣∣∣∣
η=ηdet

, (35)

along a paraboloid of constant ηdet. In the above equation
α is the fine-structure constant and ω the frequency of the
photoionizing laser field, whose intensity is incorporated
in the terms involving the wave function ψ . In fact, when
ηdet → ∞ this paraboloid coincides with the detection plane
at zdet. Note that Jηdet depends on the dipole transition matrix
elements involved in the excitation and ionization process
[1,5,22]. In the present work we deal with single-photon
excitation of the final Stark states of hydrogen atom out of
its m = 0 ground state. The linear polarization of the ion-
izing radiation is assumed parallel to the dc-field axis. The
relevant m = 0 dipole selection rule leads to the excitation
of m = 0 final Stark states only. Then, the resulting images
show no angular dependence and R(ε, ρ ) = 2πJηdet . Other
polarization settings and m �= 0 final states are not exam-
ined, since, in agreement with the classical calculation, it
turns out that only m = 0 states contribute to the glory sig-
nal Jglory

ηdet ≡ Jηdet (ρ = ξ = 0, φ) at the center of Jηdet (ξ, φ) [5].
Details about the computation are given in Ref. [1], where
the alternative (χ = ξ 1/2, υ = η1/2, ϕ) parabolic coordinate
system [16] was used.

By integrating Jηdet over the whole detector surface one
finds the total ionization cross section σtot. Figure 5(a)
displays the calculated hydrogenic σtot as a function of
reduced energy and for the field strength F = 680 V/cm
that corresponds to the value employed experimentally in
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Ref. [5]. For ε > 0, σtot exhibits an oscillatory behavior. The
periodicity of the observed structures increases, and their
amplitude diminishes as energy increases [23–25]. Nowadays
they are attributed to the, so-called, static field-induced states
[26] which, as their widths imply, are relatively short-lived.
On the contrary, for ε < 0, σtot is dominated by sharp and
very intense resonances which are built upon a smoothly
varying background. Their sharpness necessitated the use of
an extremely dense reduced-energy grid with a constant step
of δε = 5 × 10−5 over the full −1 � ε � 2 range. These res-
onances are also visible in the glory spectrum and belong
to long-lived, quasibound states where the electron escapes
solely via tunneling. They are not, therefore, relevant within
a classical description. For this reason, the glory signal is
divided by σtot, and the resulting scaled glory spectrum is
shown in Fig 5(b). In fact, the division by σtot was first em-
ployed experimentally [1,5] in order to minimize systematic
errors stemming from fluctuations in the experimental sig-
nal. Obviously, the division greatly reduces the importance
of resonances in the ε < 0 region. On the other hand, for
ε > 0 the aforementioned ionization cross section oscillations
have similar frequency structure with the glory oscillations but
they probe quite different phenomena [5,25,26]. In addition,
the division of the glory spectrum by σtot appears to have a
negligible effect in the positive-energy range, due to the quite
small contrast of the cross section oscillations (resulting in a
quasiconstant magnitude of σtot).

The gross features exhibited by the calculated scaled glory
spectrum of Fig. 5(b) can be summarized as follows: (i) The
negative-energy spectral structures are complex, and their
evolution is irregular. There is a dominant broad structure
around ε ≈ −0.65 and a much weaker one at ε ≈ −1, both
being of classical origin [3]. Noteworthy is the absence of
high-frequency oscillations on the former broad structure, as
compared to its red and blue side. This observation, how-
ever, cannot be generalized. (ii) The positive-energy spectrum
exhibits quasiregular oscillations at high frequency which
are modulated by lower-frequency beatings. A quasiperiodic
structuring of the ε > 0 glory spectrum is thus quite obvi-
ous, clearly indicating that the spectrum contains temporal
information. Furthermore, it is verified that this spectrum is
not dominated by a characteristic “single-frequency” period-
icity, but, rather, exhibits a periodicity that gradually increases
with energy. Hence, the so-called “short-time Fourier trans-
form” (STFT) appears as the most appropriate technique for
extracting this temporal information. The method is usually
employed for determining the varying frequency and phase
content of local fractions of a time-varying signal [27]. In
short, a selected window function is continuously dragged
along the energy axis and the Fourier transform is applied only
in the interval covered by the window. In our case, the result
of such a transformation of a one-dimensional spectrum is a
two-dimensional (2D) representation of the spectral frequency
content as a function of (reduced) energy. Among the different
windowing possibilities, we also found it more suitable to
choose a Blackman window function [28]. Finally a smooth
STFT distribution is achieved by setting the overlap between
successive energy windows to be as large as possible, i.e.,
comparable to the window width.

