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Coherent laser cooling with trains of ultrashort laser pulses
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We propose to extend coherent laser cooling from narrowband to broadband transitions by using trains of
ultrashort broadband pulses. We analytically study two possible methods to reduce the momentum spread of
a distribution by several units of photon momentum in a single spontaneous emission lifetime. We report on
numerical simulations of one-dimensional laser cooling of a two-level system with realistic parameters. With
this scheme, coherent laser cooling can in particular be implemented in the case of fast species with a short
lifetime such as positronium.
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I. INTRODUCTION

Laser cooling is a well-established technique to increase
the phase-space density of an ensemble of particles [1,2].
It is based on the interplay of two processes. Internal-state
laser excitation is used to reduce the particles’ momentum
spread without changing entropy. Then, spontaneous emission
dissipates entropy such that the number of particles with low
momentum and in the same internal state increases. For a
momentum distribution of N internal level particles which are
initially all in the ground state, the maximum of the position-
momentum phase-space density can at most be increased by a
factor N without dissipating entropy by populating all N levels
within the same elementary part of the position-momentum
space [3]. The time it takes to compress the momentum spread
depends on the ability of the laser to move the particles with
high absolute momentum from the ground state to one of the
(N − 1) available excited states with low absolute momentum
in a time short in front of the shortest spontaneous emission
lifetime of all excited states.

For species prone to annihilation (such as positronium
[4,5], the bound state of an electron and a positron), ra-
dioactive decay, photoionization, or molecular dissociation,
interaction with the cooling laser is limited in time by the fast
disintegration of the system. For those that are also usually
produced in rather small amounts compared to stable ele-
ments, a technique allowing one to cool the whole momentum
distribution is highly desirable. Recently, the development of
coherent laser cooling techniques [6,7] demonstrated that it
is possible to hasten the process of laser cooling. In a way
similar to stimulated focusing and the deflection of atomic
beams [8], these techniques make use of a succession of ab-
sorption and stimulated emission to compress the momentum
spread in an accelerated way compared to standard Doppler
laser cooling. Coherent laser cooling has been designed for
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narrow line transitions and is currently restricted to narrow
momentum distributions by the use of modulated narrowband
lasers. Here, we propose to extend coherent laser cooling to
broad line transitions and large Doppler profiles by using
trains of ultrashort broadband pulses to drive the process.
We discuss two different methods to manipulate the momen-
tum distribution and reduce its rms in the one-dimensional
case. The first approach consists of moving the positive- and
negative-momentum halves of the Doppler profile towards
zero momentum. The second approach is designed to trans-
form the initial Maxwell-Boltzmann distribution into another
Maxwell-Boltzmann distribution with half the initial momen-
tum rms. For both methods, we derive the analytical formula
predicting the evolution of the momentum rms as a function
of the number of pulses in the train in the case of ideal
population transfer. We further test the robustness of one of
the approaches by performing numerical simulations for a se-
ries of trains of pulses interacting with a Maxwell-Boltzmann
distribution using parameters achievable with today’s laser
technology and including various realistic effects such as
nonideal population transfer, spontaneous emission, and pho-
toionization from the excited states.

II. IDENTICAL-PULSES METHOD

In this section, we first consider an ideal case based on an
N = 2 level system with an arbitrary one-dimensional dis-
tribution ρ0 describing the initial momentum population of
atoms in the ground state. First, we consider the identical
pulses method, which, after an initial desymmetrization step,
consists of swapping the populations in the ground and excited
states across the entire momentum distribution to compress
the momentum rms of the distribution as much as possible
(see Fig. 1). The population transport can be realized with
a series of identical pulses after desymmetrization. This is
the main strength of this method, and we therefore refer to it
as identical pulses. Typically, ρ0(n) is a Maxwell-Boltzmann
distribution sampled on integer multiples of h̄k (one unit of
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FIG. 1. Illustration of coherent laser cooling with identical pulses on a distribution with an initial momentum rms of � 5h̄k. Colors reflect
the electronic internal level. Blue (red) corresponds to the ground (excited) state. (a) Initial distribution. [(b)–(d)] Distributions corresponding
to M = 1 to M = 3 in Eq. (1), respectively. (e) Distribution after relaxation via spontaneous emission. The color gradient in the Gaussian
shapes represents the laser frequency chirp of pulses that could be used for this type of adiabatic population transfer. The arrow under the
Gaussian shapes represent the direction of propagation of the laser pulses. The black arrows indicate the direction of population transfer.

photon momentum), but the derivations reported in this paper
are general and apply to any type of distribution.

