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Phase and time delays of atomic above-threshold ionization are usually experimentally explored by the
reconstruction of attosecond harmonic beating by interference of two-photon transitions (RABBIT) technique.
Theoretical studies of RABBIT rely on the perturbative treatment of the probe (near infrared or visible) laser
pulse with respect to the atomic electric field and the pump composed of a train of attosecond pulses made
of several harmonics with frequencies multiple of the probe fundamental frequency. In this work we present a
semiclassical nonperturbative description of the phase delays for the emission of electrons from hydrogen atoms
based on the strong-field approximation as the relative phase between pump and probe pulses is varied, where
more than two photons are involved. Ionization times are calculated within the saddle-point approximations and
serve to individualize the different electron wave packets that produce the RABBIT-like interferometric scheme.
We observe different behaviors of the phase delays at different intensities of the probe. For example, for moderate
and intense probe fields, the harmonics and sidebands happen to be in phase (�4 × 1011 W/cm2). In turn, when
the probe field is sufficiently weak, we recover the well-known rule of thumb for the phase delays developed
within the perturbative RABBIT theory [see D. Guénot et al., Phys. Rev. A 85, 053424 (2012)]. We show that
the intracycle interference of the different paths contributing to the final energy (sideband or high harmonic) is
responsible for the different behaviors of the interference pattern. Comparisons with the numerical solution of the
strong-field approximation and time-dependent Schrödinger equation confirm the reliability of our semiclassical
nonperturbative theory.
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I. INTRODUCTION

One of the major advances of the applications in attosec-
ond pulses and phase-controlled femtosecond laser pulses
consists of measuring and analyzing atomic, molecular [1,2],
and surface [3–5] ionization by absorption of an extreme-
ultraviolet (XUV) photon to retrieve timing information of
the process encoded in wave-packet phases [6,7]. The shortest
timescales have been accessed through the combination of
XUV pulses and near-infrared or visible lasers [8–11], which
serves as the cornerstone of attosecond chronoscopy of pho-
toionization processes. To measure attosecond time-resolved
electron emission from noble gas atoms [12–17], molecules
[1,18], and solids [3,19,20] several pump-probe techniques
have been used, such as attosecond streaking [21–23] and
reconstruction of attosecond harmonic beating by interference
of two-photon transitions (RABBIT) [8,24,25]. Whereas the
former can be understood classically as the electrons ionized
by an XUV pulse are subsequently shifted in energy by the
probe laser [14,21,26–29], the latter is comprehended as a
quantum interferometer resulting from two interfering paths
to the same final state in the continuum [13,14]. This final
state can be reached through a two-photon process involving
the absorption or emission of an IR photon of the fundamental
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driving frequency following the absorption of photons from
a train of pulses formed by two adjacent (odd) harmonic
orders of high-order harmonic generation (HHG) radiation
[30–32]. Most of the theoretical studies of the RABBIT tech-
nique have been performed for low-intensity probe fields in
the perturbative limit, such that it does not modify the ion-
ization process appreciably. However, continuum-continuum
transitions produced by the probe pulse are inherent to the
measurement process in RABBIT and are unavoidable to any
experimental setup. The problem of the measurement of the
continuum-continuum transitions can be solved by using exact
calculations in the perturbative regime.

In this paper, we theoretically investigate the phase de-
lays for the photoelectron emission from atomic hydrogen
in a RABBIT-like protocol beyond the perturbative limit of
the probe field. A similar nonperturbative study was recently
developed for atomic above-threshold ionization by a pulse
composed of the fundamental frequency and its first harmonic
[33]. We develop a semiclassical model considering different
ionization times calculated within the saddle-point approxi-
mation, which is a generalization of the theory for diffraction
at a time grating [34–36]. Our model, based on the strong-
field approximation (SFA) considers all possible transition
paths to the final energy state containing multiple and infinite
probe photons and not just two-photon transitions as in the
perturbative limit. Within our semiclassical model (SCM) and,
generally, the SFA, the influence of the Coulomb potential of
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the remaining core on the outgoing electron wave packet is
neglected [35,37–40]. We find and report substantially differ-
ent behaviors of the sidebands and harmonics as a function of
the relative phase between the pump and probe pulses from
the well-established perturbative regime for probe intensities
of the order of 1011–1012 W/cm2. We compare the SCM
with the results of the numerical solution of the SFA and the
time-dependent Schrödinger equation (TDSE), indicating the
reliability of our model and the minor effect of the Coulomb
potential of the remaining core on the emitted electron wave
packet for the atomic and laser parameters used [7,26,27,30–
32,35,37–42]. We conclude that the intracycle interference
of electron trajectories mimicking the emitted wave packets
[34–36] plays a crucial role to determine the phase delays for
atomic photoionization in the RABBIT protocol.

The structure of the paper is as follows. In Sec. II we
develop the semiclassical theory previously used in laser-
assisted photoionization emission (LAPE) considering only
one color pump field [43–45] and then extend it to the case of a
two-color pump pulse train. There, we show how to extract the
information on ionization phases and phase delays. In Sec. III
we present numerical results for energy spectra calculated
with our SCM and compare them with the results of the SFA
and the TDSE. We conclude our remarks in Sec. IV. Atomic
units (e = h̄ = me = 1 a.u.) are used throughout unless stated
otherwise.

II. SEMICLASSICAL THEORY

We consider the ionization of an atomic system by linearly
polarized laser pulses. In the single-active-electron (SAE) ap-
proximation, the TDSE reads as

i
∂

∂t
|ψ (t )〉 = [H0 + Hint(t )]|ψ (t )〉, (1)

where H0 = �p2/2 + V (r) is the time-independent atomic
Hamiltonian, whose first term corresponds to the electron ki-
netic energy and its second term to the electron-core Coulomb
interaction and Hint(t ) is the interaction Hamiltonian between
the atomic system and the external laser field. Because of the

presence of the external laser field, the initially bound electron
in an atomic state |φi〉 is emitted with final momentum �k and
energy E = k2/2 in a final continuum state |φ f 〉. Because of
the azimuthal symmetry, the electron probability distribution
can be expressed in terms of only two variables, i.e., the
electron kinetic energy E and the polar electron emission
angle θ or, equivalently, the electron momentum parallel kz

and transversal kρ to the field polarization direction, i.e.,

|T |2 = dP

2π
√

2E dE d cos θ
= dP

2πkρdkρdkz
.

Within the time-dependent distorted wave theory, the tran-
sition amplitude in the prior form and length gauge is
expressed as [46,47]

T = −i
∫ +∞

−∞
dt 〈χ−

f (�r, t )|H int(�r, t )|φi(�r, t )〉, (2)

where φi(�r, t ) = ϕi(�r) eiIpt is the initial atomic state with ion-
ization potential Ip and χ−

f (�r, t ) is the distorted final state.
Equation (2) is exact provided the final channel χ−

f (�r, t ) is
the exact solution of Eq. (1). Several degrees of approxima-
tion have been considered in the literature to solve Eq. (2).
The widest known one is the SFA, which neglects in the
final channel the Coulomb distortion produced on the ejected-
electron state due to its interaction with the residual ion and
discards the influence of the laser field in the initial ground
state [48,49]. Hence, the SFA consists of approximating the
distorted final state with the solution of the TDSE for a free
electron in an electromagnetic field, namely, a Volkov func-
tion [50], i.e., χ−

f (�r, t ) = χV
f (�r, t ), where

χV
f (�r, t ) = 1

(2π )3/2
exp{i[�k + �A(t )] · �r}

× exp

{
i

2

∫ ∞

t
[�k + �A(t ′)]2dt ′

}
(3)

and the vector potential due to the total external field is defined
as �A(t ) = − ∫ t

−∞ dt ′ �F (t ′).
We consider the following expression for a laser pulse

given by an electric field with main frequency ω, and its odd
harmonics (2m + 1)ω, with m = 1, 2, 3, . . . ,

�F (t ) = f (t )

[
F0 cos(ωt + φ) +

∞∑
m=1

Fm cos [(2m + 1)ωt + φm]

]
ẑ, (4)

where φ is the relative phase of the fundamental laser field with respect to its harmonics, f (t ) is a smooth function between 0
and 1 mimicking the pulse envelope, ẑ is the polarization direction of both fundamental and odd harmonic fields, and Fm are the
field strengths with the special case of m = 0 for the fundamental frequency. Each harmonic undertakes a phase φm. For a long
pulse with adiabatic switch on and off the vector potential in the length gauge can be written in its central part as

�A(t ) � − f (t )

ω

{
F0 sin(ωt + φ) +

∞∑
m=1

Fm

(2m + 1)
sin[(2m + 1)ωt + φm]

}
ẑ (5a)

� − f (t )

ω
F0 sin(ωt + φ) ẑ, (5b)

where in Eq. (5b) we have neglected the contribution of all
the harmonics (m = 1, 2, . . . ) since we consider either high

harmonic orders, i.e., m 	 1, and/or low harmonic intensities
compared to the intensity of the fundamental laser field, i.e.,
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Fm 
 F0(2m + 1). In the high-energy region of the spectrum,
we can consider this approximation to be very accurate, how-
ever, for ionization near threshold it is dubious.