FIG. 6. Short-time Fourier transform (STFT) maps of the scaled
glory spectrum of Fig. 5(b), calculated for two different reduced-
energy windows wε , namely wε ≈ 0.13 (a) and wε ≈ 0.41 (b). In
both plots the overlap between successive windows is comparable to
each wε . The left y axis is expressed in atomic units of the scaled
quantity F 3/4 × t , and the above reduced-energy windows lead to
its uncertainties of ≈ 0.46 a.u. in (a) and of ≈ 0.15 a.u. in (b). The
right y axis is expressed in time units picoseconds (ps) for the specific
electric field strength F = 680 V/cm employed for the calculations
presented in Fig. 5. The inset of (a) shows the [common in (a) and
(b)] logarithmic color scale, which covers 7 orders of magnitude.
Superimposed in both STFT maps are the scaled classical time delays
F 3/4 × TOFG

k (ε) [Eqs. (32)–(34)], with k = 0 (black dashed line)
and k = 1 − 5 (white dashed lines).

Two-dimensional STFT maps derived from the computed,
scaled hydrogenic glory signal of Fig. 5(b) are displayed in
Figs. 6(a) and 6(b), where we obviously deal with the usual
frequency- (energy)-time pair, but with this pair interchanged
in the x- and y axes. The x axis is given in terms of re-
duced energy ε. For the (left) y axis we again employ the
scaled quantity F 3/4 × t expressed in atomic units, where
t refers to time differences. To get a feeling of the actual
magnitude of these time delays, the right y axis of the graph of
Fig. 6(a) is expressed in time units (ps) for the specific external
electric field value of F = 680 V/cm. Apart from the scaling,
however, it is important to remember that the details of the
produced 2D STFT representation are sensitive to the width
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of the employed energy window. For the above field strength
used in Ref. [5] we calculate Esp = −159.6 cm−1. In that
work it was found that for ε > 0 a reasonable compromise be-
tween frequency and temporal resolution would be an energy
window length of about 21 cm−1 that allows for a temporal
uncertainty of ≈ 1.6 ps. Transformed to the energy- and time
quantities employed here, the above choice corresponds to
a reduced-energy window wε ≈ 0.13 and an uncertainty of
≈ 0.46 a.u. for the scaled time difference F 3/4 × t . The
present STFT map under these conditions is given in Fig. 6(a).
While it appears adequate for the positive-energy range, it
results, however, in somewhat blurred 2D structures on the
ε < 0 side, where many fine details are lost. Therefore, for
obtaining a clearer visualization of these negative-energy
structures, the plot shown in Fig. 6(b) is constructed with a
window wε ≈ 0.41, leading to an uncertainty of ≈ 0.15 a.u.
for the quantity F 3/4 × t . Going back to the field strength of
680 V/cm, the energy window is now ≈ 65 cm−1 (about three
times larger with respect to the one employed in Ref. [5]),
leading to a time uncertainty of ≈ 0.5 ps. Below, we discuss in
some detail the so-obtained STFTs over the full −1 � ε � 2
range, using on each occasion the most appropriate graph of
Fig. 6.

Each of the 2D maps of Fig. 6 can be interpreted as a power
spectrum since it displays the weight of any given scaled
time component at a definite value of the reduced energy,
both quantities subjected to the above-mentioned respective
uncertainties. Clearly, for either Fig. 6(a) or 6(b), the situation
between the negative- and positive-energy ranges is highly
contrasted. Common in both ranges and graphs is a horizontal
branch close to t ≈ 0 that corresponds to the dc Fourier
component at each window energy location. It reflects the
“envelope” of the glory spectrum, i.e. its average over the
window length as a function of reduced energy. Let us first
note that the y-axis width of this branch for each plot is
wider than the aforementioned corresponding uncertainty of
F 3/4 × t . Furthermore, it is interesting to compare this en-
velope with the universal classical scaled glory curves [3] (see
Fig. 11 therein). Such a comparison shows that the envelope
additionally reflects phenomena of quantum origin, e.g., the
gross beating and signal cancellation behavior of the glory
spectra seen in Fig. 5(b) around ε ≈ −0.5. This cancellation
has no classical counterpart.

