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Probing electronic motion and core potential by Coulomb-reshaped terahertz radiation
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The nature of electronic motion and structural information of atoms and molecules is encoded into strong-
field-induced radiation ranging from terahertz (THz) to extreme ultraviolet wavelength. The dependence of THz
yields in bichromatic laser fields on ellipticity and interpulse phase delay was experimentally measured, and
the trajectory calculations establish the link between the THz emission and the motion of the photoelectron
wave packet. The interaction between the photoelectron and the parent core transforms from a soft collision to
recollision as the laser field is tuned from elliptical to linear polarization, which can be reflected in THz emission.
The soft collision is found to be more effective in reconstructing electron dynamics through THz polarization,
which enables us to construct the effective core potential of the generating medium with the Coulomb-reshaped
THz radiation in an elliptically polarized laser field. Our work enables us to design innovative all-optical THz
measurements of electronic and structural dynamics.
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I. INTRODUCTION

Strong-field-induced radiation ranging from terahertz
(THz) to extreme ultraviolet wavelength contains a wealth
of structural and dynamical information of the generating
medium. High-harmonic generation (HHG) of extreme ultra-
violet photons has been widely used for molecular orbital
tomography [1,2], and the probing of electron wave packets
[3,4], nuclear dynamics, and structural rearrangement on a
subfemtosecond timescale [5–7]. Analogous to HHG, THz
wave generation (TWG) [8], also known as zeroth-order
Brunel harmonics [9], has also been considered as an all-
optical approach for probing molecular structures [10]. It was
recently used as an innovative optical attoclock [11] where
the THz polarization direction acts as a “clock hand” for
mapping the tunneling delay, laterally complementing the
currently used attoclock implemented in photoelectron mo-
mentum spectroscopy [12–15].

Strong-field-induced TWG physically originates from the
acceleration of a tunneling photoelectron wave packet in
an oscillating electric field, described macroscopically by
the photocurrent (PC) model [16] or microscopically by
a continuum-continuum transition in the strong field ap-
proximation [17,18]. In typical scenarios when fitting the
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macroscopic THz yield, the aforementioned models, neglect-
ing the Coulomb interaction between the free electron and the
parent core, suffice. Nevertheless, when employing all-optical
THz probing to investigate microscopic structures and elec-
tron dynamics, the Coulomb effect becomes highly sensitive
and thus necessitates careful consideration.

The Coulomb influence on photoelectron momentum spec-
tra and HHGs, when retrieving the photoelectron dynamics,
has been very apparent. When measuring the electron tun-
neling delay implemented by the attoclock [13–15], all those
works emphasized that the Coulomb interaction must be taken
into account, and the tunneling delay has to be correctly
disentangled from the final photoelectron momentum spec-
tra to achieve a meaningful quantitative interpretation. The
Coulomb-reshaped electronic wave packet has been encoded
in the phase of HHGs [19], which affects the accuracy of
structural tomography [2,20,21]. For TWGs, the involvement
of the Coulomb potential in microscopic information extrac-
tion, as well as the speculation on photoelectron motion and
structural information, has been rarely investigated.

Although the TWG has been well described by the PC
model [16,22], where the net residual photocurrent density
plays the core role, the photocurrent lacks more fine-grained
microscopic information of photoelectron dynamics. As the
photocurrent is essentially a macroscopic correspondence
of an asymmetric photoelectron wave packet conceptually
described by an ensemble of propagating photoelectron tra-
jectories [23,24], the TWG can be evaluated from microscopic
trajectories to account for the influence from both the external
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FIG. 1. The influence of Coulomb interaction on photoelectron
trajectories. Panel (a) shows an exemplary trajectory of a photoelec-
tron, either subjected to the Coulomb potential (red) or not (blue).
Panels (b) and (c) show the distribution of a photoelectron wave
packet as an ensemble of classical trajectories with and without
Coulomb interaction as indicated.

field E(t ) and the potential of the parent ion V (r) [25]. This
influence is experimentally substantiated by measuring the
optimal THz yields as a function of two-color phase delay
[25], as well as by examining the THz polarization under
specific polarization combinations of two-color fields [26].

In this work, according to the classical trajectory Monte
Carlo (CTMC) method, we elucidate how various types of
electron-core interactions, including soft collisions and re-
collisions, are imprinted in the TWG polarization. Meanwhile,
it reveals the equivalence between the THz polarization and
the asymmetry pointer of photoelectron momentum distribu-
tions (PMDs), which can be substantially employed for the
reconstruction of atomic core potentials.

II. COULOMB EFFECT ON THz WAVE EMISSION

In the CTMC method, within an ensemble of trajecto-
ries {i}, the ith trajectory ri(t ) is determined by solving the
equation of motion ai(t ) ≡ ∂2ri(t )/∂t2 = −E(t ) − ∇V [ri(t )]
starting from the initial tunneling time t (i)

0 . The initial condi-
tions and ionization rate wi of the CTMC method are detailed
in Appendix B. The radiation derives from the accelera-
tion of the ensemble a(t ) = ∑

i wi�(t − t (i)
0 )ai(t ), with �(t )

the Heaviside function [27,28]. The time-domain THz wave
is obtained by evaluating F−1{W F {a(t )}(ω)}(t ), with F
the Fourier transform and W the low-pass filter. Taking the
two-color bi-circularly-polarized fields, for instance, once the
electron is released from the atom, its trajectory, compared
to the path r0(t ) driven solely by the external light field,
may become a bent one r(t ) in the presence of Coulomb
interaction, as shown in Fig. 1(a).

The Coulomb effects on each trajectory eventually alter the
global distribution of the electronic wave packet. Figure 1(b)
shows the ensemble of trajectories when the Coulomb poten-
tial is absent. At an arbitrary time t , the positions of all clas-
sical trajectories, r (i)

0 (t ), correspond to the spatial distribution

FIG. 2. The THz peak-to-peak distributions in two-color fields
Spp,σ (ε, φ). Panel (a) presents an illustration of the laser fields, where
the ω-field (red) is elliptically polarized with an ellipticity ε and
the 2ω-field (blue) is circularly polarized. The ω − 2ω phase de-
lay is φ. The x direction is defined as parallel to the polarization
of the ω-field when ε = 0 (see Appendix A for a detailed definition).
The PP distributions in the x direction, Spp,x (ε, φ), are shown for
(b) the PC model, (d) experiment, and (f) CTMC. Correspondingly,
the PP distributions in the y direction, Spp,y(ε, φ), are shown in panels
(c), (e), and (g).

of the photoelectron wave packet. The radiation is induced
by the ensemble acceleration 〈a0(t )〉 = −E(t )n(t ), showing a
consistent form to the PC model [16], but with the electron
density n(t ) = ∑

i wi�(t − t (i)
0 ) as a sum over all trajectories.