The system is initially in the ground state, and we consider
ideal population transfer for all pulses in the train. As a first
step, we assume that the total duration of the train is negligible
in front of the spontaneous emission lifetime of the excited
state τSE and therefore assume no transfer of population by
spontaneous emission. In the train, the first pulse (or desym-
metrization pulse) is particular and is shaped to transfer only
half of the momentum distribution [see Fig. 1(a)] from the
ground to the excited state and remove 1h̄k from all particles
with strictly positive momentum (n > 0) by absorption. The
second pulse in the train propagates in the direction opposite
to the first one and interacts with the whole momentum dis-
tribution. The particles with negative or null momentum are
transferred from the ground to the excited state and gain 1h̄k
from absorption, while the particles that were in the excited
state lose 1h̄k from stimulated emission and end up in the
ground state. A train of pulses with an alternating direction of
propagation is then used to interact with the whole distribution
and repeat the population transfer towards the lower class of
velocities. Next, we derive the analytical formula predicting
the evolution of the momentum spread as a function of the
number of pulses for the scheme we just described.

To describe the most general case, we introduce ρ1(n),
the initial distribution of momentum for atoms in the excited
state, so

∑
n[ρ0(n) + ρ1(n)] = 1. Being in the wrong initial

state, the evolution of the ρ1(n) momentum is opposite to that
of the particles in the right initial state ρ0(n). The evolution of
the momentum rms prms(M ) (in units of h̄k) with the number
of pulses in the train M can be expressed for M � 1 as

p2
rms(M ) =

∑
n�0

[n + (M − 1)]2ρ0(n) +
∑
n>0

(n − M )2ρ0(n)

+
∑
n�0

[n − (M − 1)]2ρ1(n) +
∑
n>0

(n + M )2ρ1(n).

(1)

Equation (1) corresponds to a hyperbolic behavior with a
minimum prms,m reached for Mm = �Mmc + 1

2� pulses:

prms,m =
√

p2
rms,0 + Mm(Mm − 2Mmc) + Mms. (2)

The momentum rms of the initial distribution prms,0, Mmc,
and Mms are given in Appendix. For symmetrical momentum

distributions, we note that Mms = Mmc. Equation (2) is very
general and can be used for any discrete momentum distri-
bution to evaluate how fast and by how much the standard
deviation of a distribution can be reduced under the ideal
conditions assumed to derive it. We note that, in the absence of
spontaneous emission, the entropy of the system is unchanged
throughout the laser-particle interaction. In the case of an
initial Maxwell-Boltzmann distribution of atoms all in the
ground state, it is possible to show that

lim
prms,0→∞

prms,0

prms,m
= 1√

1 − 2
π

� 1.66. (3)

For high enough initial spreads, a momentum-spread com-
pression factor close to 1.66 can be reached with this

technique using a train made of � prms,0

√
2
π

pulses.
The hyperbolic shape of prms(M ) and the existence of

an absolute minimum are intrinsic to the specific way the
different parts of the distribution are manipulated with the
identical pulses. In particular, the ground-state particles with
the smallest initial absolute momentum see their momentum
increase in absolute value. As a result, the momentum-spread
compression prms,0

prms,m
is smaller than the optimal factor of 2

allowed for two-level systems [3].

III. OPTIMAL-TRANSPORT METHOD

In order to approach the factor of 2 in momentum-spread
compression predicted by theory for a two-level system, we
introduce a second method in which only the outermost parts
of the momentum distribution are translated towards its center
at each step in order to keep a Gaussian shape for the mo-
mentum distribution (see Fig. 2). This method is inspired by
the linear rearrangement solution to the Monge-Kantorovich
problem consisting of finding the optimal transport function
dividing the rms of a Maxwell-Boltzmann distribution by a
factor of 2 with a linear cost function. We therefore refer to
it as the optimal transport method. The general idea is to
use pairs of counterpropagating pulses which do not interact
with classes of momentum in which both internal states are
populated. In a pair of counterpropagating pulses, the two
pulses are almost identical. Two consecutive pairs of pulses
are, however, different. The first pair of pulses transfers the
atoms with momentum larger than 1h̄k or smaller than −2h̄k
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FIG. 2. Illustration of coherent laser cooling with optimal transport on a distribution with an initial momentum rms of � 5h̄k. Colors
reflect the electronic internal level. Blue (red) corresponds to the ground (excited) state. (a) Initial distribution. Distributions corresponding to
(b) M = 1, (c) M = 2, and (d) M = 3 in Eq. (4). (e) Distribution after relaxation via spontaneous emission.