Let us now analyze some features of the ionization ampli-
tude in Eq. (2). Using Eq. (4), the transition matrix T in Eq. (2)
is separable in the different harmonics of the laser fields, i.e.,
T = ∑

m Tm, with

Tm = Fm

∫ +∞

−∞
l (t ) ei[Sm (t )−φm] dt, (6)

where

�(t ) = − i

2
f (t ) ẑ · �d[�k + �A(t )], (7)

and

Sm(t ) = −
∫ ∞

t
dt ′

{
[�k + �A(t ′)]2

2
+ Ip − (2m + 1)ω

}
, (8)

with the dipole moment defined as �d (�v) =
(2π )−3/2〈ei�v·�r |�r|ϕi(�r)〉, and Sm(t ) is the generalized classical
action for the harmonic frequency (2m + 1)ω. In Eq. (6) we
have considered the high-frequency electric field within the
rotating-wave approximation [43–45]. This approximation
considers the high-frequency time-dependent ionization
amplitude due to the high harmonic as a single-photon
absorption transition of energy (2m + 1)ω. We restrict our
analysis to the energy domain where ionization due to the
laser of fundamental frequency is negligible.

Considering the vector potential in Eq. (5b) in the flat-top
region, i.e., f (t ) = 1, the time integration of the action S(t )
defined in Eq. (8) can be analytically written as

Sm(t ) = at + b cos(ωt + φ) + c sin(2ωt + 2φ), (9)

where

a = k2

2
+ Ip + Up − (2m + 1)ω, (10a)

b = αkz, (10b)

c = −Up

2ω
, (10c)

α = F0/ω
2 defines the quiver amplitude of the electron, and

Up = (F0/2ω)2 defines its ponderomotive energy under the
electric field of fundamental frequency.1

The vector potential in Eq. (5b) together with the dipole
moment result to be T periodic, i.e., �d[�k + �A(t + jT )] =
�d[�k + �A(t )], with j any positive integer number if we consider
that the central (and not varying) part of the field starts at
t = 0. The reader must not confuse the fundamental laser
period T = 2π/ω with the transition amplitude T , although
we use the same symbol. From Eq. (9), we observe that
[Sm(t ) − at] is a time-oscillating function with the same pe-
riod T of the fundamental laser field, i.e.,

Sm(t + jT ) = Sm(t ) + a jT . (11)

1In Eq. (9) we have omitted the constant term UP/ωφ since it has
null contribution to the transition matrix.

In light of these periodicity properties [Eq. (11) and �(t +
jT ) = �(t ) in Eq. (7)], we can rewrite the transition matrix Tm

in Eq. (6) in terms of the contribution of the first fundamental
cycle just assuming that the (fundamental) probe field is com-
posed of N optical cycles each of duration T , and neglecting
the contributions of the ramp on and ramp off, i.e.,

Tm = Fm

∫ NT

0
�(t )ei[Sm (t )−φm] dt

= Fme−iφm

N−1∑
j=0

∫ ( j+1)T

jT
�(t )eiSm (t )dt . (12)

By performing the transformation t = t ′ + jT , the temporal
integral into the second line of Eq. (12) becomes delayed in j
cycles of the probe laser. Keeping in mind the T periodicity of
both �(t ) and Sm(t ) − at [see Eq. (11)], it is straightforward to
factorize the transition amplitude as

Tm = Fme−iφm

N−1∑
j=0

eia jT
∫ T

0
�(t ′)eiSm (t ′ )dt ′

= Fme−iφm
sin (aT N/2)

sin (aT/2)
e(iaT (N−1)/2)Im(�k), (13)

where the factor

Im(�k) =
∫ T

0
�(t ′)eiSm (t ′ )dt ′ (14)

in Eq. (13) corresponds to the contribution of ionization am-
plitude into one (any) optical cycle of the fundamental field
and its squared absolute value |Im(�k)|2 is known in the litera-
ture as the intracycle contribution to the ionization probability
in laser-assisted photoionization emission (LAPE) [28,47,51].
Thus, the photoelectron spectrum (PES) and ionization proba-
bility [Eq. (13)] can be expressed as a product of the intracycle
factor |Im(�k)|2 and the factor | sin (aT N/2)/ sin (aT/2)|2 ac-
counting for the intercycle contributions since it is the result
of the phase interference arising from the N different optical
cycles of the probe field [34–36]. We want to point out that
Eq. (13) is a mere consequence of the periodicity of the tran-
sition matrix within the SFA with no further approximations
out of the already mentioned ones [28,52].

The zeros of the denominator in the intercycle factor (13),
i.e., the energy values satisfying aT/2 = nπ , are avoidable
singularities since the numerator also cancels out and finite
maxima are reached at these points. They occur when

E2m+1+n = (2m + 1 + n)ω − Ip − Up, (15)

corresponding to the absorption of one photon of frequency
(2m + 1)ω followed by the absorption or emission of |n|
photons of fundamental frequency ω when n is positive or
negative, respectively, allowing continuum-continuum tran-
sitions. Such maxima at energies given by Eq. (15) are
recognized as the sidebands in the PES of the (2m + 1)th
harmonic in presence of the fundamental laser [43–45]. In
fact, when N → ∞, the intercycle factor becomes a series
of Dirac delta functions, i.e.,

∑
n δ(E − E2m+1+n), satisfying

the conservation of energy. Instead, for a finite pump pulse
of duration τ (of the order of NT ), each sideband has a
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width �E ∼ 2π/NT = ω/N , fulfilling the uncertainty rela-
tion �Eτ ∼ 2π , where τ = NT is the duration of the pulse.

As we focus on the emission of the XUV pulse train around
E2m+1 given by Eq. (15), the contribution for ionization due to
the fundamental NIR pulse is negligible when Up 
 (2m +
1)ω − Ip. Therefore, we neglect the contribution of T0 and the
lowest harmonics Tm. On the other hand, the effect of the NIR
fundamental laser enters directly in the calculation through the
vector potential [Eq. (5b)] into the action Sm(t ) and the dipole
moment in Eqs. (6)–(8).

A. Laser-assisted photoionization emission by one harmonic

In this subsection we briefly describe the semiclassical
theory of LAPE, where the pump field is composed of a single
monochromatic harmonic of order 2m + 1 accompanied by
the probe field of fundamental frequency [28,43,45]. In or-
der to calculate the transition amplitude corresponding to the
intracycle factor in Eq. (14) we make use of the SCM which
consists in solving approximately the time integral of the tran-
sition amplitude by means of the saddle-point approximation
[45,49,53–55]. In this sense, the transition amplitude can be
approximated as a coherent superposition of the amplitudes
of all electron trajectories with final momentum �k over the
stationary points ts of the generalized action Sm(t ) [56], i.e.,

Im(�k) �
∑

ts

−i
√

2π ẑ · �d[�k + �A(t s)]

2[−iS̈(ts)]1/2
exp [iSm(ts)]. (16)

In the following, we analyze the case kz ≡ k > 0 (forward
emission), where the saddle equation Ṡm ≡ dSm(t )/dt = 0
reads as

A(ts) = β+(k) ≡ v0,m − k, (17)

with v2
0,m/2 = (2m + 1)ω − Ip corresponding to the en-

ergy of photoelectrons ionized by the high-frequency pump
pulse in absence of the probe field of fundamental fre-
quency. Besides, in Eq. (16), S̈m(ts) ≡ d2Sm(ts)/dt2 = −[k +
A(ts)]F0 cos(ωts + φ) is independent of the harmonic order
index m. The solutions of the saddle equation (17) are shown
in Appendix A.