When the parent ion is present, the distribution of trajectories
is slightly distorted, as shown in Fig. 1(c). The distortion may
result in observable patterns in PMD, and also equips the ac-
celeration with a correction term, 〈a(t )〉 = 〈a0(t )〉 + 〈aC (t )〉,
with 〈aC (t )〉 = ∑

i wi�(t − t (i)
0 ) ri (t )

|r3
i (t )| from the Coulomb po-

tential, inducing extra modulation in radiation.
We explore TWG in two-color fields by mixing the funda-

mental of a Ti:sapphire laser [800 nm (ω), 35 fs] with its sec-
ond harmonic [400 nm (2ω), circularly polarized]. The ω and
2ω beams have intensities of I = 1.5 × 1014 W/cm2 and I/2,
respectively. As schematically demonstrated in Fig. 2(a), we
measure the THz yield S(ε, φ) as a function of ε, the ellipticity
of the ω beam, and φ, the interpulse phase delay. The TWGs
are detected with electro-optic sampling, and the polarization
components of time-domain waveform ETHz,σ (t ) (σ ≡ x, y)
are recorded. Defining the THz peak-to-peak (PP) amplitude,
Spp,σ=±|max[ETHz,σ (t )] − min[ETHz,σ (t )]|, we measure the
dependence of Spp,σ on ε ∈[0, 1] and φ ∈[0, 2π ]. As the
absolute time zero of φ is technically challenging to deter-
mine in the experiment, we further propose a method based
on CTMC to determine φ by measuring TWG polarization
directions (see the subsequent parts). A detailed experimental
setup, raw data, and the self-referencing method are presented
in Appendix A.

Figures 2(b)–2(g) present the distributions of Spp,σ (ε, φ)
obtained from the PC model, experiment, and the CTMC
method. Contrary to the distribution of Spp,y(ε, φ) evaluated
by the PC model shown in Fig. 2(c), the experimental result
in (e) exhibits a bend along ε, which can be replicated by
the CTMC calculation in panel (g). The CTMC calculations
without Coulomb potential show the same results as the PC
model, confirming the equivalence between the two methods.
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Thus, the bend by comparison shown in Fig. 2 is confirmed
to be attributed to the Coulomb effects. The bend of Spp,y

induced by the Coulomb potential is more pronounced than
that of Spp,x, because, along the y direction, the contribution
of the Coulomb potential to the photoelectron momentum is
comparable to the momentum induced by the laser field.

Through CTMC, the TWG is closely tied to the photoelec-
tron wave packet as an ensemble of trajectories. The CTMC
model establishes a correlation between the TWGs and PMDs.
The THz emission (ETHz) from the trajectory ensemble is
expressed as the summation of individual trajectories as

ETHz(ω → 0) =
∑

i

wi

(
lim
ω→0

∫ ∞

−∞
dt

∂vi(t )

∂t
e−iωt

)

=
∑

i

wivi(∞). (1)

Here, ω represents the frequency of strong-field-induced radi-
ation, and vi(t ) and vi(∞) denote the instantaneous velocity
and asymptotic velocity (drift velocity) of the ith trajectory.
The contribution of the ith trajectory to TWG is expressed
as ETHz,i ∝ wivi(∞). The polarization direction of ETHz,i

is defined as ÊTHz,i, equivalent to the direction of asymp-
totic velocity v̂i(∞). The amplitude of ETHz,i is defined as
|ETHz,i| ∝ |wivi(∞)|. We define the asymmetry of PMDs as
Pe = ∑

i wivi(∞) with an asymmetrical direction of P̂e. ETHz

is proportional to Pe, which is equivalent to the residual pho-
tocurrent in the PC model.

In Figs. 3(a)–3(d), we present ÊTHz,i and |ETHz,i| of the
highest-weight trajectories with respect to ε and ionization
instants t0 for two selected φ = 0, π/2. Figures 3(e)–3(h)
analyze the TWGs from the trajectory ensemble, where the
calculated ÊTHz, P̂e, and measured THz polarization θTHz are
depicted in direct comparison with PMDs at ε = 0, 1. The
corresponding simulation results of ÊTHz,i, |ETHz,i|, ÊTHz, P̂e,
and PMDs without Coulomb potential are shown in Fig. 7 of
Appendix B for comparison.

For large ellipticities ε > 0.4, Figs. 3(a) and 3(b) illustrate
that ÊTHz,i smoothly changes with respect to t0. In Figs. 3(c)
and 3(d), the maxima of |ETHz,i| correspond to the peak values
of the two-color fields (dashed lines), where the tunneling
ionization rate reaches its maximum. These maxima represent
the main tunneling temporal windows. Figures 3(e) and 3(g)
for ε = 1 exhibit that ÊTHz (black solid lines) coincides with
P̂e (red solid lines), as predicted in Eq. (1). The angular
deviations observed between ÊTHz with (black solid lines)
and without (green solid lines) Coulomb potential result from
the deflection of electron trajectory induced by the Coulomb
potential, i.e., soft collision between the electron and the par-
ent ion. The angular deviation corresponds to the “streaking
angle” in the “attoclock” of PMDs [11].

As ε decreases, chaos regions and gray regions emerge,
highlighted in the red boxes in Figs. 3(a) and 3(b). The gray
regions are explained by the scenario in which the parent core
recaptures the free electron in the Rydberg state. The chaotic
regions arise from the hard recollision between the electron
and the parent core, resulting in the emission of ÊTHz,i occur-
ring near-isotropically across all 4π solid angles. Trajectories
within chaos regions that do not overlap with the maximum

FIG. 3. The trajectory analysis of THz emissions at various
ellipticities ε for two selected phase delays φ = 0, π/2. (a)–(d) Con-
tribution of the ith individual trajectory to THz emission ETHz,i with
respect to ε and ionization instants t0. Panels (a) and (c) show the
polarization direction ÊTHz,i and the amplitude |ETHz,i| at φ = 0.
Panels (b) and (d) show ÊTHz,i and |ETHz,i| at φ = π/2. (e)–(h) THz
emissions from the trajectory ensemble ETHz. The PMDs, laser elec-
tric fields (gray bold lines), THz polarization ÊTHz with (black solid
lines) or without (green solid lines) Coulomb potential, asymmetry
pointer of PMDs P̂e (red solid lines), and the experimental THz
polarization θTHz (dashed lines) are presented for comparison. The
inset in panel (f) depicts the PMD of selected trajectories in the red
box in panels (a) and (c).

region of |ETHz,i|, as depicted in Figs. 3(b) and 3(d), contribute
minimally to TWGs due to their low weight. However, when
the chaos region overlaps with the right branch of tunnel-
ing windows, shown as red boxes in panels (a) and (c), the
recollision trajectories significantly influence the TWGs. The
isotropic distribution of ÊTHz,i, as shown in the inset of panel
(f), leads to the counterbalancing of contributions from indi-
vidual trajectories. In Fig. 3(f), the angular deviations between
ÊTHz with and without Coulomb potential cannot be observed
as in the case of ε = 1. This can be explained by the scenario
that, although ÊTHz,i are deflected by the Coulomb potential,
the high-weight trajectories within the right branch of the
tunneling windows do not contribute to the TWGs, thus the
Coulomb potential is not effectively manifest in the TWGs.