from the ground to the excited state with a reduction in the
absolute momentum of 1h̄k. The next pair of pulses transfers
the atoms with momentum larger than 2h̄k or smaller than
−3h̄k from the excited to the ground state, again removing
1h̄k from the absolute momentum of all particles, and so on.
In this case, the evolution of the momentum spread with the
number of pulses can be expressed for M � 1 as

p̃2
rms(M ) =

M−1∑
n=−M+1

n2[ρ0(2n) + ρ0(2n + 1)]

+
∑
n�M

n2[ρ0(n + M ) + ρ1(n − M )]

+
∑

n�−M

n2[ρ0(n − M + 1) + ρ1(n + M − 1)].

(4)
For ρ1(n) = 0, p̃rms(M ) is monotonically decreasing (see
Fig. 3), and

lim
M→∞

p̃rms(M ) =
√√√√ p̃2

rms,0

4
−

∞∑
−∞,n odd

2n − 1

4
ρ0(2n + 1).

For a number of pulses M (see Fig. 2) large compared
to the initial momentum rms, the momentum compression
factor is very close to 2. For an initial distribution such
that ∀ n ∈ Z, ρ0(2n + 1) = 0, the theoretical minimum p̃rms,0

2 is
reached. The use of optimal transport allows us to reach higher
momentum-spread compression factors at the cost of a more
complicated population manipulation. The optimal number of
pulses in optimal transport is a compromise between the level
of momentum-spread compression and the total length of the
train, which should still be short compared to the relaxation-
time constant of the system.

In Fig. 2(e), the momentum distribution is slightly asym-
metric. This is due to the discretization of the momentum
space on integers of h̄k. If, instead, the momentum space
is discretized on the half-integer multiples of h̄k, optimal
transport can be composed of pairs of exactly identical pulses
addressing classes of momentum larger than 1.5h̄k, 2.5h̄k, and
so on. In this case, the final distribution is perfectly symmetric.

IV. MULTIPLE TRAINS OF SHORT PULSES

So far, we have discussed the evolution of the momentum
distribution as a function of the number of pulses (one panel in
Figs. 1 and 2) in a single train (all panels in Figs. 1 and 2). We

will now discuss the possibility to use several trains of pulses
to further reduce the momentum spread of the distribution.
After a train with an optimal number of pulses has interacted
with the ensemble of particles, the system starts to relax to the
ground state. Once all atoms are back to the ground state, it
is possible to send a second train of pulses and further reduce
the momentum spread. The relaxation to ground state through
spontaneous emission can be modeled as an exponential decay
with a certain probability to gain or lose at most 1h̄k. Starting
from ρ0(n) and ρ1(n), exponential decay after time τ is simu-
lated by replacing ρ0(n) and ρ1(n) with [10]

ρ̄0(n, τ ) =ρ0(n) + 0.2ρ1(n − 1)e−τ/τSE

+ 0.6ρ1(n)e−τ/τSE

+ 0.2ρ1(n + 1)e−τ/τSE

ρ̄1(n, τ ) =ρ1(n)(1 − e−τ/τSE ).

FIG. 3. Evolution of the momentum rms as a function of the
number of pulses as predicted analytically for the identical-pulses
[prms, see Eq. (1); solid blue line] and optimal-transport [ p̃rms,
see Eq. (4); yellow dot-dashed line] methods and as simulated
numerically for identical pulses including modeling of the laser,
spontaneous emission, photoionization, and annihilation [ p̌rms, see
Eq. (10); red squares]. The initial standard deviation of the Maxwell-
Boltzmann distribution is prms,0 = 31.88h̄k (corresponding to 300 K
for positronium [11]). The black dashed horizontal line features the
prms,0/2 level.
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FIG. 4. Optimization of the delay τ between the first and second
trains of identical pulses (dot-dashed blue line). Minimum standard
deviation prms,2 (see Sec. IV) achievable at the end of a second train
of Mm,2 pulses (solid red line) as a function of the delay τ between the
first and second trains of identical pulses. prms,2(τ = 0) = prms,1 =
19.23h̄k is the minimum value reached after a first train of identical
pulses with Mm,1 pulses (see Fig. 3).

