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Many-body entangled states allow precision measurement beyond the standard quantum limit. Yet they have
not been effectively exploited in optical lattice clocks except for proof-of-principle demonstrations. Under the
current experimental conditions, taking into account the lattice perturbation, atom-atom interactions, and local
oscillator noise, we theoretically evaluate the performance of spin-squeezing-based shallow-lattice Yb optical
clocks. The numerical simulation shows that the stability of differential frequency comparison between two Yb
ensembles in squeezed spin states potentially accesses the 10−19 level at the averaging time of 1 s. The resultant
Wineland parameter may be as low as ξ 2

W = 0.027, corresponding to a reduction of averaging time by a factor
of 37, and is limited by the collision-induced degradation of spin squeezing. The metrological gain provided by
spin squeezing opens up new opportunities for precision measurement and fundamental physics.
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I. INTRODUCTION

Substantial progress has been made in recent years on
optical lattice clocks, significantly advancing precision mea-
surement [1]. Clock uncertainty at the 10−18 level [2,3]
allows gaining new insights into many-body physics [4,5],
tighter limits on fundamental constant variation [6], ultralight
dark matter, and gravitational waves [7]. Additionally, the
careful evaluation of electric-quadrupole, magnetic-dipole,
and hyperpolarizabilities and employing lattice lasers with
substantially filtered background spectra have pushed the un-
certainty of lattice-induced light shifts down to the 10−19

level [8–11]. Moreover, operating clocks in shallow lat-
tices minimizes Raman scattering in upper clock states [12],
thereby extending the interrogation time up to tens of sec-
onds [13,14] and raising the clock duty cycle. Further, subtle
engineering of the Hamiltonian of lattice-trapped atoms tunes
the density shift to zero [15], leading to a differential fre-
quency uncertainty at the 10−21 level over the averaging time
of 102 h, which enables resolving the gravitational redshift
across a millimeter-scale atomic sample [14].

Conventional optical lattice clocks are built upon N uncor-
related probe particles (atoms and ions). The corresponding
uncertainty of the clock phase measurement is bounded
by the standard quantum limit (SQL) that arises from the
quantum projection noise (QPN) of independent particles

*These authors contributed equally to this work.
†Contact author: tts@pku.edu.cn

in coherent spin states (CSSs) [16,17], (�φ)SQL = N−0.5

(Fig. 1). Employing nonclassical spin states of particles may
beat the SQL [18]. The one-axis twisting based on photon-
mediated [19], Rydberg-dressed [20], and power-law [21]
interactions between particles is usually utilized to carry out
spin squeezing. The resultant measurement uncertainty based
on squeezed spin states (SSSs) scales as (�φ)SSS = N−0.83

(see below). In addition, measurement-based spin squeezing
was recently demonstrated on state-of-the-art optical clocks
by means of cavity quantum electrodynamics [22,23]. In-
deed, the true fundamental limit to the phase resolution is
imposed by the Heisenberg uncertainty principle [24], i.e.,
the Heisenberg limit (�φ)HL = N−1, and can be reached
using maximally entangled states (MESs). This has been
verified through a quantum network composed of a few entan-
gled optical clocks [25]. However, creating large-scale MESs
that are highly desired for metrological applications is still
challenging [26–28].

The performance of a many-body optical clock has not
yet reached the SQL due to the technical noise that results
from the interrupted interrogation of particles, known as the
Dick effect [29]. Thanks to the substantial reduction of the
thermal Brownian noise in local oscillators [30,31], the Dick-
effect-limited instability of an optical clock may reach the
low 10−17/

√
τ level for an averaging time τ [32], but still

lies above the SQL. Fortunately, the absolute frequency mea-
surement of optical clocks is not essential for many practical
applications such as testing general relativity [33] and engi-
neering interparticle interactions [15]. All the necessary infor-
mation can be directly derived from the differential frequency
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FIG. 1. Phase measurement uncertainty �φ in the Ramsey spec-
troscopy as a function of the particle number N . Circles: numerical
results based on the one-axis-twisting spin squeezing. Solid line:
curve fitting. Inset: steps of creating SSSs via the one-axis twisting.

measurement between two probe particle systems, where the
rejection of the Dick noise leads to a clock comparison limited
by the QPN [34]. Recently, a synchronous frequency compar-
ison demonstrated the unprecedented 10−18/

√
τ level [14].

All of the above progress paves the way toward a
spin-squeezing-enhanced synchronous frequency comparison
beyond 10−18/

√
τ . In this work, we investigate the potential

frequency stability of the synchronous comparison between
shallow-lattice Yb optical clocks using SSSs. The clock op-
eration is numerically simulated, where the noise in the
state-of-the-art local oscillator, lattice-induced light shifts of
the clock transition, and atom-atom collisions are involved.
It is found that the resultant differential frequency stability
accesses the 10−19 level at the averaging time of 1 second,
opening up new opportunities in quantum metrology and pre-
cision measurement.

II. SHALLOW-LATTICE Yb OPTICAL CLOCKS

As shown in Fig. 2(a), two laser sub-beams from an ul-
trastable local oscillator at 578 nm interact with two Yb
ensembles, Yb-1 and Yb-2, respectively, in a synchronous
manner. Two atomic ensembles are separately trapped in
two one-dimensional (1D) optical lattices and have the same
atom number N . The sub-beams are respectively locked
to the |g〉 ≡1 S0(F = 1

2 , MF = − 1
2 )–|e〉 ≡3 P0(F = 1

2 , MF =
1
2 ) clock transition in Yb ensembles through two independent
acousto-optic modulators, AOM-1 and 2. Here, F denotes
the total angular momentum and MF is the z-axis projection.
Ramsey spectroscopy is applied to derive the laser frequency.

A. One-axis-twisting spin squeezing

The one-axis-twisting model is employed to implement
spin squeezing of individual ensembles and the Ramsey
interrogation is performed accordingly [19]. The specific pro-
cedure is summarized as follows (see the inset of Fig. 1): Two
states, |g〉 and |s〉 ≡1 S0(F = 1

2 , MF = 1
2 ), of Yb form a spin

FIG. 2. Spin-squeezing-enhanced optical lattice clocks.
(a) Clock scheme of synchronous frequency comparison. Two
ensembles of Yb atoms are separately trapped in two 1D optical
lattices and are interrogated by the same clock laser. (b) Energy-level
structure of Yb atom. (c) Time sequence of clock cycle.