When ε changes from 1 to 0, the electron-core interaction
transitions from a soft collision to a hard recollision, mani-
fested in the φ-dependent TWGs. In a hard recollision, the
random scattering breaks the homogeneous behavior of the
trajectory ensemble, diminishing the effectiveness of the en-
coding dynamics and the structural information in the TWGs.
In contrast, during a soft collision, the Coulomb potential
deflects the trajectory ensemble while maintaining its homo-
geneous behavior. In this scenario, the trajectory ensemble can
be approximately represented by the highest-weight trajec-
tory, providing a more straightforward basis for reconstructing
the electron dynamics. This analysis can be further simplified
by an analytical solution obtained through perturbatively eval-
uating the Coulomb-induced correction to the guiding center
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trajectory, where the fast timescale laser-induced oscillation
is averaged out [29]. Refer to Eqs. (D5), (D6), and (D15) in
Appendix D for more details.

III. RECONSTRUCTION OF POTENTIAL BY THz
RADIATION

The all-optical reconstruction of the core potential of the
generating medium is conceptually straightforward. If a suf-
ficiently broad spectrum of the radiated field, Ẽrad(ω), can
be acquired, the reconstructed acceleration of a photoelec-
tron, a(t ) = Erad(t ), in principle, enables us to trace the
local potential, ∇V (r) = −aC (r(t )) = −[a(t ) + a0(t )]. Mul-
tiple trajectories under a different phase delay φ, therefore,
sketch the contour of ∇V (r) as analogous to the mesh rep-
resentation of an object in an artistic wire sculpture (see
Appendix E for details).

The acceleration aC induced by the Coulomb potential be-
comes significant only when the electron-nucleus distance r(t )
is very small. Consequently, the Coulomb potential seriously
modifies the TWG during the initial phase when the electron
has just departed from the core after ionization. The TWG
modification within a narrow temporal window corresponds to
the high-frequency component of THz emissions. Theoretical
testing suggests that the accurate reconstruction of the entire
profile of the Coulomb potential would necessitate a broad-
spectrum THz coverage up to 280 THz. However, despite
recent significant advancements in generating and detecting
broadband THz emissions in gas plasma, the capabilities of
TWG generation and detection remain restricted to 100 THz.
The practical limitation in our setup allows for reliable mea-
surement only from 0.1 to 3 THz. Fortunately, the TWG is
determined by the slow timescale dynamics that are highly
sensitive to the initial stage of the photoelectron motion. As
the interaction with the parent ion can dramatically alter the
photoelectron trajectory when the electron roams around the
core within a short time after the tunneling ionization, it is
hence still possible to extract partial information by exploiting
the TWG.

This can be shown by an example in which a key parameter
of the effective potential is retrieved. We assume a Coulomb
potential V (r) = − Zeff

|r| , with Zeff the effective charge, which
reflects the strength of the Coulomb potential, to be deter-
mined. The polarization direction of TWG as a function of
phase delay φ, i.e., θTHz(φ), can be experimentally measured
by scanning φ. The absolute φ can be determined by compar-
ing the measurement and theories, including CTMC and direct
solution of the time-dependent Schrödinger equation (TDSE).
As shown in Fig. 4(a), θTHz = 0◦, 180◦ at φ = 0◦, 180◦ re-
mains identical regardless of Zeff , establishing a criterion for
determining the absolute φ (see Appendix E for a detailed
calibration).

As shown in Fig. 4(a), θTHz(φ) possesses a high correlation
with Zeff , allowing for the determination of Zeff by compar-
ing the experimentally obtained θTHz(φ) with that from the
simulation. Figures 4(b) and 4(c) present the same plots as
Figs. 3(e)–3(h) for ε = 0.4, φ = 0, π/2 as a further inspection
of the comparison of TWG polarization and angular streaking
in PMDs. The θTHz(φ) in our measurement and the emitting
angle in the “phase-of-phase (POP) attoclock” experiment

FIG. 4. Reconstruction for the effective Coulomb potential with
THz polarizations. (a) Dependence of the THz polarization direction
θTHz(φ) on time delay φ with different effective charge Zeff at ε =
0.4. (b) and (c) The same plots as Figs. 3(e)–3(h), but for ε = 0.4,
Zeff = 1 at φ = 0 and π/2, respectively.

[30] show similar evolution with respect to φ. Considering
the connection between TWGs and PMDs mentioned above, it
validates the reconstruction methodology based on TWGs and
provides a potential avenue for extracting tunneling ionization
dynamics in future studies as an alternative to the “POP atto-
clock.”

IV. CONCLUSION

In this work, we found that the dependence of THz yields
on the ellipticity and interpulse phase delay of a bichromatic
laser cannot be explained by the PC model due to the absence
of the photoelectron-core interaction. The inclusion of the
Coulomb potential in the CTMC model not only reproduces
the experimental results, but it also establishes the connection
between THz radiation and photoelectron motion. Compared
to the recollision scenario at low ellipticity, the structure
information is more efficiently encoded in the motion of a
trajectory ensemble after a soft collision at intermediate el-
lipticity. Therefore, with the support of CTMC and TDSE
simulation, we introduce a reconstruction methodology for
extracting the local potential by measuring THz polariza-
tions with respect to the two-color phase delay. The THz
polarization is equivalent to the asymmetry pointer of PMDs,
connecting our measurement and “attoclock” of PMDs. In
contrast to the angular offset in the conventional “attoclock,”
our experiment allows for a precise and easy-to-implement
determination of THz polarization. Furthermore, TWGs emit-
ted from condensed-phase media provide an opportunity to
extract electron motion and structure in the bulk solid or liquid
targets.
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FIG. 5. Schematic illustration of the experimental setup. DM:
dichroic mirror; BBO, beta barium borate; PM, parabolic mirror;
λ/4 and λ/2, quarter-wave plate and half-wave plate. A phase stabi-
lization module based on a Mach-Zehnder interferometer is used to
eliminate the phase jitter between the two-color pulses. The elliptic-
ity of an 800 nm pulse is adjusted from −1 to 1, and the 400 nm pulse
is circularly polarized. The x- or y-polarized THz waveforms can be
detected by free-space polarization-sensitive electro-optic sampling.

APPENDIX A: EXPERIMENT AND DATA PROCESSING

The experimental setup is illustrated in Fig. 5. Horizontally
polarized (x-polarized) fundamental pulses with a repetition
of 1 kHz, a center wavelength of 800 nm, a pulse duration
of 35 fs, and a pulse energy of 2 mJ are delivered by a
Ti:sapphire amplifier. After passing through a 200-µm type-I
beta barium borate (β-BBO) crystal with a double-frequency
efficiency of ∼30%, the two-color (ω − 2ω) laser pulses are
then split into two independent paths by a dichroic mirror
(DM). In the 2ω path, the 400 nm laser is fixed to be circularly
polarized by appropriately adjusting the quarter-wave plate
(λ/4@400 nm). In the ω path, as shown in the inset, the
optical slow axis of the quarter-wave plate (λ/4@800 nm) is
fixed along the horizontal direction (x axis). By rotating the
half-wave plate (λ/2@800 nm) to change the angle θ between
the polarization direction of the ω beam and the optical slow
axis of the quarter-wave plate from −45◦ to 45◦, thus the
ellipticity ε of the ω beam can be regulated from −1 to 1.
Finally, the separated paths of the ω − 2ω beam are combined
by another dichroic mirror and then focused by a 100-mm
focus-length off-axis parabolic mirror to ionize the ambient
air and generate terahertz (THz) radiation.