A good order of magnitude for the time interval between
two consecutive trains of pulses is τSE. However, after one
exponential decay time, about 37% of the atoms initially in
the excited state will still be excited. Being in the wrong initial
state, these particles will be warmed up instead of cooled
down by the second train of pulses.

To study the influence of the delay τ between two con-
secutive trains of identical pulses, we introduce spontaneous
emission and compute the momentum spread after two trains
of identical pulses for each value of τ . The momentum rms
prms,2 at the end of the second train with Mm,2 pulses is
computed with Eq. (2) applied to ρ̄0(n, τ ) and ρ̄1(n, τ ). As
an example, we start from a Maxwell-Boltzmann distribution
with prms,0 = 31.88h̄k with all atoms in the ground state; the
first train is made of Mm,1 = 26 pulses after desymmetriza-
tion, yielding a minimum momentum rms prms,1 = 19.23h̄k
(see Fig. 3). The optimal number of pulses in the second train
Mm,2 after desymmetrization depends on τ . The result for the
identical pulses is presented in Fig. 4. prms,2 is the momentum
rms reached at the end of the second train of pulses. When τ

increases, there is more time for atoms in the excited state
to relax to the ground state. As a result, when the second
train starts, fewer atoms are in the wrong state, and prms,2

continuously decreases as a function of τ . Figure 4 suggests
that a value of τ � 4 τSE is a good compromise between
shortening the process as much as possible and reaching the
lowest possible rms at the end of the second train of pulses.
For τ = 4τSE, the highest number of pulses in the second train
is reached, and the momentum rms after the second train of
pulses is less than 1h̄k away from the value that would be
reached for an infinitely long delay between the two trains.
Considering that with the first train of pulses, the rms dropped
from 31.88h̄k to 19.23h̄k, if τ = 4τSE, 12.65h̄k are removed
in 4τSE, which is a factor of 6 higher than what can be achieved
with traditional laser cooling. Considering a reduction of the

momentum rms by approximately 7h̄k with the second train,
if the delay between the second and third trains of pulses is
still 4τSE, a total reduction of 20h̄k is achieved in 8τSE. For
momentum distributions with a larger initial spread, the gain
would be even larger.

The number of pulses Mm,i decreases with the train index
i and is different in each train, as is expected from Eq. (2)
considering that the momentum spread at the beginning of
the ith train decreases with i. This is a novelty in comparison
to previously introduced coherent laser-cooling mechanisms
[7] in which cycles of identical sweep and wait periods were
proposed, with one sweep consisting of one excitation and
one stimulated-emission event. In this sense, the technique
we propose here tests the limits of efficiency of coherent
laser cooling.

By comparison with traditional Doppler cooling, this re-
sult sheds light on the limit of efficiency of coherent laser
cooling with trains of ultrashort laser pulses. Indeed, tradi-
tional Doppler cooling allows one to reduce the momentum
spread by 1h̄k in 2τSE at best. If the reduction in momentum
spread that would occur is smaller than this rate, the proposed
coherent-cooling scheme is no longer competitive and should
not be used. In the case of two- and three-dimensional cooling,
it is advisable to change the direction of cooling after this
limit is reached. For large enough initial momentum spreads,
the schemes proposed here remain very competitive in com-
parison with classical two- and three-dimensional Doppler
cooling even when a waiting period of 4τSE between each
dimension is observed.

Concerning the identical pulses, we note that the use
of a desymmetrization step can be avoided in the case of
a pulsed source of atoms for which it is reasonable to
assume a spatial distribution of momentum such that the
particles with the highest absolute momentum are farthest
from the spatial center of the ensemble. In this situation,
the same momentum rms reduction is obtained by using
pairs of identical pulses synchronized to reach the center
of the ensemble of particles at the same time, in a fashion
reminiscent of SWAP cooling [7]. In this situation, there is
no need to manipulate classes of momentum with h̄k res-
olution. As for optimal transport, in the particular case of
positronium, the frequency shift associated with a momentum
change of 1h̄k amounts to � 6.15 GHz. As demonstrated with
cutting-edge setups [12,13], it is possible to perform pulse
shaping with the required resolution on a 1-THz large spectral
bandwidth.