The transition matrix of Eq. (16) in the classical region
with real ionization times results in

Im(k) =
2∑

α=1

gm(k, t (α) ) exp

[
iSm(t (α) ) + i

π

4
sgn[S̈m(t (α) )]

]
,

(18)

where the weighting factors are

gm(k, t (α) ) = −i
√

2πdz[k + A(t (α) )]

2v
1/2
0,m|F0 cos(ωt (α) + φ)|1/2

, (19)

and sgn[S̈(t (1) )] = ∓1 and sgn[S̈(t (2) )] = ±1 when
β+(k) ≶ 0, since S̈(t (α) ) = −v0,mF0 cos(ωt (α) + φ).

To evaluate the action Sm in Eq. (9) at the ionization
times, we consider the accumulated action �Sm = Sm(t (2) ) −
Sm(t (1) ) between the two ionization times and the average
action S̄m = [Sm(t (1) ) + Sm(t (2) )]/2 of the two trajectories re-
leased in the same optical cycle. Then, it can be easily shown
that the intracycle factor of the transition amplitude in Eq. (18)

reads as

Im(k) = 2gm(k, t (α) )eiS̄m cos

(
�Sm

2
− π

4
sgn[β+(k)]

)
, (20)

since the ionization rate is identical for the two ionization
trajectories within the same optical cycle, i.e., gm(k, t (1) ) =
gm(k, t (2) ), according to Eq. (19), and sgn[S̈m(t (1) )] =
−sgn[S̈m(t (2) )] = sgn[β+(k)]. From Eqs. (13) and (20), the
ionization probability can be factorized in intercycle and in-
tracycle factors [43]

|Tm|2 = F 2
m

(
sin (aT N/2)

sin (aT/2)

)2

|Im(k)|2

= 4F 2
m [gm(k, t (1) )]2

[
sin (aT N/2)

sin (aT/2)

]2

× cos2

(
�Sm

2
− π

4
sgn[β+(k)]

)
. (21)

Very importantly, in the limit of a pulse of infinite dura-
tion, i.e., N → ∞, the ionization probability of the sidebands
becomes independent of the relative phase φ of the probe
field [Eq. (4)]. The explanation is that (i) the rotating wave
approximation used to calculate the transition amplitude in
Eq. (6) considers continuum ionization probability during the
XUV pulse duration, which is strictly valid for high harmonics
(m 	 1) and (ii) as N → ∞ any border effect due to the turn
on and off of the pulse becomes negligible. In this sense, there
is a translational invariance between the pump and probe pulse
as Fig. 1(a) shows. As far as m is very low (m = 1, 2), our
assumption is not valid any more, as can be seen in Ref. [33]
for a semiclassical strong-field theory of phase delays in
ω − 2ω above threshold ionization. This invariance can be
broken by adding more harmonics as will be shown in the
next subsection.

B. Laser-assisted photoionization emission
by two harmonics: Phase delays

The RABBIT protocol can be thought of as a special case
of LAPE, in which a pulse train formed by several high-
harmonic fields is responsible for the ionization of the target.
For the sake of simplicity, we consider atomic ionization by
only two neighbor high harmonics HH(m − 1) and HH(m) of
frequencies (2m − 1)ω and (2m + 1)ω, respectively, followed
by continuum-continuum transitions due to the action of the
fundamental frequency ω. In this sense, the transition proba-
bility from the initial atomic bound state to the continuum is
given by the coherent superposition of the individual contri-
butions of every HH, i.e.,

|T |2 = |Tm−1 + Tm|2, (22)

where Tm is given by Eq. (13). Unlike LAPE processes with
only one HH field contributing to ionization, in RABBIT the
phases of each of the two terms Tm−1 and Tm into Eq. (22)
do matter. From Fig. 1(b) we observe that in RABBIT, as
the pump field is composed of various high-frequency com-
ponents (two in this case), the translational invariance in the
time domain present in ionization by only one HH in Fig. 1(a)
is broken. Therefore, one can set an origin for the reference
frame of the relative phase of the probe as, for example, the
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1HH

2HH

FIG. 1. Scheme of the electric fields of the probe and the pump
as a function of time. (a) The pump field is monochromatic and thus
the ionization probability is independent of the relative phase φ of
the probe due to translational invariance in the time domain (for
m → ∞). (b) When the pump field is composed of various high-
frequency components (two in this case), the translational invariance
is broken in the time domain (RABBIT). Thus, the ionization proba-
bility depends on the relative phase φ.

maximum of the envelope of the train of pulses [Fig. 1(b)].
Consequently, the ionization probability [Eq. (22)] depends
on the relative phase φ, as expected.

Therefore, we focus now on the phase of the probability
amplitude for each above-threshold ionization (ATI) (either
HH or sideband) peak n [Eq. (13)]. Considering Eq. (10a) for
energies very close to any ATI peak [Eq. (15)], then the value
of a � nω and the total amplitude in Eq. (13) can be written
as

T (n)
m = NFme−iφm

cos (nπN )

cos (nπ )
einπ (N−1)Im(k)

= NFme−iφm I (n)
m , (23)

where in the first line of Eq. (23) we have used the L’Hôpital’s
rule for a → nω. If N is even, the factor cos (nπN )/ cos (nπ )
of Eq. (23) can be written as exp(inπ ) and after multiplical-
tion by the factor einπ (N−1), the second line of Eq. (23) is
immediately found since nN is even. On the other hand, if

N is odd, the factor cos (nπN )/ cos (nπ ) of Eq. (23) is always
equal to the unity and, as n(N − 1) is even, the second line of
Eq. (23) is found again. Therefore, in both cases where the
total number of cycles of the fundamental pulse N is even
or odd, the phases of the ATI peaks are arg[I (n)

m ] − φm. In
the second line of Eq. (23) we have replaced the intracycle
amplitude Im(k) at the nth peak by I (n)

m making explicit the ATI
peak [Eq. (15)] order since for each peak the absolute value
of the momentum (and energy) is fixed, unlike the emission
angle with respect to the polarization axis ẑ, which we set
to zero for forward direction. For a deeper inspection of the
phase of I (n)

m for each contribution, we calculate the atomic de-
lays within the saddle-point approximation based on the SFA
from Eq. (20). For a particular ATI peak, we can rename the
quantity β+(k) in Eq. (17) as β

(n)
+,m = √

2[(2m + 1)ω − Ip] −√
2[nω + (2m + 1)ω − Ip − Up].
Considering Eq. (23), the transition probability [Eq. (22)]

to any ATI peak (HH or sideband) can be written as [57]

|T |2 = A + B cos (2φ + δ), (24)

where A and B depend on each contribution and δ is the phase
delay given by

δ = φm − φm−1︸ ︷︷ ︸
HH

+ arg
[
Ĩ (n1 )
m−1

] − arg
[
Ĩ (n2 )
m

]︸ ︷︷ ︸
atomic

, (25)

where the first two terms of the right-hand side of Eq. (25)
correspond to the group delay of each HH(m) and HH(m − 1)
of the XUV field when arriving at the target and the last two
terms correspond to the atomic phase delays, which contain
the phase inherent to the photoionization and measurement
processes (see Appendix B for a detailed calculation). In
Eq. (25), n1 and n2 determine the final energy from Eq. (15)
and must satisfy the relation n1 = n2 + 2. In Table I (Ap-
pendix B) we list the corresponding values of the parameters
A, B, and δ for the relevant peaks considered here, namely,
main SB, HH(m), and HH(m − 1), with energies E2m, E2m+1,
and E2m−1, respectively. In our SCM, the population of every
ATI peak (sideband or HH) is the result of the interference of
two different contributions with a multitude of quantum paths,
as depicted in Fig. 2. The normalized intracycle factors Ĩ (n)

m are
related to the I (n)

m via Eq. (B4) and are shown in Fig. 3.
In the following, we analyze the main aspects of the pho-

toelectron dependence on phase and laser field intensity for
these sidebands and HH.