When implementing the experiment, the variation of the
ω − 2ω phase delay φ can be achieved by changing the posi-
tion d of the BBO crystal. Specifically, due to the difference of
the ω − 2ω refractive indices in the air, moving BBO forwards
or backwards a distance of ∼5.5 cm along the propagation
direction corresponds a phase delay of 2π of an 800 nm
electric field. Note that in order to eliminate the relative phase
jitter between the ω-2ω pulses mainly caused by mechanical
vibration and airflow, a phase-stabilization module based on a
Mach-Zehnder interferometer is adopted [31]. In this module,
a mirror fixed on a piezoelectric transducer is employed to
compensate for the phase jitter, and φ is stabilized by actively
locking the phase of the interference fringes, which is formed
by a He-Ne laser of 632.8 nm and detected by a CCD camera.
The horizontal and vertical polarized components of THz
temporal waveforms are measured by polarization-sensitive
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FIG. 6. Row data of THz yield measurements. (a) and (b) x- and
y-polarized THz electric field peak-to-peak amplitudes as a function
of the polarization orientation of 800 nm fields θ and the BBO posi-
tions d represented by Sx (d, θ ) and Sy(d, θ ). After data processing,
they are realigned and converted into the THz yields as a function of
ω−2ω phase delays φ and the ellipticity of 800 nm electric fields ε

[Sx (φ, ε) and Sy(φ, ε) in Fig. 2 in. the main text].

free-space electro-optic sampling [32]. Sx and Sy are x- and
y-polarized THz peak-peak amplitudes, which can be obtained
from the THz waveforms.

In a data-acquisition procedure, ε of the 800 nm beam can
be scanned by changing the polarization orientation of 800 nm
polarization represented by θ . At each θ , corresponding to
different ε, the BBO position d is moved along the propa-
gation direction to scan the φ, and Sx and Sy are recorded as
a function of d . When θ is changed by rotating the half-wave
plate (λ/2@800 nm), the minor phase drift between the two
paths of a Mach-Zehnder interferometer is introduced, which
leads to the phase shift of periodic THz yields S(d ) at different
θ , as shown in Fig. 6. Comparing Figs. 6(a) and 6(b), the phase
shift of Sx continuously evolves along the θ axis, whereas
the Sy phase evolution is apparently distorted close to θ = 0.
To straightforwardly compare S(φ) at different ε, we realign
and convert S(d, θ ) to S(φ, ε) with a self-referencing method,
where Sy(φ) is calibrated regarding Sx(φ) as a reference. At
any θ , we realign Sx(d, θ ) by translating Sx(d, θ ) along the d
axis by an offset �d (θ ) to fix its maximum at φ = π , and then
the translation of the same magnitude �d (θ ) is correspond-
ingly implemented on Sy(d, θ ). The procedure is repeated at
each θ . The realigned result is plotted in Fig. 2 in the main
text.

APPENDIX B: NUMERICAL ANALYSIS WITHOUT
COULOMB POTENTIAL

In this Appendix, we will present the emission angles of
photoelectron, THz yield, polarization, and photoelectron mo-
mentum distribution (PMD) in the absence of the Coulomb
potential. By comparing these results with those in Fig. 3 in
the main text, we aim to analyze the influence of the Coulomb
potential under different conditions. The content presented
in Fig. 7 aligns with Fig. 3 in the main text but without
the Coulomb potential. As shown in Figs. 3(a)–3(d), in the
absence of the Coulomb potential, regardless of the varia-
tions in ellipticity and phase difference, the emission angles
of photoelectrons and THz yield do not exhibit any peculiar
regions caused by rescattering. Therefore, in the absence of
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FIG. 7. The CTMC analysis of TWG at different laser elliptic-
ities. The emitting angle of the most probable trajectory released
at different times (top panels) and the related TWG yields (middle
panels) are presented for φ = 0 and π/2 as indicated. The bottom
panels show comparisons of θTHz with (black solid lines) and without
Coulomb potential, and P̂e (red solid lines), for ε = 1 and 0 as
indicated. The PMD and the laser field (gray bold lines) are also
shown for reference.

rescattering and distortion caused by the Coulomb potential,
as illustrated in Figs. 3(e)–3(h), the THz polarization direction
aligns perfectly with the asymmetry direction of PMD. Taking
ε = 0 as an example, under small ellipticities, the generated
photoelectrons concentrate at the two peaks of the electric
field at φ = 0. Comparing with Figs. 3(a) and 3(c) in the
main text, the photoelectron emission angles due to ioniza-
tion at the left peak are slightly distorted by the Coulomb
potential, causing a small deviation around π . However, at
the right peak, the scattering effects induced by the Coulomb
potential offset each other, resulting in the THz polarization
direction in Fig. 3(f) in the main text aligning closely with the
photoelectron emission angle at the left peak. When φ = 0,
ε = 0, the generated photoelectrons for THz emission concen-
trate at a single peak of the electric field. Furthermore, due to
the distortion induced by the Coulomb potential, the emission
angle, originally at π/2, shifts to π . This ultimately results in
the change of THz polarization from Fig. 7(h) to Fig. 3(h) in
the main text.

APPENDIX C: TRAJECTORY ANALYSIS
WITH COULOMB POTENTIAL

The TWG polarization direction points to the asymp-
totic direction of the photoelectron trajectory since ETHz =
limω→0

∫ ∞
−∞ dt a(t ) e−iωt = v(∞). Thus, the TWG is closely

tied to the photoelectron wave packet as an ensemble of
trajectories. The asymmetry of the asymptotic photoelectron
wave packet is equivalent to the residual photocurrent in the
PC model, which is the origin of net THz yield. Hence, the
orientation of the asymmetrical distribution of the photoelec-
tron wave packet determines the TWG polarization direction.
The wave packets driven by different parameters (ε, φ) of

FIG. 8. The THz yields Spp,σ (ε = 1, φ) and the distributions of a
photoelectron wave packet as a function of time delay φ in two-color
laser fields of ε = 1 as shown in the bottom-right inset. Without
Coulomb interaction, the distributions of wave packets as ensembles
of classical trajectories are shown in panels (a)–(c), respectively,
for φ = 0, π/4, and π/2. In comparison, the distributions of the
wave packet with Coulomb interaction are shown in (d)–(f). The
normalized components of PP values, Spp,σ (φ) (σ = x, y), from the
experiment (square symbol with error bar) and trajectory-based cal-
culation (solid line), are presented in (g) and (h) for the THz emission
without and with Coulomb interaction. The shaded regions, as la-
beled from “a” to “f,” correspond to the wave packets in panels
(a)–(f) . The colors of the axes in panels (a)–(f) agree with that of
components Spp,x (φ) (blue) and Spp,y(φ) (orange) in panels (g) and
(h) for visual convenience.

the external fields are subjected to the different Coulomb
interaction, affecting the TWG process by means of altering
the distribution of the photoelectron wave packet.