[Fig. 2(b)]. All atoms in an ensemble are initialized in |g〉.
A radiofrequency (rf) π

2 -pulse is resonantly coupled with the
|g〉 - |s〉 transition, generating the CSS of the ensemble,

|ψCSS〉 = e−iπ Ŝx/2 �m ⊗ |g〉m , (1)

as shown in Fig. 2(c). Here, m = (mx, my, m) labels the mo-
tional state of a lattice-trapped fermionic atom that is localized
on the mth lattice site and undergoes radial harmonic vibration
with the quantum numbers mu=x,y, and Ŝu=x,y,z are the total
spin operators (see Appendix A). Then, an off-resonant light
pulse drives the |s〉 - 3P1(F = 3

2 , MF = 3
2 ) transition and the

ensemble undergoes one-axis twisting evolution for a duration
α. Another rf pulse is subsequently used to rotate the spin
system around the y axis by an angle (β − π

2 ), resulting in
the SSS of the ensemble

|ψSSS〉 = e−i(β−π/2)Ŝy e−iαŜ2
z |ψCSS〉 . (2)

A light π pulse illuminates the ensemble, mapping all atoms
in |s〉 to the upper clock |e〉 state. After a dark time T , a second
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light π pulse is launched to map the atoms in |e〉 back to
|s〉. Finally, the other rf π

2 -pulse resonantly drives the |g〉 - |s〉
transition and the projection measurement

p(φ) = 1/2 + 〈ψ f (φ)| (Ŝz/N ) |ψ f (φ)〉 (3)

is performed on the ensemble that is in the state

|ψ f (φ)〉 = e−i π
2 Ŝx e−iφŜz |ψSSS〉 , (4)

where φ accounts for the phase difference accumulated be-
tween the clock laser and the atomic clock transition over the
dark period. The angles (α, β ) are numerically determined
according to the minimization of the phase measurement
uncertainty

�φ = �p/|∂ p/∂φ|, (5)

with the variance of the projection measurement

(�p)2 = 〈ψ f (φ)| (Ŝz/N )2 |ψ f (φ)〉 − p2. (6)

The detailed theoretical description can be found in Ap-
pendix A and [35,36].

B. Coherence time of clock transition

Various noise sources disturb the |g〉 - |e〉 clock transition.
It has been pointed out that, although the natural linewidth of
the clock transition is as low as 8.3 mHz, the Raman scatter-
ing (e.g., 3P0 → 3P1) of lattice photons strongly shortens the
lifetime of |e〉 [37]. This issue can be addressed by operating
the clock in a shallow lattice [38,39]. According to the ex-
perimental results in [37], the dependence of the coherence
time τcoh of the clock transition on the lattice potential U0 is
approximated by

τcoh(u) = (2π × 0.09 mHz × u + 2π × 8.3 mHz)−1, (7)

with u = U0/ER, the photon recoil energy ER/h = 2.0 kHz,
and the Planck constant h.

The conventional lattice depth U0 for the clock operation is
hundreds of ER, resulting in a τcoh of the order of 1 s [19,40].
As the lattice depth is reduced down to 10ER, τcoh approaches
the natural lifetime of |e〉 [Fig. 3(a)], allowing a clock in-
terrogation time limited by the local oscillator’s coherence
time and also enhancing the clock duty cycle. In addition, the
main population peak of a lattice-trapped atom is over three
orders of magnitude higher than that of nearest-neighbor sites.
Thus, the strong Wannier-Stark localization of atoms is still
maintained in the shallow lattice (see Appendix B).

It is worth pointing out that according to the recent achieve-
ments in shallow-lattice Sr optical clocks [10,14,15,22],
shallow-lattice Yb optical clocks hold promising prospects,
although the relevant practical clock operation has not been
demonstrated yet.

C. Light shifts

The clock transition experiences lattice-induced light shift.
The conventional magic wavelength of 759 nm, at which two
clock states have the same dynamic electric-dipole polariz-
ability [41], allows reducing the clock uncertainty induced
by the lattice intensity fluctuations below 10−17 [3,6,42].
Further suppression of the light shift down to the 10−19

FIG. 3. (a) Dependence of the coherence time τcoh of the clock
transition on the lattice depth u for Yb lattice clocks. (b) Depen-
dence of the light shift �νLS on the detuning δL of the lattice
laser away from the conventional magic wavelength of 759 nm
and the lattice depth u for Yb lattice clocks. The × symbol
denotes the crossing point between �νLS(δL, u) = 0 (solid) and
∂

∂u �νLS(δL, u) = 0 (dashed) curves. The ◦ symbol corresponds to the
point ∂

∂u �νLS(δL, u = 10) = 0.

level relies on the careful evaluation of differential electric-
quadrupole, magnetic-dipole, and hyperpolarizabilities [8,10].
In the clock operation, all atoms are usually prepared in the
axial ground vibrational state. The dependence of the light
shift �νLS(δL, u) of the clock transition on the small lattice
laser detuning δL away from the conventional magic wave-
length and u is derived as (see Appendix C)

h�νLS = ∂ν�α̃E1 δL (
√

pu/2 − pu) − �α̃qm√
pu/2

− q �β̃ (3u/4p − u3/2/
√

p + u2), (8)

with p = (1 + kBTr/U0)−1, q = (1 + 2kBTr/U0)−1, the Boltz-
mann constant kB, and the radial temperature Tr of atoms. The
experimental results of the frequency derivative of the differ-
ential electric dipole (E1) polarizability �α̃E1, the differential
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multipolar polarizability, and the differential hyperpolariz-
ability between |g〉 and |e〉 are ∂ν�α̃E1/h = 25.74 µHz/MHz,
�α̃qm/h = −1027 µHz, and �β̃/h = −1.194 µHz, respec-
tively [9]. In this work, we set Tr = 0.2 µK. Achieving such
low radial temperature is feasible, although the practical im-
plementation is complex [37,43].