(i) SB analysis. We examine the main sideband (SB) at
E2m between HH(m − 1) and HH(m) [see Eq. (15)]. In the
perturbative regime, one contributing path corresponds to the
absorption of one photon of harmonic order 2m − 1 followed
by the absorption of one photon of fundamental frequency,
i.e., n = 1, whereas the other path corresponds to the absorp-
tion of one photon of harmonic order 2m + 1 followed by
the emission of one photon of fundamental frequency, i.e.,
n = −1. See left diagrams of Figs. 2(a) and 2(b) involving
only two-photon transitions. However, our nonperturbative
SCM includes multiple absorption and emission of probe
photons for each of the two contributions with the same final
sideband energy [see diagram in Figs. 2(a) and 2(b) where up
to four-photon transitions schemes are displayed].
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FIG. 2. RABBIT protocol for interfering pathways from the initial bound state |i〉 to final states | f 〉 in the continuum. (a), (b) Show the final
ATI state (main SB) involving paths with two or four photons [absorption of one (2m − 1)ω, (2m + 1)ω, respectively, and exchange of probe
photons]. (c), (d) Show the final ATI state [HH(m)] involving paths with three or five [for (c)] and one or three [for (d)] photons [absorption
of one (2m − 1)ω, (2m + 1)ω, respectively, and exchange of probe photons]. (e), (f) Show the final ATI state [HH(m − 1)] involving paths
with one or three [for (e)] and three or five [for (f)] photons [absorption of one (2m − 1)ω, (2m + 1)ω, respectively, and exchange of probe
photons].

In Eq. (24) we observe a π -periodic oscillation of the
sideband probability as a function of the relative phase φ

on a background signal A-B which is nearly zero provided
Fm−1 � Fm. Values of A, B, and δSB are shown in Table I
in Appendix B. To obtain the value of the phase delay, we
have to analyze carefully the sign of the phase, namely, if
Ĩ (1)
m−1 and Ĩ (−1)

m have equal signs or not (see Appendix B for
details). We denote as the “normal” behavior when the two
emission (Tm) and absorption (Tm−1) paths have the same sign
[see Fig. 3(a)]. Therefore, when the two neighbor harmonics
HH(m) and HH(m − 1) of the given sideband 2m considered
in RABBIT have the same phases, i.e., φm = φm−1, we get that

the phase delay

δSB = 0, (26)

in agreement with the “rule of thumb” proposed in Ref. [58].
Nevertheless, there are tiny regions in the F0 domain for which
Ĩ (1)
m−1 and Ĩ (−1)

m have opposite sign. For these values of F0,
the “anomalous” behavior indicates a sideband phase delay
δSB = π . We believe that a measurement of these anomalous
sideband phase delays is a formidable task since an integration
over the (probe) laser intensity due to the average over the
focal volume would preclude the anomalous phase delays
over the normal phase delays since the latter is much more
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FIG. 3. Normalized intracycle factor Ĩ (n)
m as a function of the

fundamental laser field strength (in logarithmic scale) for energies
corresponding to (a) main sideband SB, (b) HH(15), (c) HH(14),
and (d) one marginal sideband. For each panel we show the intra-
cycle factors for paths (a) Ĩ (1)

14 and Ĩ (−1)
15 drawn with blue and red

lines, respectively; (b) Ĩ (2)
14 and Ĩ (0)

15 drawn with cyan and black lines,
respectively; (c) Ĩ (0)

14 and Ĩ (−2)
15 drawn with gray and magenta lines,

respectively; (d) Ĩ (3)
14 and Ĩ (1)

15 drawn with red and black lines, re-
spectively. Yellow (white) regions correspond to anomalous (normal)
behavior (see text for explanation).

probable (more than two orders of magnitude) than the former.
In Fig. 3(a) we show the imaginary part of the two absorption
and emission terms. The normal behavior applies to the F0 or
intensity domain except for a few intervals depicted as yellow
(gray) very narrow stripes.

We now pass to analyze the marginal sidebands formed
for energies below HH(m − 1) at E2m−1 and above HH(m) at

E2m+1, which are the result of the interference of two con-
tributions: T (n+2)

m−1 and T (n)
m with n = . . . ,−4,−3, 1, 2, . . . .

Analogously, we find sidebands with a phase delay δ = 0 as
the “normal” behavior with few exceptions corresponding to
the “anomalous” behavior of δ = π , which would not survive
a focal volume average, except for low probe intensities [see
Fig. 3(d)]. Thus, marginal sidebands are in opposite phase
(δ = π ) with respect to the main SB (δSB = 0) for weak
probe lasers (I � 2 × 1012 W/cm2). We want to point out that
the effect of the Coulomb potential of the remaining core on
the ejected electron, neglected in our SCM, is analyzed in the
following section when we compare with the results of the full
ab initio TDSE.

(ii) HH analysis. Similarly to the analysis of the side-
bands, we can calculate the variation of the population of the
HH(m) at energy E2m+1 as a function of the relative phase
φ. In this case, we consider the interference of the following
two different probability amplitudes: one corresponding to the
absorption of one pump photon HH(m − 1) to E2m−1 plus the
absorption of at least two photons of fundamental frequency,
i.e., T (2)

m−1, and the other corresponding to the direct absorp-
tion of only one photon of harmonic order HH(m) to E2m+1

and an equal number of absorption and emission of probing
photons, i.e., T (0)

m . Schemes of some paths that lead to this
energy peak can be found in Figs. 2(c) and 2(d). Lowest-order
perturbation theory for the absorption path corresponds to the
left diagram in Fig. 2(c). The next order in the perturbative
approach involves five-photon transitions as seen in the rest of
the diagrams of the same figure. The lowest-order perturbation
diagrams of the direct path are displayed at the left of Fig. 2(d)
involving a one-photon transition. The following order in-
volves three-photon transitions [see Fig. 2(d)]. When Fm−1 �
Fm, the modulation of the transition amplitude in Eq. (24) has
a positive background A-B (see Table I in Appendix B).

In Fig. 3(b) we observe that in the vast majority of the
intensity of the probe (or F0) domains Ĩ (2)

m−1 and Ĩ (0)
m have the

same sign and consequently T (2)
m−1 and T (0)

m are in phase (white
shaded area). We can call this as the “normal” behavior for
which δHH(m) = 0. In contrast, there are small regions in the F0

domain for the opposite behavior. This “anomalous” behavior
is depicted in Fig. 3(b) in yellow (gray) shade in the intensity
(or F0) domain. For these values of F0, the anomalous behavior
indicates a sideband phase delay δHH(m) = π . In general, as
any measurement corresponds to intensity integration up to
a peak value due to the average over the focal volume, the
anomalous behavior would not survive this integration due
to its much lower ionization probability in comparison to the
normal behavior. This is a general rule with one crucial ex-
ception: the anomalous behavior extends for intensities lower
than 5.9 × 1011 W/cm2 (F0 � 0.0041 a.u.). In the perturba-
tive regime of the probe pulse, the main SB at E2m and the
HH(m) at E2m+1 are in phase opposition in agreement with the
rule of thumb [15,16,58]. However, for probe laser intensities
higher than this limit, the main sideband SB and the HH(m)
are in phase.