When ε = 1, Figs. 8(a)–8(c) show the fanlike wave-packet
distributions with their directions changing with φ. When
the Coulomb interaction is present, the distributions remain
fanlike, as shown in Figs. 8(d)–8(f), while their pointing direc-
tions are slightly changed, reassigning the TWG polarizations.
As shown in Fig. 8(h), both Spp,x(φ) and Spp,y(φ) are shifted
along φ when the Coulomb interaction is present. It is note-
worthy that, Spp,y(φ) being coordinated with Spp,x(φ), the cal-
ibration of Spp,x(φ) results in the concurrent shift of Spp,y(φ).
Therefore, the distribution of Spp,y(φ) relative to Spp,x(φ) with
the Coulomb effect, as shown by Fig. 8(h), is roughly the same
as that of Fig. 8(g) without the Coulomb effect.

When ε = 0, the wave-packet distribution is dramatically
altered by the change of φ as shown in Figs. 9(a)–9(f). It
appears from a scissorlike distribution at φ = 0 towards the
single-branch distribution at φ = π/4 and finally reaches a
fan-shaped distribution when φ = π/2. The Coulomb inter-
action also rotates the global distribution counterclockwise
with increasing φ, but the deformation of wave-packet distri-
bution dominates the change of the asymmetry. When φ = 0,
there are two peaks of electric field in each cycle where the
photoelectron mainly emits, inducing the bifurcation of the
wave-packet distribution as shown in Fig. 9(a). Both branches
are almost located in the negative x half-plane, causing the
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FIG. 9. The THz yields Spp,σ (ε = 0, φ) and the distributions of a
photoelectron wave packet as a function of time delay φ in two-color
laser fields of ε = 0 as shown in the bottom-right inset, with the same
notation as in Fig. 8.

relatively high asymmetry towards the −x direction, as shown
by Spp,x in region “a” of panel (g). The two branches have
y components of opposite signs but roughly the same ampli-
tude, resulting in vanishing asymmetry and Spp,y � 0. In the
presence of the Coulomb potential, the high-weight trajecto-
ries in the lower branch undergo “hard” rescattering with the
parent ion, leading to the recapture by the parent ion to form
Rydberg states [33]. While the recaptured electron contributes
to HHGs, it reduces the number of effective trajectories. This
reduction, as shown by the shrinking of the lower branch
in panel (d), results in the increased asymmetry towards the
positive y direction in region “d” of panel (h). When φ =
π/4, the wave packet without Coulomb interaction shows a
relatively symmetric distribution about the y-axis, summing
to a relatively small value of Spp,x in region “b” of panel
(g), while the presence of the Coulomb potential maximizes
the asymmetry, leading to the most efficient THz emission
in the −x direction, as shown in region “e” of panel (h).
When φ = π/2, the fanlike wave packet is shifted towards
the −x direction by the Coulomb potential. It increases the
asymmetry on the x direction, while the asymmetry along
the y direction is suppressed, as we compare Spp,σ in region
“c” of panel (g) and “f” of panel (h). The pattern analysis
of the wave packet indicates that the distribution of the pho-
toelectron wave packet, particularly the symmetry during its
propagation, is inherently embedded in TWGs. In addition, we
examined the PP curves of THz with the Coulomb potential in
two directions as shown in Figs. 8(h) and 9(h), corresponding
to ε = 1 and 0 in Figs. 2(f) and 2(g) in the main text. By
analyzing the cases for φ = 0 (in regions “c” and “e”) and
φ = π/2 (in regions “d” and “f”), comparing the results of
THz polarization as illustrated in Figs. 3(e)–3(h) in the main
text, we observed the THz yield in the x and y directions,
corresponding to the projection of THz polarization in the
x and y planes. Therefore, examining the influence of the
Coulomb potential on THz yield in two directions is essen-
tially equivalent to analyzing its effects on THz polarization.

APPENDIX D: COULOMB EFFECTS ON THZ
WAVE EMISSION

The TWG is calculated using the classical trajectory Monte
Carlo (CTMC) method, which has been widely applied to
understand strong field physics from a classical perspective.
When subject to an intense light field E (t ), an atom can be
ionized via tunneling ionization, by which the electron tunnels
through the atomic potential barrier in the plane of the laser
polarization. The ionization rate, as described by the Am-
mosov, Delone, and Krainov tunneling theory [34,35], is given
by wi = w(t (i)

0 )w(p(i)
⊥ ), dependent on both the tunneling time

t (i)
0 and the initial transverse momentum p(i)

⊥ (perpendicular to
the instantaneous laser polarization). Here, index i is used to
label the ith photoelectron. The t (i)

0 -dependent weight is given
by

w
(
t (i)
0

) = 4

[
2κ2∣∣E(

t (i)
0

)∣∣
] 2

κ
−1

exp

[
− 2κ3

3
∣∣E(

t (i)
0

)∣∣
]
,

with κ = √
2Ip and Ip the atomic ionization potential, and the

p(i)
⊥ -dependent weight reads

w(p(i)
⊥ ) = κ

|E (t0)|

(
p(i)

⊥
π

)
exp

[
−κ (p(i)

⊥ )2∣∣E(
t (i)
0

)∣∣
]
.

When sampling for the simulation, both t (i)
0 and p(i)

⊥ are
independent random variables of uniform distribution, t (i)

0 ∼
U (0, T0) and p(i)

⊥ ∼ U (−3σ⊥, 3σ⊥), with σ⊥ = √
E (t0)/κ and

T0 the pulse duration.
When subject to both the external light and Coulomb fields,

the photoelectron propagates following the equation of motion

d2

dt2
r(t ) = −E(t ) − r(t )

|r(t )|3
with r(t ) its trajectory. For the ith trajectory, at the
initial time t (i)

0 , the initial longitudinal momentum is 0
(p(i)

‖ = 0) and the initial transverse momentum is given by

p(i)
0 ≡ [p(i)

0x, p(i)
0y, p(i)

0z ] = p(i)
⊥ [− cos α sin β, sin α sin β, cos β],

where α is the angle between the instantaneous electric
field E(t (i)

0 ) and the positive x-axis, and β is the angle
between p(i)

⊥ and the positive z direction [24,36]. The initial
position is given by r(i)

0 ≡ [r (i)
0x , r (i)

0y , r (i)
0z ] = r (i)

0 [cos α, sin α, 0]

in terms of the classical turning point r (i)
0 = −Ip/|E (t (i)

0 )|
[37,38].

All trajectories contribute to the ensemble, 〈r(t )〉 =∑
i wi�(t − t (i)

0 )ri(t ), and the acceleration of the ensemble
reads 〈a(t )〉 = ∑

i wi�(t − t (i)
0 )ai(t ). The measurable THz

signal is retrieved as the low-frequency radiation produced by
the motion of the ensemble. We apply the Fourier transform
to a(t ), F {〈a(t )〉}(ω), and we filter out the low-frequency
component when ω → 0 to extract the THz wave. Finally, the
dependence distributions Spp,σ (ε, φ) (σ = x, y) are evaluated
as shown by Figs. 2(f) and 2(g) in the main text.