In principle, the operational lattice detuning and depth
should be set at the crossing point (δL = 5.2 MHz, u = 43.1)
between the line for the vanishing of the light shift �νLS = 0
and the line for minimizing the sensitivity of �νLS on lattice
intensity fluctuations ∂�νLS/∂u = 0 (see Fig. 3) [8]. How-
ever, in order to operate the clock in a shallow lattice, we only
focus on the latter condition at the cost of sacrificing the clock
accuracy �νLS 	= 0. Setting u = 10 gives the corresponding
detuning δL = 4.5 MHz and the light shift �νLS = 0.8 mHz
(fractional shift of 1.5 × 10−18). The uncertainty of �νLS can
be less than 2 µHz (fractional uncertainty at the 10−21 level)
by controlling the relative fluctuations of the lattice intensity
within 10% and narrowing the lattice laser linewidth down
to 10 kHz.

It is worth pointing out that the theoretical (analytic)
model (8) for light shifts is based on an ideal, background-
free lattice laser system. However, as illustrated in [11], a
practical lattice laser relies on a tapered amplifier that con-
tains a broadband background spectral component stemming
from the amplified spontaneous emission (ASE), thereby re-
sulting in unwanted residual light shifts. The ASE can be
spectrally filtered using a volume Bragg grating, leading to
an estimated fractional frequency shift at the 10−21 level for
typical experimental conditions [11]. In addition, employing
a titanium:sapphire laser for the optical trapping benefits from
a spectral purity that well surpasses the tapered amplifier.

D. Blackbody radiation shift

Besides the lattice-induced light shift, the clock transition
is also perturbed by the blackbody radiation (BBR), resulting
in a shift [44,45]

�νBBR = −(1.25 Hz)(T/T0)4 − (21.9 mHz)(T/T0)6

−(0.74 mHz)(T/T0)8, (9)

with the ambient temperature T and T0 = 300 K. The first
term on the right-hand side corresponds to the static contri-
bution and the rest of the terms account for small dynamic
corrections. By operating the clock in the cryogenically
shielded environment with T = 77 K, the BBR shift can be
reduced to �νBBR = −5.5 mHz (fractional shift of 1.1 ×
10−17). Determining the temperature within an uncertainty
of �T = 0.1 K leads to a fractional BBR uncertainty of
6 × 10−20. Cryogenic optical lattice clocks have been recently
demonstrated with a clock uncertainty of a few millihertz [3].

III. COLLISIONAL EFFECTS

The remaining major source of the clock uncertainty is
the collisional shift �νCS of the |g〉 - |e〉 clock transition that
arises from the off-site s-wave and on-site p-wave interactions
between atoms [15]. The atom-atom interactions mainly occur
within the Ramsey dark period, during which the atoms are in
the superposition state of |g〉 and |e〉. Here, we assume that all

atoms in |s〉 are completely mapped into |e〉 using the light π

pulses [Figs. 2(b) and 2(c)]. The collisional shift �νCS can be
evaluated through numerical simulation.

Following the spin-1/2 model approximation [15,46–48],
the interatomic collisions in an ensemble are governed by the
operator

V̂ =
∑

m 	=m′

[
κmm′ ĵm · ĵm′ + χmm′ ĵz

m ĵz
m′

+ γmm′
(

ĵz
mn̂m′ + n̂m ĵz

m′
)]

, (10)

with κmm′ = B(eg)
mm′ − Amm′ , χmm′ = B(eg)

mm′ + B(gg)
mm′ − 2B(eg)

mm′ ,
and 2γmm′ = B(ee)

mm′ − B(gg)
mm′ . Here, the off-site s-wave Amm′

and on-site p-wave B(uv)
mm′ (u, v = e, g) interaction strengths

depend on the overlaps between the m and m′ motional states
of atoms and the s-wave (a−

eg = −25a0 with the Bohr radius
a0 [49]) and p-wave (beg = −74a0, b3

ee = 0.1b3
eg, and bgg ≈

0 [49]) scattering lengths (see Appendix D). ĵm = ĵx
mex +

ĵy
mey + ĵz

mez corresponds to the angular momentum operator
associated with the two-state (|g〉 and |e〉) atom in the m
motional state and n̂m account for the atom number operator.

In the specific simulation, we numerically create the dis-
tribution of atoms over different m motional states for each
clock cycle. The on-site atom number follows the Gaussian
distribution (with the axial width of the atomic cloud Lz) along
the lattice axis. The radial distribution of atoms on a lattice
site over different quantum harmonic oscillators labeled by
the indexes mx and my obeys the Fermi-Dirac distribution (see
Appendix D).

In the clock operation, all atoms are initially prepared in the
lower clock state, i.e., spin-polarized fermions, substantially
suppressing the s-wave collisions due to the Fermi statistics.
In addition, as verified in [49,50] the s-wave interactions
between Yb atoms on different lattice sites can be ruled out
even when the probe beam is artificially misaligned (i.e., in-
troducing the excitation inhomogeneity larger than the typical
value). Therefore, here we only consider the on-site p-wave
interactions, i.e., the pair of m and m′ atoms in Eq. (10) should
be on the same lattice site. Additionally, the p-wave scattering
between on-site |g〉 and |e〉 atoms mainly contributes the col-
lisional shift due to |b3

eg| � |b3
ee,gg|.