Analogously, we can consider the interference of the fol-
lowing two different probability amplitudes: T (0)

m−1 and T (−2)
m

for the HH(m − 1) analysis. We observe in Fig. 3(c) that in
the vast majority of the intensity (or F0) domain the direct
path is in phase with respect to the emission path. Both direct
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Region 

Non
Classical
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Classical
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FIG. 4. Energy diagram where the limits of each region are spec-
ified. The classical region is such that the energy lies between E−

m

and E+
m−1 (region with orange and blue stripes). The nonclassical

regions (region without stripes) correspond to energies lower than
E−

m−1 or higher than E+
m . The mixed regions go between E−

m−1 and
E−

m (region with only blue stripes) and between E+
m−1 and E+

m (region
with only orange stripes). E−+

m and E−+
m−1 are the classical limits of

E2m+1 and E2m−1, respectively, with E−
m−1 = (v0,m−1 − F0

ω
)2/2, E−

m =
(v0,m − F0

ω
)2/2, E+

m−1 = (v0,m−1 + F0
ω

)2/2, and E+
m = (v0,m + F0

ω
)2/2.

and emission terms will be essentially in phase as observed in
Fig. 3(c) for the “normal” behavior resulting in δHH(m−1) = 0.
In contrast, the small regions in the F0 domain for which
Ĩ (0)
m−1 and Ĩ (−2)

m have different signs correspond to the “anoma-
lous” behavior as depicted in Fig. 3(c) in yellow (gray) shade
in the intensity (or F0) domain indicating a sideband phase
delay δHH(m−1) = π . As the anomalous behavior extends for
intensities lower than 6.5 × 1011 W/cm2 (F0 � 0.0043 a.u.),
below this value, the sideband at E2m and the HH(m − 1) at
E2m−1 are in phase opposition in agreement with the rule of
thumb developed in the perturbative regime of the probe pulse
[15,16,58]. However, for moderately strong probe lasers the
main sideband SB and the harmonic HH(m − 1) are in phase.

We have already analyzed that when |β (n)
+,m| < F0/ω two

real ionization times arise demarcating the classically al-
lowed region (Fig. 4). The classical limits are given by
the transcendental equation |β (n)

+,m| = F0/ω, which can be
numerically solved (see Appendix C for detailed calcula-
tions). Now, we extend our SCM to nonclassical allowed
regions in the F0 domain (|β (n)

+,m| > F0/ω) with complex
times [Eq. (A3)]. Each of the contributions Tm and Tm−1

in Eq. (22) has a classical allowed region in the en-
ergy domain [(v0,m − F0/ω)2, (v0,m + F0/ω)2] and [(v0,m−1 −
F0/ω)2, (v0,m−1 + F0/ω)2], respectively, surrounded by clas-
sically forbidden regions (nonclassical and mixed region) as
exhibited in the schematic Fig. 4. In the mixed region, there
are certain regions in the F0 domain where the phase delay
is δ = 0 and other regions where δ = π . In the nonclassical
regions, δ = π for the whole F0 domain. For more details, see
Appendix C.

III. RESULTS

In this section, we refer to the SFA as the numerical
solution of the transition amplitude in Eq. (2) when the fi-
nal channel is represented by the Volkov wave function in
Eq. (3) within the dipole approximation in the length gauge.
Similarly, we refer to TDSE as the numerical solution of
Eq. (1) [47,59,60]. In the following, we compare the results
for photoionization of atomic hydrogen calculated within the
SCM to the counterpart obtained using the SFA and TDSE.

Calculations are made for flat-top envelopes with linear one-
cycle ramps on and off with probe laser frequency ω = 0.05
a.u. Field intensities are F0 = 0.01 a.u. and Fm = 0.01 a.u. for
m = 14 and 15. The attosecond pulse train of XUV duration
comprises three cycles of the fundamental component. First,
we show the (lack of) dependence of the forward photo-
electron spectra on the relative phase φ between the probe
field and the pump pulse train in two isolated LAPE pro-
cesses with the pump of only one high frequency HH(14)
or HH(15) with corresponding emission probabilities |T14|2
or |T15|2, respectively. In Figs. 5(a) and 5(b), we display the
SFA photoelectron spectrum in the forward direction for two
different NIR phases, φ = 0 and π/2, respectively. It can be
noted that the NIR phase variations due to the presence of the
envelope (ramps) of the short pulse are very small, justifying
its neglect in the SCM [Eq. (21)] [43,45]. In contrast, in
Figs. 5(c) and 5(d) we show the energy distribution in the for-
ward direction for the RABBIT-like protocol, where the pump
pulse is comprised of two harmonics HH(14) and HH(15),
calculated within the SFA with the same laser parameters. We
see that the coherent sum of the two contributions |T14 + T15|2
is considerably phase dependent with a strong enhancement
due to constructive interference in the region around the main
sideband (SB) at E30 = 0.9984 a.u. [Eq. (15)] for φ = 0,
while we observe depletion due to destructive interference of
the main SB for φ = π/2. We contrast the result with the inco-
herent sum of the two individual contributions |T14|2 + |T15|2
(dashed line).

For a thorough analysis of the electron yield in Fig. 6 we
plot the energy photoelectron spectrum as a function of the
relative phase φ for the RABBIT protocol. The probe NIR
pulse has a strength F0 = 0.004 a.u. and frequency ω = 0.05
a.u. We use different durations of the pump XUV pulse com-
posed of the two harmonics HH(14) and HH(15): one optical
cycle of the probe (left column) and three optical cycles of
the probe (right column). The main SB is at E30 = 0.9984
a.u., the HH(14) at E29 = 0.9484 a.u., and the HH(15) at
E31 = 1.0484 a.u. The SCM, SFA, and TDSE intracycle in-
terference patterns of Figs. 6(a), 6(c), and 6(e), respectively,
are 2π periodic, whereas the interplay of the intercycle and
intracycle interference renders the distribution rather π pe-
riodic in Figs. 6(b), 6(d), and 6(f), respectively. In Fig. 6(a)
the φ-dependent oscillating discontinuity of the φ-dependent
photoelectron spectrum is clearly observed, as described in
Appendix A. As expected, this discontinuity disappears in the
quantum SFA and TDSE distributions due to the width of
the wave packet [Figs. 6(c) and 6(d)]. For the case of XUV
pulse duration of three optical cycles, the main SB maxi-
mizes at φ = 0 and π , corresponding to δSB = 0, whereas HH
maximizes at π = π/2 and 3π/2 corresponding to δHH(14) =
δHH(15) = π [see Eq. (24)]. This is in agreement with the “rule
of thumb” calculated in the perturbative regime [14–16,58]. In
addition, Fig. 6(a) shows the characteristic caustics of SCM at
E−

15 = 0.937 a.u. and E+
14 = 1.063 a.u. defined in Appendix B

and Fig. 4. Finally, the marginal sidebands with energies be-
low HH(14) and above HH(15) have the same phase delays
as the harmonics.

When we increase the NIR laser field strength to F0 = 0.01
a.u., the main SB, HH(14), and HH(15) locate at E30 = 0.99
a.u., E29 = 0.94 a.u., and E31 = 1.04 a.u., respectively, and
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FIG. 5. Photoelectron spectrum for forward emission of hydrogen as a function of the emission energy calculated within the SFA theory.
The HH frequencies correspond to overtones 29 and 31 (m = 14, 15) of fundamental frequency ω = 0.05 a.u. (a), (b) One-frequency LAPE
processes HH(14) in red solid line and HH(15) in cyan line for phases φ = 0 and φ = π/2, respectively. (c), (d) Coherent sum for RABBIT
|T14 + T15|2 for phases φ = 0 and π/2, respectively, contrasted with the incoherent sum |T14|2 + |T15|2 in dashed line, for phases φ = 0 and
π/2, respectively. Field intensities are F0 = 0.01 a.u. and F14,15 = 0.01 a.u. Calculations are made for flat-top envelopes with linear one-cycle
ramps on and off. The attosecond pulse train of XUV duration comprises three cycles of the fundamental component. Vertical dashed lines
correspond to energies of the HH(14), main SB, and HH(15) peaks.

the classical allowed region corresponds to E ∈ (E−
15 = 0.78

a.u., E+
14 = 1.246 a.u.). In Fig. 7 we observe that the main

SB, HH(14), HH(15), and marginal sidebands are all in
phase within the classical region with phase delays δHH(14) =
δHH(15) = δSB = 0, whereas the marginal sidebands in the
mixed region (see Fig. 4) hold phase delays δ = π , as pre-
dicted by the SCM. In the photoelectron spectra of Figs. 7(a)
and 7(b) calculated within the SCM, the φ-oscillating dis-
continuities are visible, however, discontinuities disappear in
SFA and TDSE calculations, as expected. The resemblance
between the three models, especially SFA in Figs. 7(c) and
7(d) and TDSE in Figs. 7(e) and 7(f) is outstanding, showing
that the action of the Coulomb potential of the remaining core
on the wave packet of the emitted electron is lower than the
numerical error in our TDSE calculations for the energy and
laser parameters considered, i.e., about 0.16 rad for phase
delays or 40 as for time delays. It can be noted that for these
high emission energies our SCM describes qualitatively the
interference features of the spectra, which strongly supports
the time-domain interference viewpoint of the photoionization
process.