Apart from this branch, the positive-energy power spec-
trum reveals a strong time-frequency structuring into several
(essentially three) branches that increase monotonically with
ε. This fairly simple branch picture is obviously correlated
with the rather regular structure of the glory spectrum in this
energy range. One may remark first that in general, the high-
est the slope the faintest the branches, thus necessitating the
employment of a logarithmic color scale covering 7 orders of
magnitude. The meaning of these branches becomes evident
if one compares them with the classical scaled time delays
F 3/4 × TOFG

k (ε), k = 0 − 2 of Fig. 4(a), which are super-
imposed on both maps of Fig. 6. Comparing first with the map
of Fig. 6(a), we note that as expected [5], the classical curves
perfectly pass within the scaled-time width of the quantum-
mechanically computed hydrogenic glory STFT branches.
Nevertheless, a comparison with the map of Fig. 6(b) shows

that the classical curves still follow quite faithfully the
corresponding STFT branches, even though at the high-
est (ε > 1) reduced-energy range they marginally fail to
pass within the (much smaller) scaled-time widths of these
branches. Thus, the observed discrepancies (that worsen
as k increases) are acceptable and of the order of these
widths. Furthermore, even under these conditions the STFT
branches nicely reproduce the F 3/4ε1/2 scaling exhibited by
the classical curves at the large positive reduced-energy limit.
Therefore, the agreement between classical and quantum re-
sults in Fig. 6(b) can be characterized as very good. From a
qualitative point of view, this agreement confirms the intimate
link between glory oscillations and characteristic travel times
along classical glory trajectories. As it is mentioned above,
for ε > 0 it holds that TOFG

k (ε) ≈ (k + 1) × TOFG
k=0(ε)

(see also Fig. 4). Therefore, the main high “carrier” oscillation
periodicity of the glory signal is directly related to this char-
acteristic time, with a spectral distance between successive
peaks given roughly by (TOFG

k=0(ε))
−1

. On the other hand,
the beating pattern observed at lower spectral frequencies is
itself directly related to the difference between these char-
acteristic time differences, with the spacing between nodes
roughly proportional to the inverse of these differences. This
explicit link can be quantified in a rigorous semiclassical
approach that will be developed in a separate paper.

Let us finally focus on the negative-energy part of the
power spectrum. The above discussion pointed out the role
of the reduced-energy window wε . The latter is nothing more
than an adjustable analysis parameter, an image-processing
tool, making at least some of the details of the STFT map
structures sharper, while keeping in mind at the same time
that the computed glory spectrum as well as the classical
time-delay curves do not actually depend on any adjustable
parameter. As it becomes evident by visual inspection, the
conditions employed for creating the graph of Fig. 6(b) are
more appropriate for ε < 0. They result in an STFT map
which is highly structured, thus reflecting the complexity of
the scaled glory spectrum in this range. Particularly, a series
of closely spaced and fairly isolated “harmonics” is observed
near ε ≈ −1. These branches are monotonically decreasing
up to ε ≈ 0, where they exhibit a local minimum before they
evolve to the above-discussed positive-energy ones. In con-
trast to their positive-energy counterparts that fade away as k
increases, these branches have high and approximately identi-
cal intensity at all orders. The classical TOFG

k (ε) curves with
k > 2 shown in Fig. 6 reproduce indeed the ε < 0 monotonic
decrease and the minima of the branches (caused by the dom-
inance of their TOFG

η,k parts). Apart, however, from these
gross features the agreement between classical and quantum
results is not as good as for the positive energies, particularly
for low k � 2. Furthermore, the situation becomes even more
complicated by the presence of additional branches intercon-
necting the harmonics within this −1 � ε < 0 range. These
structures are therefore not connected to TOFG

k curves, but
it is unlikely to be related to quasibound states, since the latter
play only a minimal role in the scaled glory spectra. Hence,
here we deal again with the continua, and it is quite probable
that at least part of this information is of classical origin. Note
that as opposed to the ε > 0 case, the −1 � ε < 0 range is
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characterized by a large number of glory angles of appreciable
magnitude (see Fig. 2). Then, we may speculate that these ad-
ditional branches stem from more complicated glory-beating
terms. Stating in another, more qualitative way, the more
complex situation observed in this range, as compared to the
ε > 0 one, should stem from characteristic times that are dis-
tinctly different and no longer multiples of one another. This
would explain the irregularity of glory oscillations and the
beating patterns observed on a larger energy scale. This range
therefore requires further investigation, particularly when ex-
amining nonhydrogenic atoms where the finite size of the
ionic core is expected to introduce additional difficulties.