The collisional shift �νCS is evaluated using Ramsey spec-
troscopy. In the SSS-based Ramsey measurent, where the
ensemble has been prepared in |ψSSS〉 [Eq. (2)], the ensemble
wavefunction evolves to

|ψ f 〉 = e−i π
2 Ŝx π̂e−iφĴz e−i2πV̂ T/hπ̂ |ψSSS〉 , (11)

after the second Ramsey π
2 pulse. Here, Ĵz = ∑

m ĵz
m and φ

denotes the accumulated phase difference between the laser
and the clock transition over the dark period. The π̂ op-
erator denotes the operation of completely mapping atoms
between |e〉 and |s〉 using the light π pulses [Figs. 2(b)
and 2(c)]. The fractional excitation of atoms is derived by p =
1/2 + 〈ψ f | (Ŝz/N ) |ψ f 〉. The collisional shift �νCS is gener-
ally measured at the Ramsey excitation fraction of 0.5 through
repeating the simulation process [Fig. 4(a)]. Equation (11)
illustrates that the interatomic interactions (denoted by the
symbol V ) introduce extra phases to different collective spin
states of atoms (see Appendix D). This not only induces the
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FIG. 4. Effects of atomic collisions on the SSS-based clock performance. (a) Excitation fraction p vs the phase difference φ between the
two Ramsey pulses in the absence (V = 0) or presence (V 	= 0) of atom–atom interactions. The collisional frequency shift �νCS is derived
accordingly. p is evaluated by averaging over multiple Ramsey-measurement simulations. (b) Standard deviation (uncertainty) of the Ramsey
excitation �p. �p is derived over multiple Ramsey-measurement simulations. Dependence of �νCS (c) and the phase measurement uncertainty
�φ (d) on the lattice depth u for different average numbers n̄ of on-site atoms. Symbols: numerical results. Lines: curve fitting. The SQL of
the phase uncertainty in the absence of atom-atom interactions V = 0 is inserted in (d). For all plots, the trapped atoms has an average number
N̄ = 5000 and a standard deviation σN = 50 and the radial temperature of atoms is Tr = 0.2 µK.

frequency shift of the clock transition �νCS but also enhances
the quantum fluctuations of the projection measurement
(�p)2 = 〈ψ f | (Ŝz/N )2 |ψ f 〉 − p2 [Fig. 4(b)], degrading the
degree of spin squeezing,

(�φ)SSS(V = 0) = N−0.83 < (�φ)SSS(V 	= 0). (12)

The atom-atom interactions V depend strongly on the over-
lap of motional states of the on-site atoms. Decreasing the
lattice depth u broadens the spatial distribution width of atoms
in a pancake-shaped lattice site, suppressing the collisional
shift �νCS [Fig. 4(c)]. Additionally, the density of atoms de-
creases as the average number of atoms per site n̄ = NλL/2Lz

is reduced, where λL is the lattice wavelength and Lz is the
axial width of the atomic cloud. In experiments, n̄ may be
adjusted through expanding the atomic cloud [51].

A few technical noise sources fluctuate the collisional shift.
The atoms are prepared in the ground Wannier-Stark states in
the axis direction and occupy different harmonic oscillators
according to the Fermi distribution in the radial direction. The
occupied radial states differ over clock cycles, leading to the
uncertainty of the collisional shift. In addition, the lattice-
trapped ensembles in different clock cycles may not have the
same atom number. Furthermore, the on-site atom number
varies over the lattice region due to the Gaussian distribution

of the atomic cloud in the axial direction (see Appendix D).
Under the typical experimental conditions, for example, the
trapped atoms have an average number N̄ = 5000 and a stan-
dard deviation σN = 50 [34]. We set the on-site atom number
as n̄ = 2 (the corresponding width of the ultracold cloud is
approximately 1 mm) and the radial temperature of atoms at
Tr = 0.2 µK. The numerical simulation gives �νCS = 0.03
mHz (fractional shift of 1.1 × 10−20) with an uncertainty of
5 µHz (fractional uncertainty of 1.7 × 10−21) and the relation
between the SSS-based phase measurement uncertainty and
the SQL of (�φ)SSS(V 	= 0) = ξW(V 	= 0) × (�φ)SQL with
the Wineland parameter [18] ξ 2

W(V 	= 0) = 0.027. In contrast,
we have ξ 2

W(V = 0) = 0.0034 in the absence of interatomic
collisions. That is, the atom-atom interactions strongly de-
grade the metrological gain provided by spin squeezing.

IV. ULTRASTABLE LOCAL OSCILLATOR

The heart of an optical clock is an ultrastable laser source
that is usually prestabilized to a well-engineered high-finesse
optical resonator. This local oscillator primarily determines
the short-term frequency stability of the optical clock. Sta-
bilizing the local oscillator to a silicon resonator that is
operated in cryogenic environment may reduce the laser’s
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FIG. 5. Dick effect. (a) Frequency noise spectrum of the local oscillator. Solid line: numerical result. Dashed line: analytical model in [32].
(b) Power spectral density of the local oscillator. The clock laser has a spectral linewidth of 77 mHz. (c) Sensitivity function g(t ) for the
Ramsey measurement based on CSS (dashed) and SSS (solid) with the atom number N = 7 in the absence of atom-atom interactions V = 0.
The duration of light π pulses in Fig. 2(c) is set to be 20 ms. (d) Sensitivity gd within the dark time vs atom number N . The shade denotes the
regime of the Dick-effect-limited stability exceeding the SSS-based stability with V = 0, σ Dick

y (τ ) > σ SSS
y (τ ).

spectral linewidth down to tens of mHz [52,53]. In addition,
the resonator’s thermal noise floor can be suppressed below
1 × 10−16. We assume that the local oscillator has been locked
to a cryogenic resonator with a frequency noise spectrum
shown in Fig. 5(a). (This spectrum is numerically derived
according to the analytical model in [32].) The resultant laser
linewidth reaches 2π × 77 mHz [Fig. 5(b)], whose reciprocal
gives the coherence time of the probe beam. Accordingly, we
set the Ramsey measurement time as T = 2 s.

To evaluate the Dick effect based on this local oscillator, we
compute the sensitivity function g(t ) of the atomic ensemble
that is initially prepared in SSS in the absence of collisions
V = 0 (see Appendix E). Since the spin squeezing suppresses
the projection measurement noise, the sensitivity gd within the
dark period is lower than that of CSS (gd = 1) as depicted
in Fig. 5(c), resulting in a relatively weaker Dick effect. As
the atom number N is increased, gd goes up gradually toward
unity [Fig. 5(d)].

Besides suppressing the probe beam noise, shortening the
dead time in a clock cycle also effectively reduces the Dick
limit. Using the cycle duration Tc = 2.3 s (i.e., 87% duty
cycle) in [19], we derive the Dick-effect-limited clock sta-
bility as σ Dick

y (τ ) = gd × 4.8 × 10−17/
√

τ . Indeed, the dead
time may be further reduced even down to zero through
alternatively interrogating multiensembles within a clock
cycle [32,54].