1. Contribution of the laser field on the THz wave

The radiation derives from the acceleration of the ensemble
a(t ) = ∑

i wi�(t − t (i)
0 )ai(t ). Defining ã(ω) ≡ F {a(t )}(ω)
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its frequency-domain counterpart, the contribution to the ra-
diation consists of two parts, ã0(ω) solely from the laser field
and ãC (ω) from the Coulomb interaction,

ã(ω) = ã0(ω) + ãC (ω). (D1)

Given the analytic expression of E (t ), the acceleration for the
radiation reads

ã0(ω) = −
∑

i

wi

∫ ∞

t (i)
0

dte−iωt E(t ). (D2)

As discussed in Appendix D, the initial transverse momentum
presents a normal distribution centering at p⊥ = 0. Thus, we
only consider the contribution of trajectories of the largest
weight vi(t

(i)
0 ) = 0. We assume that the two-color (ω − 2ω)

laser fields E(t ) = [Ex(t ), Ey(t ), 0] have equal electric ampli-
tudes, and the ω-field is circularly polarized as described by

Ex(t ) = E f (t )

[
1√

1 + ε2
1

cos(ω1t + φ0)

+ k√
2

cos(2ω1t + φ0 + φ)

]
, (D3)

Ey(t ) = E f (t )

[
ε1√

1 + ε2
1

sin(ω1t + φ0)

+ k√
2

sin(2ω1t + φ0 + φ)

]
(D4)

with φ ∈ [0, 2π ] the phase delay between ω and 2ω laser
pulses, and φ0 = π/2 is the initial phase of the laser fields.
The k = 1√

2
is the field-strength ratio of ω and 2ω laser

pulses. The envelope f (t ) = e− (t−tc )2

2σ2 is given by a Gaussian
profile. The amplitude of the electric fields E = 0.07 a.u. is
used for both CTMC and PC calculations. The ellipticity of
the ω-field is tunable, ε1 ∈ [−1, 1]. As φ0 is a constant and
does not affect the subsequent calculations, we omit it in the
following computations and add it in the last step. To evalu-
ate

∫ ∞
t (i)
0

dtE(t )e−iωt in Eq. (D2), we first solve the half-sided
Fourier transform of trigonometric functions as presented in
Eqs. (D3) and (D4),∫ ∞

t0

dte− (t−tc )2

2σ2 sin(ω1t + φ)e−iωt

= i

√
π

8
σ

[ ∑
±

(±)e−iφ±(t0 )− (ω±σ )2

2

+e− (t0−tc )2

2σ2

∑
±

(∓)e−iφ±(t0 )w

(
i
t0 − tc√

2σ
− ω±σ√

2

)]

×
∫ ∞

t0

dte− (t−tc )2

2σ2 cos(ω1t + φ)e−iωt

=
√

π

8
σ

[ ∑
±

e−iφ±(t0 )− (ω±σ )2

2

−e− (t0−tc )2

2σ2
∑
±

e−iφ±(t0 )w

(
i
t0 − tc√

2σ
− ω±σ√

2

)]
,

where ω± = ω ± ω1, φ±(t0) = ω±t0 ± φ, and w(z) is the Fad-
deeva function.

In the low-frequency domain where ω � ω1, the first term

in both integrals vanishes as e− (ω±σ )2

2 � 0, and the above inte-
grals can be approximated by

∫
dte− (t−tc )2

2σ2 sin(ω1t + φ)e−iωt

� i

√
π

8
σe− (t0−tc )2

2σ2

∑
±

(∓)e−iφ±(t0 )w

(
i
t0 − tc√

2σ
− ω±σ√

2

)
,

∫
dte− (t−tc )2

2σ2 cos(ω1t + φ)e−iωt

� −
√

π

8
σe− (t0−tc )2

2σ2
∑
±

e−iφ±(t0 )w

(
i
t0 − tc√

2σ
− ω±σ√

2

)
.

For the two-color laser fields of Eqs. (D3) and (D4),

∫ ∞

t (i)
0

dtEx(t )e−iωt

= E1√
1 + ε2

1

∫ ∞

t (i)
0

dt f1(t ) cos(ω1t )e−iωt

+ E1√
2

∫ ∞

t (i)
0

dt f1(t ) cos(2ω1t + φ)e−iωt

= −E1

√
π

8
σe− (t0−tc )2

2σ2

[∑
± e−iφ±(t0 )w

(
i t0−tc√

2σ
− ω±σ√

2

)
√

1 + ε2
1

+k

∑
± e−iφ2±(t0 )w

(
i t0−tc√

2σ
− ω2±σ√

2

)
√

2

]
, (D5)

∫ ∞

t (i)
0

dtEy(t )e−iωt

= E1ε1√
1 + ε2

1

∫ ∞

t (i)
0

dt f1(t ) sin(ω1t )e−iωt

+ E1√
2

∫ ∞

t (i)
0

dt f1(t ) sin(2ω1t + φ)e−iωt

= iE1

√
π

8
σe− (t0−tc )2

2σ2

[
ε1

∑
±(∓)e−iφ±(t0 )w

(
i t0−tc√

2σ
− ω±σ√

2

)
√

1 + ε2
1

+k

∑
±(∓)e−iφ2±(t0 )w

(
i t0−tc√

2σ
− ω2±σ√

2

)
√

2

]
, (D6)

where ω2± = ω ± 2ω1 and φ2±(t ) = 2ω±t0 ± φ. With
Eqs. (D5) and (D6), we evaluate the THz yield contributed by
the trajectory launched at different times, and then we obtain
the distribution of Spp,σ (ε, φ) from C-C fields to C-L fields
as shown in Figs. 10(a) and 10(b), in good agreement with
distributions evaluated by the PC model [Figs. 2(b) and 2(c)
in the main text].
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FIG. 10. The PP distribution in the x-direction, Spp,x (ε, φ), is
shown for a CTMC analytic calculation (a) without Coulomb po-
tential and (c) with Coulomb potential. Similarly, the corresponding
distributions of PP in the y-direction, Spp,y(ε, φ), are shown in the
right panels (b) and (d).

2. Derivation of time-averaged photoelectron trajectories

When the released photoelectron is rapidly pulled away by
the external light field and never returns close to the ionic
core, the second term ãC (t ) induced by the Coulomb poten-
tial usually can be described by the first-order perturbation,
ã(0)

C (t ) = − r0(t )
|r0(t )|3 with regard to the zeroth-order trajectory

r0(t ) without Coulomb correction,

r0(t ) =
∫ t

t0

dt ′
∫ t ′

t0

dt ′′a0(t ′′) + v0(t − t0) + r0. (D7)

With a0(t ) = −E(t ), substituting Eq. (D3) into Eq. (D7), the
component in the x direction reads

rx(t ) = − E√
1 + ε2

1

∫ t

t0

dt ′
∫ t ′

t0

dt ′′ f (t ′′) cos(ω1t ′′)

− kE√
2

∫ t

t0

dt ′
∫ t ′

t0

dt ′′ f (t ′′) cos(2ω1t ′′ + φ)

+ vx0(t − t0) + rx0.