VI. CONCLUSION

We have presented the detailed calculation of classical
times of flight of electron trajectories, specifically within the
context of photoionization under the presence of a dc electric
field. The study has led particularly to the derivation of analyt-
ical formulas providing time delays between the trajectories
contributing to the glory signal. These formulas, evaluated
with the numerically calculated ejection angles of the glory
trajectories, have been compared with the Fourier content of
the glory signal obtained by a complete hydrogenic quantum
model. It has been shown that by applying a simple short-time
Fourier transform procedure to the strong quasiperiodic oscil-
lations and beating patterns exhibited by the quantum glory
signal in the positive-energy range, the classical time-delay
curves may be recovered.

The above connection between classical time delays and
glory-specific spectral features constitutes one of the most
striking aspects of the present work. It vividly illustrates
the principle of correspondence and the close link between
the temporal characteristics of the classical motion and the
energy differences between neighboring quantum spectral
structures. Particularly, our results extend the application of
the principle to the ionization continuum. Therefore, lying
at the core of this work, this correspondence is generalized
to the nonperiodic classical motion, in connection with the
energy differences between successive maxima of the glory
oscillations.

The agreement between classical time delays and the
Fourier content of the glory signal in the negative-energy
range is not as good as in the positive one, but still fairly
acceptable. Undoubtedly, the negative-energy range needs
further examination for the remaining discrepancies to be
understood and resolved. Additional complications are to be
expected when these studies are extended to nonhydrogenic
atoms. The challenge here is to extract the nonhydrogenic
part of the photoemission time delay and compare it with a
complete quantum modeling of the Stark effect, taking into
account the nonzero quantum defects of the atomic Rydberg
states involved.

Furthermore, these types of (classical and quantum) stud-
ies need to cover the whole map of transverse photoelectron
momentum [1], which is to be extended to nonzero radii of
impact ρ > 0, as compared to the ρ = 0 radius corresponding
to the glory signal. The extraction of classical time delays
from a hydrogenic ρ > 0 zone and over a small energy range
was already performed earlier [21]. It was initially expected to

provide access to photoemission time delays over the pi-
cosecond and femtoscale timescales (for the applied dc-field
strengths <1 kV/cm). In fact, the agreement between exper-
iment and theory was not satisfactory when different radii
points of the transverse photoelectron momentum map were
involved, these points being related to the shortest timescales.
Hence, the subject is indeed still open to investigation.

It is finally suitable to comment upon the apparent associa-
tion of the present dc-field study (where the explicit temporal
resolution of the dynamics is still lacking) with aspects of
strong, ac-laser field physics and attosecond science. In fact,
it is by now well established that glory (re-)scattering is an
essential ingredient for explaining the quantum interference
patterns in strong-field photoelectron holography and the low-
energy structures observed in strong-field atomic ionization
[29]. Furthermore, interesting associations [5] can be envi-
sioned with the study of photoemission delays [30] in the field
of ultrafast processes. From a purely intuitive point of view, it
is evident that there is a deep connection between the physics
described here and the study of photoionization delays. Nev-
ertheless, the steps to be taken in order to clearly associate the
ultimate temporal resolution and our direct observations of the
quantum properties of the outgoing electron current, remain a
qualitative challenge. This will be one of our main objectives
in the near future.

APPENDIX

The classical problem of the electron motion under the
combined action of an attractive Coulomb center and a ho-
mogeneous static electric field is fully integrable. Following
Refs. [6,10,11] the equations of motion for total electron
energy E (with E = 0 denoting the ionization threshold in
the absence of the external electric field) are separable in
parabolic coordinates as follows (in atomic units),

dξ

dτ
= 2ξ

[
1

2
E + Z1

ξ
− p2

φ

4ξ 2
− 1

4
Fξ

]1/2

dη

dτ
= 2η

[
1

2
E + Z2

η
− p2

φ

4η2
+ 1

4
Fη

]1/2

(A1)