We use σ SQL/SSS
y (τ ) to denote the stability limit of the

CSS/SSS-based Ramsey spectroscopy for one clock (ensem-
ble) in the absence of atom-atom interactions,

σ SQL/SSS
y (τ ) = (�φ)SQL/SSS(V = 0)

2πν0T

√
Tc

τ
, (13)

with the frequency ν0 of the clock |g〉 - |e〉 transi-
tion. The numerical results illustrate that σ Dick

y (τ ) ex-
ceeds σ SQL

y (τ ) when N > 33 and σ SSS
y (τ ) when N >

9, challenging a many-body optical clock beyond the
Dick-effect limit. For the clock operation with N =
5000, we have σ Dick

y (τ ) = 4.6 × 10−17/
√

τ , σ SQL
y (τ ) =

3.3 × 10−18/
√

τ , and σ SSS
y (τ ) = 2.0 × 10−19/

√
τ with V =

0. That is, σ Dick
y (τ ) is well above σ SQL,SSS

y (τ ), limit-
ing the frequency stability of individual optical clocks.
The Dick limit can be overcome through the synchronous
comparison [14,34].

V. CLOCK STABILITY

We perform the numerical simulation of the clock opera-
tion in the presence of collisional shifts V 	= 0 and evaluate
the differential frequency stability between two optical clocks
(i.e., two ensembles of atoms). Due to the finite amount of
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computer memory and computational time, we set N̄ = 5000,
σN = 50, and n̄ = 2.

A. Simulation of clock operation

In the clock operation, the frequency locking point is set
at the detuning � = π/2T between the probe beam and
the clock |g〉 - |e〉 transition. Here, the fluctuations of lattice-
induced light �νLS and BBR �νBBR shifts are omitted since
their uncertainties are at the 10−21–10−20 level. The detuning
noise mainly comes from the frequency noise of the local
oscillator �νLO(t ) that is produced following the analytical
model in [32].

For one Yb ensemble, the number of lattice-trapped atoms
N varies over different clock cycles. Within the kth cycle, N
is generated according to a Gaussian distribution with mean
N̄ = 5000 and standard deviation σN = 50. The number of
atoms on the mth site nm obeys the Gaussian distribution under
the condition that the average on-site atom number is equal to
n̄ = 2. The atoms on the mth site are distributed over different
radial motional (mx, my) states according to the Fermi-Dirac
statistics (see Appendix D).

For the kth clock cycle, we numerically compute the SSS-
based Ramsey excitation of N atoms under the assumption
that the light π pulses completely map the atoms from |s〉 into
|e〉 and vice versa. We first compute the fractional Ramsey
excitation of atoms p = 1/2 + 〈ψ f | (Ŝz/N ) |ψ f 〉 with the en-
semble wave function

|ψ f 〉 = e−i π
2 Ŝx π̂e−i(π/2+φ)Ĵz e−i2πV̂ T/hπ̂ |ψSSS〉 , (14)

and Ĵz = ∑
m ĵz

m. The extra phase difference φ accumulated
between the laser and the clock transition over the dark pe-
riod arises from the laser frequency noise �νLO(t ). Then,
the measured detuning �k between the laser and the clock
transition is evaluated by �k = � + (p − 1/2)/T + δk . Here,
a small projection noise δk with the standard deviation of
(�φ)SSS/T [Fig. 4(d)] is artificially introduced to �k . Finally,
the detuning noise �νLO(t ) is corrected according to �k in
the next clock cycle. Repeating the above process leads to the
error signal in the corresponding acousto-optic modulator and
the Allan deviation is evaluated accordingly.

B. Simulation results

The simulation results have been summarized in Fig. 6.
Locking the local oscillator to the clock transition in one Yb
ensemble overcomes the thermal noise floor of 4.6 × 10−17,
reaching the Dick-effect limit σ Dick

y (τ ). The synchronous
comparison between two Yb ensembles rejects the local os-
cillator noise. In the absence of atom-atom interactions, V =
0, the fractional stability of the differential frequency be-
tween two clocks with independent atoms (i.e., CSS) reaches
σy(τ ) = √

2σ SQL
y (τ ) = 4.7 × 10−18/

√
τ , one order of magni-

tude lower than σ Dick
y (τ ). Here,

√
2 comes from the fact that

two ensembles are independent of each other. Employing the
SSS further enhances the stability of the synchronous compar-
ison, σy(τ ) = √

2σ SSS
y (τ ) = 2.8 × 10−19/

√
τ . In contrast, the

atom-atom collisions, V 	= 0, induce the degradation of the
differential frequency stability between two clocks, σy(τ ) =
7.6 × 10−19/

√
τ larger than

√
2σ SSS

y (τ ). Nevertheless, the

FIG. 6. Stabilities of the free-running local oscillator (circles),
Dick-effect limit (4.6 × 10−17/

√
τ , triangles), and synchronous

comparisons based on CSS with V = 0 (4.7 × 10−18/
√

τ , dia-
monds), SSS with V = 0 (2.8 × 10−19/

√
τ ), and SSS with V 	= 0

(7.6 × 10−19/
√

τ , squares). For all curves, N̄ = 5000, σN = 50, n̄ =
2, T = 2 s, and Tc = 2.3 s.

stability at the 10−19 level of 1 s averaging provides a pow-
erful means for metrology and prime fundamental research.
For example, the gravitational redshift across the 1-mm-width
ultracold cloud on Earth’s surface reaches −1.09 × 10−19,
which can be resolved through the SSS-based synchronous
comparison over 50 s of averaging, less than 1/30th of
that of [14].

VI. CONCLUSION

In summary, we have theoretically studied the performance
of spin-squeezing-based shallow-lattice Yb optical clocks.
For single clocks, the Dick effect far outweighs the advan-
tage of many-body entanglement and primarily limits the
clock precision, thereby necessitating significant improve-
ments in shortening the dead time and lowering the clock
laser phase noise. In contrast, the differential frequency mea-
surement effectively rejects the Dick noise, leading to a clock
stability beyond the Dick limit. However, the atom-atom in-
teractions degrade the metrological gain provided by spin
squeezing, weakening its advantage in clock performance.
Our numerical simulation shows that the potential stability
of spin-squeezing-based synchronous comparison may access
the 10−19 level at the averaging time of 1 s. Lowering the
atomic temperature and reducing the density of atoms may
further enhance the differential frequency stability.