In the next section, we report on numerical simulations
of the identical pulses, including a realistic description of
the laser, spontaneous emission, and photoionization from the
excited state.

V. NUMERICAL SIMULATIONS

We use the Quantum Toolbox in Python (QUTIP) to simulate
the evolution of the ensemble of atoms. The behavior of the
ρ̂ density operator is described as an open quantum system
using the Lindblad master equation [14]:

d ρ̂

dt
= [Ĥ , ρ̂] +

∑
i

(
L̂iρ̂L̂†

i − 1

2
{L̂†

i L̂i, ρ̂}
)

. (5)
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The unitary part of the transformation is described by Hamil-
tonians in the momentum space (HV ) and internal state space
(HI ), which compose the Hamiltonian Ĥ = ĤI ⊗ ĤV. Addi-
tionally, the dissipative behavior is modeled with Lindblad
operators L̂i with corresponding coupling strengths �i. In ĤI,
we put the atomic levels |g〉 and |e〉. The one-dimensional
momentum space is discrete and sampled on multiple integers
of 1h̄k. In this situation, spontaneous emission can be prop-
erly described by redistributing the decaying excited states to
the ground state with three different momenta as described
previously [10]. This discrete momentum space allows us to
properly describe the dynamics of the system for a rms width
large compared to h̄k. The inclusion of sub-Doppler effects
would, however, require using a higher sampling rate of this
space. Furthermore, the Hamiltonian is transformed into the
rotating frame and is written as

Ĥ = h̄
nbin∑

n=−nbin

[n2ωrec |g, n〉 〈g, n| + (ω0 − ωL(t ) + n2ωrec)

× |e, n〉 〈e, n| − �(t ) |g, n〉 〈e, n ± 1|
− �(t ) |e, n ± 1〉 〈g, n|], (6)

where �(t ) = dE (t )
h̄ is the instantaneous Rabi frequency, E (t )

is the laser field envelope, d is the dipole moment of the
transition, and ω0 is the resonant angular frequency of the
transition. The instantaneous angular laser frequency is given
by ωL(t ), and ωrec = h̄k2

2m is the laser recoil frequency. Two
(dead) states |ph〉 and |ann〉 can be added to ĤI to take into
account losses such as photoionization (ph) and annihilation
(ann). These effects as well as spontaneous emission are in-
cluded like in other works in the literature [7,11] using the
following Lindblad operators:

L̂SE =
√

�SE

nbin−1∑
n=−nbin+1

(
√

0.6 |g, n〉 〈e, n|

+
√

0.2 |g, n − 1〉 〈e, n| +
√

0.2 |g, n + 1〉 〈e, n|),
(7)

L̂ph = √
�ph.

nbin∑
n=−nbin

|ph, n〉 〈e, n| , (8)

L̂ann =
√

�ann

nbin∑
n=−nbin

|ann, n〉 〈g, n| . (9)

In our simulations, ωrec was set to zero to limit com-
puting time. This approximation has a negligible impact
on the results. In the following, we present results in the
case of positronium for which |g〉 = |1S〉 and |e〉 = |2P〉.
�ph = σph

I (t )
h̄ω0

is the photoionization rate and is related to
the photoionization cross section σph = 2.6 × 10−22 m2, I (t )
is the laser intensity, �ann = 1

142ns is the annihilation rate in
the |1S〉 state, and �SE = 1

3.2 ns is the spontaneous emission
rate.

The momentum spread p̌rms is quantified by the standard
deviation of the velocity distribution. In our studies, p̌rms

refers to the standard deviation of only the ground and excited
states:

p̌rms =
√

tr[trI( p̂ρ̂)]2 − tr[trI( p̂ρ̂ )2], (10)

where tr[·] denotes the trace of an operator, trI[·] denotes the
partial trace of an operator over the internal (g, e) state space
HI , and p̂ is the momentum operator.