To get more insight about the behavior of the phase delays
as a function of the NIR laser intensity, we show in Fig. 8
the photoelectron spectra of hydrogen for electron emission
in the forward direction for the three energy peaks: HH(14),
main SB, and HH(15). We observe that, except for low values

of F0, distributions maximize at φ = 0 and π showing that
harmonics HH(14) and HH(15) and the main SB are all in
phase with δHH(14) = δHH(15) = δSB = 0. In Fig. 9 we observe
a closeup of Fig. 8 for low intensities of the probe field. We
need to remark that the SCM predicts all the main features
shown by the SFA, even for small values of NIR laser strength
F0. The SCM exhibits the characteristic caustics of any semi-
classical theory [61,62] at F0 � 0.0037 a.u. for the HH(14)
and HH(15), and the main SB at F0 � 0.0018 a.u., which are
an artifact solvable when using more sophisticated theories
like the uniform saddle-point approximation [63]. However,
our aim is not providing an accurate model since we already
count with the SFA and TDSE calculations, but shedding
some light on the time-dependent electron processes involved
in RABBIT-like setups beyond the perturbative regime of low
probe intensities. We observe that the general trend of the
SFA is also reproduced by the SCM, despite the mentioned
caustics. First, in Fig. 9 we observe that for low probe in-
tensities the SCM and SFA distributions maximize at φ = 0
and π for the main sideband SB and φ = π/2 and 3π/2 for
the HH(14) and HH(15) with ensuing δSB = 0 and δHH =
π , respectively, as stated by the rule of thumb [14,16,58].
The maxima of the main SB are essentially invariant with
the probe laser intensity. In contrast, HH(14) and HH(15)
show a transition from maxima at φ = π/2 and 3π/2 for
low intensities (corresponding to δHH = π ) to maxima at
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FIG. 6. Photoelectron spectra for ionization of hydrogen in the
forward direction as a function of the emission energy and the rel-
ative phase φ between the attosecond pulse train and the probing
laser. Photoelectron spectra are calculated within the SCM [(a) and
(b)], SFA [(c) and (d)], and TDSE [(e) and (f)] for the XUV dura-
tion of one optical cycle of the probe laser in (a), (c), and (e) and
three optical cycles of the probe laser in (b), (d), and (f). The laser
field strength is F0 = 0.004 a.u. and all distributions are normalized
to unity.

φ = 0 and π for high intensities (corresponding to δHH = 0)
at a defined probe strength F0 � 0.0042 a.u. corresponding to
I � 6 × 1011 W/cm2. This is in direct correspondence with
the transition between “anomalous” (F0 � 0.0042 a.u.) and
“normal” (F0 � 0.0042 a.u.) behaviors explained in Sec. II,
especially in Figs. 3(b) and 3(c). In principle, the SCM is only
valid in the classical region of Fig. 4, however, a stretching of
the SCM to the mixed and nonclassical region provides sensi-
ble outcomes comparable to the SFA and TDSE, as observed
in Fig. 9 for F0 values lower than the caustics.

IV. CONCLUSIONS

We have developed a semiclassical strong-field theory
based on the saddle-point approximation for the atomic ion-
ization by a linearly polarized laser pulse train formed by
two neighbor odd harmonics of a concomitant laser of fun-
damental frequency, responsible for continuum-continuum
transitions. Very importantly, our model includes multipho-
ton transitions beyond the common approaches extensively
studied in the literature, which are based on perturbation
treatments of the probe pulse (RABBIT). This is a detailed

FIG. 7. The same photoelectron spectra as in Fig 6, but with field
strength F0 = 0.01 a.u.

time-dependent analysis of the phase delays in the RABBIT
protocol beyond the perturbative regime of the probe laser
pulse. We have studied the photoionization emission of atomic
hydrogen from the ground state along the polarization direc-
tion of the laser fields. We have found that there are different
types of behavior of the quantum interference processes of
the photoelectron spectra from which the phase delays are ex-
tracted. For weak probe laser pulses, the interference patterns
of the harmonics and the main sideband between them are in
opposition of phase as a function of φ, being the phase delay
zero for the main sideband energy and π for the two harmonic
energy peaks, in agreement with the RABBIT protocol in the
perturbative regime of the probe pulse. In turn, the exten-
sion of our study to stronger probe lasers in a RABBIT-like
protocol reveals unique effects: For intensities higher than a
threshold about 5 × 1011 W/cm2, both the main sideband and
the harmonic peaks stay in phase, with ensuing zero delay.
Our nonperturbative SCM permits us to shed light on the
origin of the interferences involved on the photoionization
process. In conclusion, we prove that the intracycle interfer-
ence, corresponding to electron wave packets released within
the same NIR optical cycle, rules the behavior of the relative
phase-dependent photoelectron spectra and, thus, the phase
delays. By comparing our SCM to the numerical solutions of
the SFA and TDSE we conclude that (i) our analysis is reliable
and useful for understanding the physics of the interferometric
RABBIT-like method beyond the perturbative treatment of the
probe pulse, and (ii) the time delays due to the action of the
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FIG. 8. Forward emission photoelectron spectra as a function of
the NIR laser peak field F0 and phase φ calculated within the SCM
(left column) and SFA (right column). Emission energies correspond
to SB in (a) and (b), HH(14) in (c) and (d), and HH(15) in (e) and
(f). Pulse parameters and SFA envelope are the same as Fig. 5.

Coulomb potential of the remaining core on the wave packet
of the emitted electron is approximately equal or less than
the numerical error in our TDSE calculations for the energy
and laser parameters considered (about 40 as). We believe
that the present nonperturbative analysis can be very helpful
at the time of understanding previous and designing future
interferometric RABBIT experiments. Therefore, we can con-
clude on the necessity to revise the extraction method of phase
delays beyond the perturbative regime of the probe field. The
present nonperturbative analysis could pave the way for the
comprehension of the extraction of phase and time delays
through RABBIT-like experiments beyond the perturbative
regime of the probe pulse.
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APPENDIX A: IONIZATION TIMES

We can distinguish two different situations depending
on whether there are (or not) real solutions of the saddle
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FIG. 9. Closeup of Fig. 8 enhancing the low-intensity probe field.

equation (17). If |β+(k)| < F0/ω, there can be at most two
real times that fulfill Eq. (17), i.e., t (1) and t (2). It is impor-
tant to recall that in the proximity of the coalescence of real
times t (1) and t (2) [in Eq. (17)], this approach is not valid as
caustics are present in the transition probabilities [61,62]. To
avoid caustics we should consider the uniform saddle-point
approximation [63], however, we restrict to the saddle-point
approximation to discuss photoionization for the sake of sim-
plicity since it is not the aim of this work to discuss energies
very close to the classical borders. In turn, if |β+(k)| > F0/ω,
there are no real solutions for the saddle equation (17) and we
can say that this region of the momentum map is out of the
classical allowed set of k values.

The solutions of the saddle equation [Eq. (17)] with
β+(�k) < 0 lying in the first half-cycle are

ωt (1) = mod

(
sin−1

∣∣∣∣ ω

F0
β+(�k)

∣∣∣∣ − φ, 2π

)
,

ωt (2) = mod

(
π − φ − sin−1

∣∣∣∣ ω

F0
β+(�k)

∣∣∣∣, 2π

)
. (A1)

Instead, if β+(�k) > 0, they lie in the second half-cycle and
read as

ωt (1) = mod

(
π + sin−1

∣∣∣∣ ω

F0
β+(�k)

∣∣∣∣ − φ, 2π

)
,

ωt (2) = mod

(
2π − φ − sin−1

∣∣∣∣ ω

F0
β+(�k)

∣∣∣∣, 2π

)
. (A2)
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This change produces a discontinuity in the photoelectron
spectra already discussed in Ref. [43]. The modulo function
ensures that the saddle times lie in the unit cell t ∈ [0, 2π ] as
φ varies.