Besides using spin squeezing to suppress the variance of
the phase measurement, an alternative way to enhance the
phase sensitivity is to directly amplify the small phase shift it-
self through a time-reversal interaction protocol [55,56]. This
protocol employs a controlled sign change in the many-body
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spin Hamiltonian and has achieved a metrological gain of
11.8 dB in experiment [55]. Additionally, the dependence of
the phase sensitivity on the atom number shows a Heisenberg
scaling (b/N) that is at a fixed distance of b = 12.6 dB from
the Heisenberg limit.
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APPENDIX A: SPIN SQUEEZING

The inset of Fig. 1 illustrates the general procedure for
creating the SSS. Initially, all atoms are prepared in the |g〉
state. A rf π

2 pulse is used to resonantly drive the |g〉 - |s〉
transition in atom, resulting in the CSS |ψCSS〉 [see Eq. (1)].
Then, the one-axis twisting interaction (duration of α) and the
rotation of the system around the y axis by an angle (β − π

2 )
are performed on the atomic cloud sequentially, leading to the
SSS |ψSSS〉 [see Eq. (2)]. The angular momentum operators
Ŝx,y,z in Eqs. (1) and(2) are defined as

Ŝx = 1

2

∑
m

[
σ̂ (m)

sg + σ̂ (m)
gs

]
, (A1a)

Ŝy = − i

2

∑
m

[
σ̂ (m)

sg − σ̂ (m)
gs

]
, (A1b)

Ŝz = 1

2

∑
m

[
σ̂ (m)

ss − σ̂ (m)
gg

]
, (A1c)

and the operator, for example, σ̂ (m)
sg = (|s〉 〈g|)m, is associated

with the atom in the motional m state (see below). According
to [18], the optimal pair of angles (α, β ) minimizes the phase
uncertainty in Ramsey spectroscopy,

(�φ)SSS = min

[
�Sx(φ)

Sz(φ)

]
φ=±π/2

, (A2)

with the expectation O(φ) = 〈ψ f (φ)| Ô |ψ f (φ)〉 and uncer-

tainty �O(φ) =
√

〈ψ f (φ)| Ô2 |ψ f (φ)〉 − O2(φ) of an opera-

tor Ô in |ψ f (φ)〉 [see Eq. (4)] and the phase difference φ

between two pulses in the Ramsey measurement. For inde-
pendent atoms, we have |ψ f (φ)〉 = e−i π

2 Ŝx e−iφŜz |ψCSS〉, under
which the phase uncertainty at φ = ±π/2 corresponds to the
SQL of the phase measurement, (�φ)SQL = N−0.5.

Figure 7 displays the dependence of Sz(φ) and �Sz(φ) on
φ. At the frequency locking point of the local oscillator, φ =
±π/2, the population inversion Sz is equal to 0.0 (i.e., the
fractional excitation of 0.5) for both CSS and SSS. In contrast,
the excitation uncertainty �Sz under the CSS is much higher
than that of SSS (i.e., spin squeezing).

We numerically compute the dependence of (�φ)CSS

on the atom number N (Fig. 1) and find the scaling
(�φ)SSS ∼ N−0.83. The Wineland parameter is defined as
ξW = (�φ)SSS/(�φ)SQL.

FIG. 7. Dependence of the expectation Sz(φ) and uncertainty
�Sz(φ) on φ for Ramsey detection using the CSS (upper) and SSS
(lower). The atom number is N = 5000.

APPENDIX B: WANNIER-STARK STATES

We consider the localization of atoms in the optical lattice.
The Hamiltonian that governs the external motion of atoms in
the axial direction is written as

Ĥext = Ĥ (0)
ext + Mgẑ, (B1)

with the acceleration of the Earth’s gravity g. Here, the
Hamiltonian

Ĥ (0)
ext = p̂2

z

2M
+ U0

2
(1 − cos 2kLẑ), (B2)

describes the atom moving in the periodic optical potential
with the momentum of atom p̂z. Before deriving the eigenval-
ues and eigenstates of Ĥext, let us first focus on the following
eigenvalue equation

Ĥ (0)
ext ψn,q(z) = h̄ω(0)

n,qψn,q(z), (B3)

with the band index n and the momentum q. According to
Bloch’s theorem, ψn,q(z) takes the form

ψn,q(z) =
∑

μ

cn,μ,qei(q+2μkL )z, (B4)

where cn,μ,q and ω(0)
n,q can be derived from

h̄ωn,qcn,μ,q =
[

(q + 2μkL )2

2
+ U0

2

]
cn,μ,q

− U0

4
(cn,μ−1,q + cn,μ+1,q ). (B5)

We restrict ourselves to n = 0, i.e., ψq(z) = ψn,q(z) and
ω(0)

q = ω(0)
n,q, since the atoms are usually initialized in the

ground band in the clock operation. One may use the Bloch
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FIG. 8. Wannier-Stark states of Yb atoms moving in the optical
lattice with different potentials u = U0/ER.

states ψq(z) to construct the eigenstate of an atom localized
on the mth lattice site,

Wm(z) =
∑

q

bm,qψq(z), (B6)

which is the solution to the eigenvalue equation

ĤextWm(z) = h̄ωmWm(z). (B7)

As illustrated in Ref. [57], ωm takes the form

ωm = ω0 + m�, (B8)

with the mean frequency of Bloch states ω0 = 1
N

∑
q ω(0)

q and

the energy separation between adjacent lattice sites � = MgλL

2h̄ .
bm,q is derived as

bm,q = 1√
N

exp

[
− ih̄

Mg
(qωm − ω̃q)

]
, (B9)

with ∂ω̃q

∂q = ω(0)
q and ω̃0 = 0. The Wm(z) states are usually

referred to as the Wannier-Stark states. As shown in Fig. 8,
for a lattice potential as shallow as U0 = 5ER the population
of an atom in nearest-neighbor sites is fifty times smaller than
the main population peak.