We study the identical pulses. Initially, the Doppler profile
is ideally desymmetrized by transferring the population with
strictly positive velocity components to the excited state as if
they had absorbed 1h̄k. Therefore, the numerical simulations
do not take into account any limitations of this scheme due to
the desymmetrization step. To reach high population-transfer
efficiency with the pulses following the desymmetrization
pulse, we choose to follow the adiabatic-rapid-passage ap-
proach [15,16] with chirped Gaussian laser pulses, with which
close to 100% transfer efficiency with robust pulse parameters
can be achieved. In this identical-pulse scheme, all pulses
after the desymmetrization pulse are identical, with a pulse
envelope of the electric field E (t ) and instantaneous frequency
ωL(t ) as follows:

E (t ) = E0e−2 ln 2 t2

τ2 ,

ωL(t ) = ω0 + αt, (11)

where E0 is the amplitude of the electric field, τ is the pulse
duration defined as the full width at half maximum of the
intensity profile, and α is the linear chirp rate. Other pulse
shapes are possible [17,18], but we choose to implement the
simplest possible. The following parameters are used in the
simulations: τ = 7.07 ps and α = 2π (250 GHz/ps). The laser
spectral width defined as the full width at half maximum of

the spectral intensity is δν =
√

4(ln 2)2+α2τ 4

2πτ
� 1.8 THz. The

peak intensity is E0 = 1.5 kWcm−2, which yields a peak
Rabi frequency �0 = 2π (150 GHz), with a dipole strength
d = 1.97 D [11]. These parameters can be achieved experi-
mentally (see, for example, [19] for femtosecond ultraviolet
millijoule class pulses and [20] for terahertz per picosec-
ond chirp-rate production) and have been chosen to keep

FIG. 5. p̌rms is the momentum rms (solid blue line, left axis)
in units of h̄k simulated as a function of time for a sequence of
four identical pulses with an optimized number of pulses. The delay
between two consecutive trains is 4τSE. P is the population in the
excited state (dashed red line, right axis) defined as the ratio between
the excited state and the sum of the ground and excited states. The
sharp falling edges observed in the blue curve has a hyperbolic shape
consistent with the red squares displayed in Fig. 3.
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(a) (b) (c) (d) (e)

FIG. 6. Illustration of coherent laser cooling with the optimal-transport method for a three-level system on a distribution with an initial
momentum rms of � 5h̄k. Colors reflect the electronic internal level. Blue (I) corresponds to the initially populated level. Red (II) and purple
(III) are other internal levels. A simple case is when I and III are two distinct levels in the ground- (excited-) state manifold and II is the excited
(ground) level. (a) Initial distribution. [(b)–(d)] Intermediate distributions. (e) Distribution after relaxation via spontaneous emission followed
by transfer to I. Transfer to I corresponds to the preparation of a single level in the ground-state manifold when I is one of two ground-state
levels. When I is one of two excited-state levels, transfer to I corresponds to excitation from the ground-state level II.

the ionization rate in the few percent range. It is also worth
mentioning that efficient selective electronic excitation can be
achieved with chirped pulses even when the spectral band-
width is larger than the separation between the different
excited states found in a manifold [21]. These parameters are
used for all pulses in all trains. In Fig. 3, the result of the
numerical simulations ( p̌rms, red squares) shows good quanti-
tative agreement with the evolution predicted by Eq. (2) (prms,
solid blue curve). The minimum reached in the simulation
is slightly higher than predicted by Eq. (2), and the number
of pulses used to reach this minimum is very close to the
predicted one. p̌rms is larger than prms, which we attribute
to incomplete population transfer. The population found in
the wrong state at the beginning of each pulse is warmed up
instead of being cooled. Since the population transfer is very
efficient, in the first order approximation once a population is
in the wrong state, it stays in the wrong state, and the number
of atoms in the wrong states increase with the number of
pulses.

To complete this study, we simulate laser cooling with four
trains of pulses. Results are presented in Fig. 5. The delay
between two consecutive trains is fixed to 4τSE. Each train
starts with an ideal desymmetrization step. The number of
pulses Mm,i in the ith train of pulses is optimized to minimize
the momentum rms σi at the end of the ith train. In the
present case, Mm,1 = 26, Mm,2 = 16, Mm,3 = 9, and Mm,4

= 6. At the end of the fourth train, the rms reaches 8.6h̄k,
representing a gain of only 1.5h̄k with respect to σm,3. There-
fore, in this particular case, this scheme becomes less efficient
than traditional laser cooling at the end of the third train of
pulses.