For a more complete analysis of the phase delays across the
entire energy range, we also examine the classical forbidden
regions where |β+(k)| > F0/ω using the saddle-point approx-
imation. The complex times arising from Eq. (17) are

ωts =
⎧⎨
⎩mod

(
π
2 + i cosh−1

∣∣ ω
F0

β+(�k)
∣∣ − φ, 2π

)
, β+(�k) < −F0/ω

mod
(

3π
2 + i cosh−1

∣∣ ω
F0

β+(�k)
∣∣ − φ, 2π

)
, β+(�k) > F0/ω,

(A3)

where we have used the definition of the vector potential
of the NIR laser given by Eq. (5b). From Eq. (A3) we can
observe that in the classically forbidden region, the real part
of saddle times remains constant. Besides, the imaginary part
is independent of φ and increases rapidly with |β+(�k)|. We
point out that the complex conjugate of ts in Eq. (A3) must
be discarded since the imaginary part of it is negative and it
would imply nonphysical exponentially growing probabilities.

APPENDIX B: CALCULATION OF THE SB
AND HH PHASE DELAYS

To determine the sign of β
(n)
+,m, from the saddle equation

[Eq. (17)], we can multiply and divide β
(n)
+,m by the quantity

v0,m + k, which is clearly positive for forward emission. Then,

β
(n)
+,m = (v0,m − k)(v0,m + k)

v0,m + k
= v2

0,m − k2

v0,m + k
. (B1)

The numerator of Eq. (B1) can be written as

v2
0,m − k2 = [(2m + 1)ω − Ip]

− [nω + (2m + 1)ω − Ip − Up]

= Up − nω, (B2)

where we have used that k2 = 2E2m+1+n and Eq. (15). Equa-
tion (B2) shows that the sign of β

(n)
+,m does not depend on the

pump harmonic number m. For emission paths (n < 0) we see
that β

(n)
+,m > 0. However, for absorption paths (n > 0), β

(n)
+,m

can be either positive, negative, or zero, depending on Up and,
thus, the probe peak field. In Fig. 10(a), we show that for
weak fields, i.e., Up < nω, or equivalently F0 < 2n1/2ω3/2, the
magnitude β

(n)
+,m < 0 for n > 0. In turn, for F0 > 2n1/2ω3/2,

the magnitude β
(n)
+,m > 0 for n > 0. In Fig. 10(b) we also plot

the average actions S̄m [defined above Eq. (20)] for each dif-
ferent (m, n) contributions. Whereas S̄m corresponding to net
absorption of probe photons (n > 0) is defined as piecewise
functions of the peak field F0, S̄m corresponding to emission
of probe photons (n < 0) or direct transitions with no net
exchange of probe photons (n = 0) is constant [see Eq. (B2)].

In order to examine the phase delay for a particular energy
peak, we have to calculate the coherent superposition of two
transition amplitudes [Eqs. (16) and (23)] as∣∣T (n1 )

m−1 + T (n2 )
m

∣∣2 = N2
[
F 2

m−1

∣∣I (n1 )
m−1

∣∣2 + F 2
m

∣∣I (n2 )
m

∣∣2

+2Fm−1Fm

∣∣I (n1 )
m−1

∣∣∣∣I (n2 )
m

∣∣ cos
(
φm−1 − φm

+ arg
[
I (n2 )
m

] − arg
[
I (n1 )
m−1

])]
, (B3)

where n1 and n2 determine the final energy [Eq. (15)] and must
satisfy the relation n1 = n2 + 2. Clearly, to inspect the phase
delay δ in Eq (24) we have to analyze carefully the argument
of the cosine function of Eq. (B3), particularly arg[I (n2 )

m ] and
arg[I (n1 )

m−1]. The argument of I (n)
m is given by the average ac-

tion S̄m that can be calculated by replacing the saddle times
given by Eqs. (A1) and (A2) into Eq. (9) regarding that in
Eq. (10a), a = nω for any ATI energy peak. Therefore, the
average action reduces to S̄m = −nφ + n fm(F0), where fm(F0)
is a constant piecewise function equal to multiples of π/2 in
the F0 domain, as discussed above. Now, it is convenient for
the analysis to express Eq. (20) as

I (n)
m = 2gm(�k, t (α) )e−inφ Ĩ (n)

m , (B4)
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FIG. 10. (a) β
(n)
+,m as a function of F0 (probe field strength), for

the values of (m, n) = (14, 1); (15, −1); (14,2); (15,0); (14,0); and
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where the values 2ω3/2 and (2ω)3/2 corresponding to the change of
β

(n)
+,m sign for those values of (m, n) are indicated. (b) Average action

S̄m as a function of F0.
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TABLE I. Parameters for the transition probability given in Eq. (24) for the main SB and HH considered in this work.

Peak A B δ

SB N2[F 2
m−1|I (1)

m−1|2 + F 2
m |I (−1)

m |2] 2N2Fm−1Fm|I (1)
m−1||I (−1)

m | φm − φm−1 + arg Ĩ (1)
m−1 − arg[Ĩ (−1)

m ]
HH(m) N2[F 2

m−1|I (2)
m−1 |2 + F 2

m |I (0)
m |2] 2N2Fm−1Fm|I (2)

m−1 ||I (0)
m | φm − φm−1 + arg Ĩ (2)

m−1 − arg[Ĩ (0)
m ]

HH(m − 1) N2[F 2
m−1|I (0)

m−1|2 + F 2
m |I (−2)

m |2] 2N2Fm−1Fm|I (0)
m−1||I (−2)

m | φm − φm−1 + arg Ĩ (0)
m−1 − arg[Ĩ (−2)

m ]

with

Ĩ (n)
m = ein fm (F0 ) cos

(
�S

2
− π

4
sgn[β+(�k)]

)
. (B5)

Finally, introducing Eqs. (B4) and (B5) into the argument of
the cosine function of Eq. (B3) and comparing with Eq. (24),
we find the simple expression for the delay given in Eq. (25).
The corresponding values of the parameters of Eq. (24)
can be found in Table I where pairs (n1, n2) are (1,−1),
(2,0), and (0,−2) for the main SB, HH(m), and HH(m − 1),
respectively.

Figure 10 allows us to clarify the independence of Ĩ (n)
m

from the relative phase φ given by Eq. (B3). The key to
understand the former statement arises from the observation
that in the cases when the quantity β

(n)
+,m changes its sign

(absorption paths), it produces discontinuities in the factor
cos ( �S

2 − π
4 sgn[β (1)

+,m]). On the other hand, the changes of
sign in eiS̄m cancel the previous ones, resulting in a continuous
function Ĩ (n)

m as a function of F0, as observed in Fig. 3 with the
same color code as in Fig. 10.

APPENDIX C: CLASSICAL
AND NONCLASSICAL REGIONS

Whereas the classical region of each contribution can be
ascribed to real ionization times given by Eqs. (A1) and (A2),
in the classical forbidden region the ionization times are com-
plex as given by Eq. (A3). In the latter, as the real part of
the complex time is constant, then S̄ = S and �S = 0. Thus,
Ĩ � eiS̄

√
2

2 . Overall, there are three types of energy regions
for the RABBIT protocol: (i) The classical region where both
Tm and Tm−1 in Eq. (22) have real ionization times, (ii) the
nonclassical region where both Tm and Tm−1 have complex
ionization times, and (iii) the mixed region where one of

the two contributions has real ionization times and the other
has only one complex ionization time. The three regions are
depicted in the scheme of Fig. 4.