APPENDIX C: LIGHT SHIFTS

Although the lattice-induced light shift �νLS has already
been formulated in [58–60], here we rederive �νLS and find
a different expression caused by the inhomogeneous distri-
bution of the lattice intensity in the radial direction. The
atoms move in the optical lattice formed by the interference
of two Gaussian beams (waist w0) of the same frequency νL

(wavelength λL and wave number kL) and amplitude traveling
in opposite directions (in the z axis). To the fourth-order
Stark shift, the optical potential experienced by an atom in
|μ = e, g〉 is written as [58–60]

Ûμ(r) ≈ −[
αE1

μ (νL ) − αdqm
μ (νL ) sin2(kLẑ)

]
Ie

− 2(x2+y2 )

w2
0

− βμ(νL ) cos4(kLẑ)I2e
− 4(x2+y2 )

w2
0 , (C1)

where α
dqm
μ denotes the difference between the electric-dipole

αE1
μ and the sum α

qm
μ of magnetic-dipole and electric-

quadrupole dynamic polarizabilities, βμ accounts for the
electric-dipole dynamic hyperpolarizability, and I is the in-
tensity of single traveling beam. The magic wavelength λmagic

of the optical lattice is defined according to αE1
e (νmagic) =

αE1
g (νmagic) ≡ αE1

0 with νmagic = c/λmagic (with the speed of
light in free space c) [41]. In the practical clock operation, the
lattice laser frequency νL is detuned from νmagic by a small
amount δL = νL − νmagic.

The energy of an atom moving in Ûμ(r) is quantized. In the
axial direction, the atoms are localized on individual lattice
sites (see below). One may expand sin2(kLẑ) and cos4(kLẑ)
in Eq. (C1) up to harmonic (∝ ẑ2) and anharmonic (∝ ẑ4)
terms. We apply the approximation of the quantum harmonic
oscillator,

|n〉 = (ξ
√

π2nn!)−1/2Hn(z/ξ )e−z2/2ξ 2
, (C2)

with ξ =
√

h̄
M�z

, the reduced Planck constant h̄, the mass

of an atom M, the characteristic frequency �z = 2
√

U0ER/h̄
in the axis direction, the lattice potential U0 = αE1

0 I , the
photon-recoil energy ER = h2

2Mλ2
L
, and the Hermite polynomi-

als Hn(z/ξ ). The light shift of the clock transition �νLS is
computed by

h�νLS =
∫

ρ(x, y) 〈n| [Ûe(r) − Ûg(r)] |n〉 dx dy, (C3)

with the Planck constant h and the thermal distribution

ρ(x, y) = M�2
r

2πkBTr
e− M�2

r
2kBTr

(x2+y2 )
, (C4)

of atoms in the radial direction [
∫

ρ(x, y)dx dy = 1], the ra-
dial temperature Tr , the Boltzmann constant kB, and the radial

oscillation frequency �r =
√

4U0

Mw2
0
. Equation (C3) indicates

that the radial motion of atoms is treated classically.
After some algebra, we arrive at [8]

h�νLS = √
p

(
∂�α̃E1

∂ν
δL − �α̃qm

)(
n + 1

2

)
u1/2

−
[

p
∂�α̃E1

∂ν
δL + 3q

2p
�β̃

(
n2 + n + 1

2

)]
u

+ 2q√
p
�β̃

(
n + 1

2

)
u3/2 − q�β̃u2, (C5)

with �α̃E1 = (ER/αE1
0 )(αE1

e − αE1
g ), �α̃qm = (ER/αE1

0 )
(αqm

e − α
qm
g ), �β̃ = (ER/αE1

0 )2(βe − βg), p = (1 +
kBTr/U0)−1, q = (1 + 2kBTr/U0)−1, and u = U0/ER. In
the limit kBTr � U0, one has p ≈ q ≈ 1 and Eq. (C5) is
reduced to the one in [58–60].

The light shift coefficients for Sr and Yb have been listed
in Table I. In the clock operation, the atoms are usually pre-
pared in the axial ground vibrational state n = 0. The radial
temperature Tr has a typical value of 0.2 µK and the condition
kBTr � U0 is not satisfied.
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TABLE I. Electric-dipole (αE1
0 ), difference of multipolar (�α̃qm)

and hyper (�β̃) polarizabilities for Sr and Yb at the magic wave-
length λmagic.

Sr [8] Yb [9,60]

λmagic (nm) 813.43 759.36
αE1

0
h ( kHz

kW/cm2 ) 54.1 40.5
1
h

∂�α̃E1

∂ν
( µHz

MHz ) 17.35 25.74
�α̃qm

h (µHz) −962 −1027
�β̃

h (µHz) −0.461 −1.194

APPENDIX D: COLLISIONS OF SPIN-POLARIZED ATOMS

We employ the spin model approximation to investigate
the collisional shifts in shallow-lattice optical clocks [48].
Let us assume that the light π pulses can completely map
the |s〉-populated atoms into |e〉 and vice versa [Fig. 2(b)].
Thus, any quantum operations carried out between |g〉 and
|s〉 are equivalent to performing the same operations on the
two-level system composed of |g〉 and |e〉. We use m =
(mx, my, m) to denote the motional state that is populated by
one fermionic atom. This atom undergoes the radial vibration
with the harmonic oscillator eigenmodes φmx (x) and φmy (y)
and is localized on the mth lattice site with the correspond-
ing Wannier–Stark state Wm(z). The operator ĵm = ĵx

mex +
ĵy
mey + ĵz

mez associated with the m atom is given by

ĵx
m = [

σ̂ (m)
eg + σ̂ (m)

ge

]
/2, (D1a)

ĵy
m = −i

[
σ̂ (m)

eg − σ̂ (m)
ge

]
/2, (D1b)

ĵz
m = [

σ̂ (m)
ee − σ̂ (m)

gg

]
/2, (D1c)

with σ̂ (m)
uv = (|u〉 〈v|)m (u, v = e, g).