Finally, we propose that the optimal-transport coherent-
laser-cooling scheme can be extended to N-level systems
considering levels that are part of only two manifolds and a
system initially prepared in a single state of one of the two
manifolds. Figure 6 illustrates how optimal transport can be
extended to the three-level case. With this method, Eq. (4)
can be generalized to the N-level case as described for M � 1
by Eq. (A4) given in Appendix. For a Maxwell-Boltzmann
distribution with an initial momentum rms p̃rms,0 large com-
pared to Nh̄k and no particle initially in any of the other states,
the population in the class of momentum with nh̄k when all N

levels are used is written as

N−1∑
z=0

ρ0(Nn + z) � N

p̃rms,0

√
2π

e
− N2 (nh̄k)2

2 p̃2
rms,0 ,

which corresponds to a Maxwell-Boltzmann distribution with
a momentum rms divided by a factor N compared to the initial

(a)

(b)

FIG. 7. Desymmetrization step for a two-level system with prop-
erties similar to positronium. (a) Instantaneous Rabi frequency �(t )
and frequency detuning �L (t ). (b) Population in the ground (Pg)
and excited (Pe) states at the end of the desymmetrization pulse
displayed in (a). The initial population is in the ground state and is
equally spread across 201 classes of velocity spanning the −1.5 to
1.5 × 105 ms−1 range. Thus, the highest population in one class of
velocity is 0.005. The percentage of atoms in the wrong state at the
end of the desymmetrization pulse is 6%.
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one. The precise efficiency of such multilevel coherent laser
cooling goes beyond the scope of the present study. However,
we note that the complexity of the required pulse shaping
and the time needed to prepare the initial distribution with all
particles in a single level of a manifold will most likely limit
the interest of such an extension.

As a final note, the fully optimized shaping of a desym-
metrization pulse is outside the scope of the present work but
can be approached by optimization using, for example, the
Krotov algorithm [9]. An example of such a pulse is given in
Fig. 7.

VI. CONCLUSION

In conclusion, our study introduced a laser-cooling scheme
based on trains of ultrashort pulses extending coherent laser
cooling to broad linewidth transitions. This technique is
particularly relevant for distributions with a large initial mo-
mentum spread and shows that it is possible to remove
several h̄k per spontaneous emission lifetime. It is partic-
ularly important to optimize the time it takes to compress
the momentum-spread compression in particular in view of
forming a Bose-Einstein condensate [22,23] to generate co-
herent γ -ray emission by coherence transfer from positronium

[24] or radioactive elements [25]. We derived analytical for-
mulas predicting the evolution of the momentum distribution
rms as a function of the number of pulses in the train for
two different schemes for population manipulation. The iden-
tical pulses makes use of an optimal number of identical
pulses. Optimal transport allows us to realize the maximum
of momentum rms reduction without entropy dissipation (a
factor of 2 for a two-level system). We found that in the case
studied here, a delay of 4τSE between two consecutive trains
of pulses allows us to optimize the cooling process. These
results were confirmed by realistic numerical simulations. For
systems with more than two internal levels, it is, in principle,
possible to further increase the efficiency of this laser-cooling
scheme, which could be particularly interesting for molecule
laser cooling.
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APPENDIX

prms,0 =
√∑

n

n2[ρ0(n) + ρ1(n)], (A1)

Mmc =
∑
n>0

n[ρ0(n) + ρ0(−n)] +
∑
n�0

ρ0(n) −
∑
n>0

n[ρ1(n) + ρ1(−n)] +
∑
n�0

ρ1(n), (A2)

Mms = 2
∑
n>0

nρ0(−n) +
∑
n�0

ρ0(n) − 2
∑
n>0

nρ1(−n) +
∑
n�0

ρ1(n), (A3)

p̃2
rms(M ) =

� M
N−1 �−1∑
n=0

n2
N−1∑
z=0

ρ0(Nn + z) +
⌊

M

N − 1

⌋2 M−� M
N−1 �(N−1)∑
z=0

ρ0

(
N

⌊
M

N − 1

⌋
+ z

)

+
−1∑

n=−� M
N−1 �

n2
N−1∑
z=0

ρ0(Nn − z) +
(⌊

M

N − 1

⌋
+ 1

)2 M−� M
N−1 �(N−1)∑
z=0

ρ0

[
−N

(⌊
M

N − 1

⌋
+ 1

)
− z

]

+
∑

n�� M
N−1 �+1

n2ρ0(n + M ) +
∑

n�M+1

n2ρ1(n − M ) +
∑

n�−� M
N−1 �−2

n2ρ0(n − M + 1) +
∑

n�−M

n2 + ρ1(n + M − 1).

(A4)
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