In the nonclassical region, the only important factor for
the interference pattern is the exponential factor eiS̄ for each
of the two contributions Tm and Tm−1 in Eq. (22). Whereas
the imaginary part of the complex action reveals itself as an
exponential decay of the probability, the real part emerges
as an interference pattern. In this case, since S̄m and S̄m−1

are proportional to ωts as shown in Appendix B, Re(S̄m) and
Re(S̄m−1) differ in Re(2ωts) = π or 3π , that is, a change of
sign. Therefore, the phase delay in the nonclassical region is
δ = π . When the energy of the marginal sidebands is such that
it is in the mixed region one contribution has oscillating values
of Ĩ (classical region) whereas the other contribution is in its
classically forbidden region with constant Re(Ĩ ), as shown in
Fig. 3(d). There are certain regions in the F0 domain for which
both contributions have the same sign and thus the phase delay
is δ = 0 (white shade), whereas there are other ones where
they have different signs and thus δ = π (yellow shade). For
low values of the probe field F0, the marginal sidebands will
be in opposition of phase with respect to the main SB and in
phase with HH(m) and HH(m − 1).

To get the classical limits, the transcendental equation
|β (n)

+,m| = F0/ω must be numerically solved. However, we can
find an approximation for the case of very weak probe pulses
(small values of the fundamental peak field F0). In the low
field strength regime, we can neglect the ponderomotive en-
ergy Up from the second term of β

(n)
+,m in Eq. (17), and find

an analytical expression for the lower limit of validity of the
SCM, i.e.,

F min
0 = ω

∣∣√2nω + v2
0,m − v0,m

∣∣. (C1)

[1] M. Huppert, I. Jordan, D. Baykusheva, A. Von Conta, and H. J.
Wörner, Attosecond delays in molecular photoionization, Phys.
Rev. Lett. 117, 093001 (2016).

[2] Q. C. Ning, L. Y. Peng, S. N. Song, W. C. Jiang, S. Nagele, R.
Pazourek, J. Burgdörfer, and Q. Gong, Attosecond streaking of
Cohen-Fano interferences in the photoionization of H+

2 , Phys.
Rev. A 90, 013423 (2014).

[3] A. L. Cavalieri, N. Müller, T. Uphues, V. S. Yakovlev, A.
Baltuška, B. Horvath, B. Schmidt, L. Blümel, R. Holzwarth,
S. Hendel, M. Drescher, U. Kleineberg, P. M. Echenique,
R. Kienberger, F. Krausz, and U. Heinzmann, Attosecond spec-
troscopy in condensed matter, Nature (London) 449, 1029
(2007).

[4] S. Neppl, R. Ernstorfer, E. M. Bothschafter, A. L. Cavalieri, D.
Menzel, J. V. Barth, F. Krausz, R. Kienberger, and P. Feulner,

Attosecond time-resolved photoemission from core and valence
states of magnesium, Phys. Rev. Lett. 109, 087401 (2012).

[5] M. Ossiander, J. Riemensberger, S. Neppl, M. Mittermair, M.
Schäffer, A. Duensing, M. S. Wagner, R. Heider, M. Wurzer, M.
Gerl, M. Schnitzenbaumer, J. V. Barth, F. Libisch, C. Lemell,
J. Burgdörfer, P. Feulner, and R. Kienberger, Absolute timing
of the photoelectric effect, Nature (London) 561, 374 (2018).

[6] F. Krausz and M. Ivanov, Attosecond physics, Rev. Mod. Phys.
81, 163 (2009).

[7] R. Pazourek, S. Nagele, and J. Burgdörfer, Attosecond
chronoscopy of photoemission, Rev. Mod. Phys. 87, 765
(2015).

[8] V. Véniard, R. Taïeb, and A. Maquet, Two-color multiphoton
ionization of atoms using high-order harmonic radiation, Phys.
Rev. Lett. 74, 4161 (1995).

013104-13

https://doi.org/10.1103/PhysRevLett.117.093001
https://doi.org/10.1103/PhysRevA.90.013423
https://doi.org/10.1038/nature06229
https://doi.org/10.1103/PhysRevLett.109.087401
https://doi.org/10.1038/s41586-018-0503-6
https://doi.org/10.1103/RevModPhys.81.163
https://doi.org/10.1103/RevModPhys.87.765
https://doi.org/10.1103/PhysRevLett.74.4161


LÓPEZ, OCELLO, AND ARBÓ PHYSICAL REVIEW A 110, 013104 (2024)

[9] J. M. Schins, P. Breger, P. Agostini, R. C. Constantinescu,
H. G. Muller, A. Bouhal, G. Grillon, A. Antonetti, and A.
Mysyrowicz, Cross-correlation measurements of femtosecond
extreme-ultraviolet high-order harmonics, J. Opt. Soc. Am. B
13, 197 (1996).

[10] T. E. Glover, R. W. Schoenlein, A. H. Chin, and C. V. Shank,
Observation of laser assisted photoelectric effect and femtosec-
ond high order harmonic radiation, Phys. Rev. Lett. 76, 2468
(1996).

[11] J. Hummert, M. Kubin, S. D. López, J. I. Fuks, F. Morales,
M. J. J. Vrakking, O. Kornilov, and D. G. Arbó, Retrieving
intracycle interference in angle-resolved laser-assisted photoe-
mission from argon, J. Phys. B: At., Mol. Opt. Phys. 53, 154003
(2020).

[12] M. Schultze, M. Fieß, N. Karpowicz, J. Gagnon, M. Korbman,
M. Hofstetter, S. Neppl, A. L. Cavalieri, Y. Komninos, T.
Mercouris et al., Delay in photoemission, Science 328, 1658
(2010).

[13] K. Klünder, J. M. Dahlström, M. Gisselbrecht, T. Fordell, M.
Swoboda, D. Guénot, P. Johnsson, J. Caillat, J. Mauritsson, A.
Maquet, R. Taïeb, and A. L’Huillier, Publisher’s Note: probing
single-photon ionization on the attosecond time scale, Phys.
Rev. Lett. 106, 143002 (2011); 106, 169904 (2011).

[14] D. Guénot, K. Klünder, C. L. Arnold, D. Kroon, J. M.
Dahlström, M. Miranda, T. Fordell, M. Gisselbrecht, P.
Johnsson, J. Mauritsson, E. Lindroth, A. Maquet, R. Taïeb,
A. L’Huillier, and A. S. Kheifets, Photoemission-time-delay
measurements and calculations close to the 3s-ionization-cross-
section minimum in Ar, Phys. Rev. A 85, 053424 (2012).

[15] D. Guénot, D. Kroon, E. Balogh, E. W. Larsen, M. Kotur,
M. Miranda, T. Fordell, P. Johnsson, J. Mauritsson, M.
Gisselbrecht, K. Varjù, C. L. Arnold, T. Carette, A. S. Kheifets,
E. Lindroth, A. L’Huillier, and J. M. Dahlström, Measurements
of relative photoemission time delays in noble gas atoms, J.
Phys. B: At., Mol. Opt. Phys. 47, 245602 (2014).

[16] J. M. Dahlström, D. Guénot, K. Klünder, M. Gisselbrecht, J.
Mauritsson, A. L’Huillier, A. Maquet, and R. Taïeb, Theory
of attosecond delays in laser-assisted photoionization, Chem.
Phys. 414, 53 (2013).

[17] J. Fuchs, N. Douguet, S. Donsa, F. Martin, J. Burgdörfer, L.
Argenti, L. Cattaneo, and U. Keller, Time delays from one-
photon transitions in the continuum, Optica 7, 154 (2020).

[18] S. Beaulieu, A. Comby, A. Clergerie, J. Caillat, D. Descamps,
N. Dudovich, B. Fabre, R. Géneaux, F. Légaré, S. Petit,
B. Pons, G. Porat, T. Ruchon, R. Taïeb, V. Blanchet, and
Y. Mairesse, Attosecond-resolved photoionization of chiral
molecules, Science 358, 1288 (2017).

[19] D. G. Arbó, C. Lemell, S. Nagele, N. Camus, L. Fechner,
A. Krupp, T. Pfeifer, S. D. López, R. Moshammer, and
J. Burgdörfer, Ionization of argon by two-color laser pulses with
coherent phase control, Phys. Rev. A 92, 023402 (2015).
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