The relatively long pulse used in TWG usually enables us to
solve the integral considering the slowly varying envelope,∫ t

t0

dt ′
∫ t ′

t0

dt ′′ f1(t ′′) cos(ω1t ′′)

� − f1(t ) cos(ω1t )

ω2
1

+ f1(t0) cos(ω1t0)

ω2
1

− f1(t0) sin(ω1t0)

ω1
(t − t0)

and we obtain

rx(t ) = − E1√
1 + ε2

1

f1(t0)

ω2
1

[− cos(ω1t ) + cos(ω1t0)

− ω1 sin(ω1t0)(t − t0)]

− kE1√
2

f1(t0)

4ω2
1

[− cos(2ω1t + φ) + cos(2ω1t0 + φ)

− 2ω1 sin(2ω1t0 + φ)(t − t0)] + vx0(t − t0) + rx0.

In each set of square brackets, the first term describes the
oscillation of optical frequency; the second term, being con-
stant, derives from the initial condition of the trajectory; the
third term, being linear to the propagation time, describes the
overall profile of the trajectory on the long timescale.

To describe the TWG, the rx(t ) can be simplified with
the low-pass filter by neglecting the first term of short-time
oscillation,

rx(t ) � E1 f1(t0)

ω1

[
sin(ω1t0)√

1 + ε2
1

+ k
sin(2ω1t0 + φ)

2
√

2

]
(t − t0)

− E1 f1(t0)

ω2
1

[
cos(ω1t0)√

1 + ε2
1

+ k
cos(2ω1t0 + φ)

4
√

2

]

+ vx0(t − t0) + rx0.

Similarly, we have the component in the y direction,

ry(t ) � −E1 f1(t0)

ω1

[
ε1 cos(ω1t0)√

1 + ε2
1

+ k
cos(2ω1t0 + φ)

2
√

2

]

× (t − t0)

− E1 f1(t0)

ω2
1

[
ε1 sin(ω1t0)√

1 + ε2
1

+ k
sin(2ω1t0 + φ)

4
√

2

]

+ vy0(t − t0) + ry0.

Both expressions take the slope-intercept form,

rx(t ) = ax(t − t0) + bx, (D8)

ry(t ) = ay(t − t0) + by, (D9)

where

ax = E1 f1(t0)

ω1

⎡
⎢⎣ sin(ω1t0)√

1 + ε2
1

+ k
sin(2ω1t0 + φ)

2
√

2

⎤
⎥⎦,

bx = −E1 f1(t0)

ω2
1

⎡
⎢⎣cos(ω1t0)√

1 + ε2
1

+ k
cos(2ω1t0 + φ)

4
√

2

⎤
⎥⎦

+ vx0(t − t0) + rx0,

ay = −E1 f1(t0)

ω1

⎡
⎢⎣ε1 cos(ω1t0)√

1 + ε2
1

+ k
cos(2ω1t0 + φ)

2
√

2

⎤
⎥⎦,

by = −E1 f1(t0)

ω2
1

⎡
⎢⎣ε1 sin(ω1t0)√

1 + ε2
1

+ k
sin(2ω1t0 + φ)

4
√

2

⎤
⎥⎦

+ vy0(t − t0) + ry0.
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FIG. 11. The typical photoelectron trajectories are shown in
(a) and (b) when ε1 = 1 and ε1 = 0, φ = 0, respectively. Trajec-
tory r0(t ) without Coulomb potential (blue) and its approximation
evaluated by Eqs. (D8) and (D9) with a low-pass filter (purple). The
corresponding Coulomb-corrected trajectory r(t ) (red) and its ap-
proximation evaluated by Eqs. (D8) and (D9) but with characteristic
parameters a′

σ and b′
σ substituted by the ones for r(t ) (green).

Typical trajectories r0(t ) and their approximation with a
low-pass filter are illustrated in Fig. 11. When ε = 1, the
long-term trajectory r0(t ) evaluated by Eqs. (D8) and (D9)
roughly agrees with the numerical solution r(t ), since the
Coulomb potential only perturbatively affects the motion of
the photoelectron. When ε = 0, the close approach of the
electron back to the parent ion during its propagation in-
curs strong a Coulomb interaction that dramatically alters
the photoelectron trajectory, thereby invalidating the use of
r0 for the calculation. Nevertheless, trajectory r(t ) in the
long term still presents a straight-line path as depicted by
Eqs. (D8) and (D9), but with characteristic parameters a′

σ and
b′

σ substituted by the ones for Coulomb-corrected trajecto-
ries. Therefore, it is straightforward to derive the contribution
of the Coulomb interaction to the radiation, aC (t ) = − r(t )

|r(t )|3 ,
with r(t ) approximated by a straight line of characteristic
parameters.

3. Contribution of the Coulomb potential
on the THz wave

Denoting the Coulomb correction aC (t ) in the frequency
domain as ãC (ω), we have

ãC (ω) = −
∫ ∞

−∞
dt�(t − t0)

r(t )

|r(t )|3 e−iωt . (D10)

Substituting r(t ) by the approximated components Eqs. (D8)
and (D9), the integrand r(t )

|r(t )|3 can be expressed explicitly as a

function of t ,

rσ

|r|3 = aσ t + cσ

|a|3(t2 + c)3/2
, (D11)

where a = (ax, ay), b = (bx, by), cσ = bσ − aσ
a·b
a2 , c =

a2b2−(a·b)2

a2 , and we have applied the substitution t → t − t0 +
a·b
a2 . Thus the component of Eqs. (D10) reads

ãC,σ (ω) = − 1

|a|3 e−iω(t0− a·b
a2 )

∫ ∞

a·b
a2

dt
aσ t + cσ

(t2 + c)3/2
e−iωt . (D12)

With a two-order convergence integrand, the integral will
fast converge beyond a moderate Tc. This leads to the new
truncated form

ãC,σ (ω) = − 1

|a|3 e−iω(t0− a·b
a2 )

∫ Tc

a·b
a2

dt
aσ t + cσ

(t2 + c)3/2
e−iωt . (D13)

In the low-frequency limit ω → 0, e−iωt = ∑
n

(−i)n

n! ωntn, we
have

ãC,σ (ω) = − 1

|a|3 e−iω(t0− a·b
a2 )

∑
n

(−i)n

n!
ωn

×
∫ Tc

a·b
a2

dt
aσ t n+1 + cσ t n

(t2 + c)3/2
(D14)

with the integral taking the analytical form in terms of the
hypergeometric function F (a, b; c; z),∫

dt
aσ t n+1 + cσ t n

(t2 + c)3/2
= t n+1

c3/2

[
aσ t

n + 2
F

(
3

2
, 1 + n

2
; 2 + n

2
; − t2

c

)

+ cσ

n + 1
F

(
3

2
,

1 + n

2
;

3 + n

2
; − t2

c

)]
.