φ̇ = 1

ξη
pφ,

where the separation constants Z1 and Z2 are related by
Z1 + Z2 = Z , with Z the atomic charge of the ion core (Z = 1
in the present case). The momentum pφ along coordinate φ,
that is, the projection of the orbital angular momentum on the
field axis, is a constant of motion. The presently examined
planar motion corresponds to pφ = 0, resulting in φ = φ0 =
constant. Then, it is easy to show that starting at the ori-
gin (ξ0 = η0 = 0), the separation constants are related to the
ejection angle β with respect to the field axis (0 � β � π )
according to

Z1 = cos2(β/2)

Z2 = sin2(β/2). (A2)

Integration of Eq. (A1) [11] provides the parabolic coordi-
nates ξ and η of the electron, as a function of the reduced-time
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variable τ [Eq. (3)] and in terms of the cosine and sine Jacobi
elliptic functions cn(x|m) and sn(x|m). Above the saddle-
point energy (E � Esp, ε � −1), i.e. the continuum energy
range, the expression of the motion along the ξ coordinate
writes as

ξ (τ ) = ξ+ sn2(ϕ(τ )|mξ )

m−1
ξ − sn2(ϕ(τ )|mξ )

, (A3)

with

ξ+ = 2([ε2 + cos2(β/2)]
1/2 − ε)

F 1/2
. (A4)

The variable and argument of the elliptic sine Jacobi func-
tion are defined, respectively, as

ϕ(τ ) = F 1/4[ε2 + cos2(β/2)]
1/4

τ (A5)

and

mξ = 1

2

(
1 + ε

[ε2 + cos2(β/2)]
1/2

)
. (A6)

Whatever the energy, the motion of the electron along
parabolic coordinate ξ is periodic in τ , with a period Tξ

defined as

Tξ = 1

F 1/4

2K (mξ )

[ε2 + cos2(β/2)]
1/4 , (A7)

where K (m) is the complete elliptic integral of the first
kind [20]. The parabolic coordinate ξ is zero whenever τ =
(k + 1)Tξ , with k a non-negative integer.

For the motion along the η coordinate, we remind that
within the continuum energy range 0 � ε � −1 there exists
a critical angle βc ≡ 2 arcsin |ε| below which the classical
motion along η is bound and ionization is classically forbid-
den. For ε � 0, βc = 0. For ε � −1 and within the interval
βc � β � π , the electron motion along the η coordinate is
given by

η(τ ) =

⎧⎪⎨
⎪⎩

η+
(

1−cn(�(τ )|mη )
sn(�(τ )|mη)

)2
for |ε| � sin (β/2)

η+
sn2(�(τ )|mη )

1−sn2(�(τ )|mη ) for ε � sin (β/2)

(A8a)

(A8b)

where the amplitude η+ is written as

η+ =
{ 2

F 1/2 sin (β/2) for |ε| � sin (β/2)

2
F 1/2 (ε − [ε2 − sin2(β/2)]

1/2
) for ε � sin (β/2)

(A9a)

(A9b)

while the variable and argument of the elliptic functions are defined, respectively, as

�(τ ) =

⎧⎪⎪⎨
⎪⎪⎩

F 1/4[4sin2(β/2)]
1/4

τ for |ε| � sin (β/2)

F 1/4

21/2 [ε + [ε2 − sin2(β/2)]
1/2

]
1/2

τ for ε � sin (β/2)

(A10a)

(A10b)

and

mη =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

mI
η = 1

2

(
1 − ε

sin (β/2)

)
for |ε| � sin (β/2)

mII
η = 2(

1+ ε

[ε2−sin2 (β/2)]1/2

) for ε � sin (β/2)

(A11a)

(A11b)

By inspection, the electron escapes to infinity as soon as the denominator in Eqs. (A8a) or (A8b) above is zero. This
corresponds to τ = T ∞

η , the latter given in Eq. (13) and reproduced below:

T ∞
η = 2K

(
mI

η

)
[4sin2(β/2)]

1/4 . (A12)

Equation (A12) holds for any ε � −1 and with mI
η given from (A11a).

Finally, the number of periods along the ξ coordinate corresponding to the electron escape to infinity is given by the ratio
Q(ε, β ) defined in Eq. (15). For a detector at infinity, it writes as

Q∞ ≡ T ∞
η

τξ

= K
(
mI

η

)
K (mξ )

[
ε2 + cos2

(
β

2

)
4sin2

(
β

2

)
]1/4

(A13)

for any ε � −1 and, again, with mI
η given from (A11a).
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