The first two-order terms of ãC,σ (ω) are given by

ã(1)
C,σ = − 1

|a|3 e−iω(t0− a·b
a2 )

{
aσ c

(√
t2+c

c − 1
) + cσ t

c
√

t2 + c

+
[

aσ − aσ arcsinh

(
t√
c

)
− 3cσ√

c

]
iω

}∣∣∣∣∣
Tc

a·b
a2

= − 1

|a|3 e−iω(t0− a·b
a2 )

{(
aσ√

c
+ cσ

c

)

+
[

aσ − aσ arcsinh

(
Tc√

c

)
− 3cσ√

c

]
iω

}

≈ − 1

|a|3 e−iω(t0− a·b
a2 )

(
aσ√

c
+ cσ

c

)
. (D15)

As higher-order terms are negligibly small compared
to ãC,σ (ω), here we only consider the zeroth term. This
zeroth-order justification is consistent with the slowly varying
properties of e−iωt at low ω, which is of almost constant
duration in the fast convergence of the original function in
[ a·b

a2 , Tc]. Once given the characteristic parameters aσ , bσ of
photoelectron motions, the Coulomb contribution to the radi-
ation can be evaluated by Eq. (D15).
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FIG. 12. Scheme of sketching the local potential by classical trajectories. (a) “Wire sculpture” of the local potential. The surface represents
the x-component of −∇V (r), and each trajectory (dashed line) represents the component of aC (r) ≡ aC (r(t )) = aC (t ) that can be acquired from
all-optical measurement. By scanning over the time delay φ, the set of classical trajectories {aC (r)} sketches the potential energy surface. (b) The
dependence of the THz polarization direction θTHz(φ) on time delay φ with different effective charge Zeff . (c) The normalized components of
y-polarized peak-to-peak values of THz electric fields, Spp,y(φ), predicted by TDSE simulation at ε = 0.4 with different intensities of laser
fields Epeak.

In Fig. 10, we present a comparison of the distribution of
PP values obtained by analytical calculation with Eqs. (D5),
(D6), and (D15). The distribution of the y component shows
a clear phase shift, as measured in experiment, justifying the
analysis of the trajectory-based model.

APPENDIX E: DETAILS OF THE RECONSTRUCTION
PROCEDURE

The all-optical reconstruction is conceptually straightfor-
ward concerning the classical motion of the photoelectron.
The laser fields can be manipulated by scanning the time
delay φ to control photoelectron trajectories to traverse the
region of interest around the parent core. Taking the two-color
fields of circular and elliptical polarizations, for instance, the
tunneling ionization with varying φ results in the emission of
photoelectrons in different directions.

If a sufficiently broad spectrum of the radiated field,
Ẽrad(ω), can be acquired, the reconstructed acceleration
of a photoelectron, a(t ) = Erad(t ), in principle, enables us
to trace the local potential, ∇V (r) = −aC (r(t )) = −[a(t ) +
a0(t )]. The theoretical testing indicates that the reconstruction
method requires a wide bandwidth measurement exceeding
280 THz in order to accurately sketch the Coulomb potential.
From a classical perspective, as in Fig. 7(a), trajectories of
different φ contain information about the effective potential
in different regions. Multiple trajectories under different φ,
therefore, sketch the contour of ∇V (r) as analogous to the
mesh representation of an object in an artistic wire sculpture
(see Fig. 12).

The reconstruction procedure is implemented using the
following steps: (i) For each φ, measure Ẽrad(ω) including
Coulomb effects, as well as the intensities of two-color fields,
which are used to calculate ã0(ω) without Coulomb effects by
means of either PC or CTMC without Coulomb correction.
(ii) Filter out the rapidly varying oscillation of Ẽrad(ω) and
ã0(ω) using a low-pass filter W while retaining the slowly
varying component W [Ẽrad(ω)] and W [ã0(ω)]. (iii) Obtain
a(t ) = F−1{W [Ẽrad(ω)]} and a0(t ) = F−1{W [ã0(ω)]} by
performing Fourier transform, which gives the accelerations

induced by the guiding-center trajectories [29]. (iv) Obtain the
acceleration induced by the Coulomb potential with aC (t ) =
a(t ) − a0(t ). Employing aC (t ) and r(t ) = ∫∫

aC (t ) dt, ∇V (r)
can be reconstructed and depicted as blue dashed lines in
Fig. 5(a) in the main text. (v) Traverse φ to sketch the shape
of the local potential. We can find that the experimental curve
matches the simulation one at Zeff = 1 very well in Fig. 5(b)
in the main text, which validates the effective charge Zeff = 1
used in our model.

It should be noted that in the reconstruction procedure,
ε can be neither too small nor too large. When ε = 0, the
photoelectrons are mostly oscillating along the x-axis, which
leads to the same θ for all phases. In this case, Z and φ0 could
not be determined. The photoelectron is also prone to recollide
with the parent core, which is unfavorable to the TWG. When
ε = 1, the Coulomb potential induces an equal rotation of
the emission direction for all φ, resulting in a similar θ (φ)
profile while only differing by a shift along φ. Since φ = 0
is technically difficult to determine precisely, ε = 1 is not
recommended for the parameter retrieval. Here, as shown by
Fig. 4(a) in the main text, ε = 0.4 is chosen to optimize the
outcome for the method.

As mentioned in the main text, even though experimen-
tal results provide spectra limited to 0.1–3 THz, information
about the Coulomb potential (such as a key parameter of
the effective potential Zeff ) in the process of photoelectron
ionization can still be obtained by measuring the polarization
direction of THz radiation.

As shown in Fig. 2(c) of Ref. [30], in which the ex-
perimental result of the emitting angle and the two-color
phase-of-phase (POP) under different laser intensities (en-
ergies) in krypton atoms was measured using attoclock
techniques, with an increase in electric field energy, the influ-
ence of the Coulomb potential diminishes, which means that
Zeff decreases. Those authors illustrate three cuts of the POP
spectrum (the POP slope with respect to the photoelectron
emitting angle) along energies of 4, 8, and 16 eV, respectively
[30]. According to the conclusion drawn in [26], the emission
angle of photoelectrons aligns with the polarization direction
of THz radiation. Consequently, the �POP and photoelectron
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emitting angle in Ref. [30] directly correspond to φ and
θTHz(φ) in our work. The curve depicting the relationship
between emitting angle and POP transforms from a 45◦ linear
slope to a double-step structure. This agrees with the trend
obtained from our reconstruction algorithm in Fig. 8(b). It is
noteworthy that in our approach, the phase delay φ of the two-
color field can be determined in the experiment. As shown
in Fig. 8(b), the direction of TWG polarization θTHz (φ =
0◦, 180◦) = 0◦, 180◦ remains unchanged regardless of Zeff .
Thus, the phase φ = 0 or φ = π can be determined when

θTHz = 0◦, 180◦ in the experiment. Furthermore, to verify the
proposed method, we conducted TDSE simulations to in-
vestigate the y-polarized THz yields SPP,y as a function of
φ and the strengths of ω electric fields Epeak. As illustrated
in Fig. 8(c), the minima of SPP,y(φ) consistently occur at
φ = 0 and φ = π for Epeak = 0.06, 0.065, 0.07 (a.u.). The
TDSE simulation not only corroborates the reconstruction
methodology in panel (b), but it also indicates the capability
to determine the absolute phase delay φ of the two-color
fields.
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