The atom-atom interaction Hamiltonian including s- and
p-wave contributions takes the form [15]

V̂ =
∑

m 	=m′

[(
Beg

m,m′ − Am,m′
)
ĵm · ĵm′

+(
Bee

m,m′ + Bgg
m,m′ − Beg

m,m′
)

ĵz
m ĵz

m′

+ (
Bee

m,m′ − Bgg
m,m′

)(
ĵz
mn̂m′ + n̂m ĵz

m′
)
/2

]
, (D2)

where the interaction parameters are defined as

Am,m′ = 4π h̄a−
eg

M
qmx,m′

x
qmy,m′

y
om,m′ , (D3a)

Buv
m,m′ = 3π h̄2b3

uv

2M
(pmx,m′

x
qmy,m′

y
+ qmx,m′

x
pmy,m′

y
)om,m′ , (D3b)

with the s-wave scattering length a−
eg, the p-wave scatter-

ing volumes b3
uv (u, v = e, g), and the overlap integrals, for

example,

pmx,m′
x
=

∫ ∣∣∣∣φmx (x)
∂

∂x
φm′

x
(x)−φm′

x
(x)

∂

∂x
φmx (x)

∣∣∣∣
2

dx, (D4a)

qmx,m′
x
=

∫
|φmx (x)φm′

x
(x)|2dx, (D4b)

om,m′ =
∫

|Wm(z)Wm′ (z)|2dz. (D4c)

FIG. 9. Overlap integral om,m for Yb as a function of the lattice
potential depth u.

Figure 9 illustrates that om,m decreases as the lattice potential
u is reduced. When u � 5, om,m is over 60 times larger than
om,m′ with |m′ − m| = 1.

In the absence of excitation inhomogeneity, the Dicke
states {|M〉 ≡ |J, M〉 , M = −J, . . . , J} with J = N/2 can be
used to span the Hilbert space if all atoms are initialized in |g〉.
As a result, s-wave collisions, which mainly occur between
atoms in different lattice sites (m 	= m′), are substantially
suppressed. Indeed, the recent experiment has verified the
dominant role of p-wave collisions between on-site atoms in
fermionic Yb lattice clocks [49].

We focus on the influence of atom-atom interactions on
the SSS-based Ramsey spectroscopy [Fig. 2(c)]. Collisions
during the short light π pulses can be ignored. The interaction
V̂ governs the dynamics of atoms within the dark period T . It
is easy to derive the following transition matrix elements:

〈M ′| ĵ±m |M〉 =
√

(J ± M + 1)(J ∓ M )

2J
δM ′,M±1, (D5a)

〈M ′| ĵz
m |M〉 = M

2J
δM ′,M . (D5b)

Thus, V̂ is diagonal in the Dicke-state basis and each |M〉
acquires an extra phase shift after the free evolution time. All
these different phases eventually lead to the clock frequency
shift.

Let us consider the distribution of atoms in the optical
lattice potential. In each clock cycle, the ultracold atomic
cloud with the Gaussian distribution ∼e−4(zm−zc )2/L2

z in the
axial direction is loaded into the lattice [51] and all atoms
are initially prepared in the ground (n = 0) band. Here, zc

corresponds to the lattice center and Lz denotes the axial width
at half maximum of the atomic cloud. One may numerically
generate the number of atoms nm in the mth site accordingly
in the simulation (Fig. 10). The conservation of atom number
demands N = ∑

m nm and the average of the on-site atom
number is given by n̄ = NλL/2Lz. Additionally, in the radial
direction, the atoms on a lattice site follow the Fermi-Dirac
distribution

fmr = mr + 1

e[(mr+1)h̄�r−kBTF ]/kBTr + 1
, (D6)
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FIG. 10. Distribution of lattice-trapped atoms in the axis direction.

with the radial quantum number mr and the Fermi temper-
ature TF . For each populated lattice site nm � 1, one may
numerically generate the indices mr according to Eq. (D6)
and then randomly select (mx, my) under the condition of
mr = mx + my. Finally, we obtain a set of populated motional
m states. Substituting a−

eg = −25a0 (a0 the Bohr radius), beg =
−74a0, b3

ee = 0.1b3
eg, and bgg ≈ 0 for Yb [49] and the typical

value TF ∼ 100 nK, one may compute the time evolution
of wave function of atoms within the dark time and further
study the effects of atom-atom interactions on the SSS-based
Ramsey spectroscopy, including the collisional shift and the
degradation of the spin squeezing (Fig. 4).

APPENDIX E: DICK EFFECT

The down-conversion of the local oscillator’s intrinsic fre-
quency noise degrades the short-term frequency stability of an
atomic clock, known as the Dick effect [29]. Thus far, the Dick
effect for independent atoms has been well formulated, but
few studies have been focused on the Dick effect associated
with the SSSs. Here, we study the Dick effect in a spin-
squeezing-based optical clock under Ramsey interrogation.

Let us first derive the sensitivity function g(t ) of the system
to the phase step ϕ of the probe beam. Each clock cycle
(duration of Tc) begins with the preparation of all atoms in |g〉.
The one-axis twisting method in Appendix A is implemented
to create the SSS of atoms. Subsequently, the system evolves
according to the Schrodinger equation

ih̄
d

dτ
|ψ (τ )〉 = ĤRamsey |ψ (τ )〉 , (E1)

with the light-atom interaction Hamiltonian

ĤRamsey/h̄ =
∑

m

[
−�σ̂ (m)

ee + �(τ )

2
σ̂ (m)

se e−iϕ(τ )

+�(τ )

2
σ̂ (m)

es eiϕ(τ )

]
, (E2)

the detuning � of the probe beam relative to the |s〉 - |e〉
transition, the Rabi frequency

�(τ ) =

⎧⎪⎨
⎪⎩

π/τπ , 0 � τ � τπ ,

0, τπ < τ < τπ+, T

π/τπ , τπ + T � τ � 2τπ + T,

(E3)

a small phase step ϕ(t ) occurring at the time t,

ϕ(τ ) =
{

0, 0 � τ < t,

ϕ, t � τ,
(E4)

and the initial condition |ψ (0)〉 = |ψSSS〉. Actually, ĤRamsey

denotes that a π pulse maps the |s〉-populated atoms into |e〉
and a second π pulse maps the |e〉-populated atoms back
into |s〉. The system evolves freely between two pulses. The
detuning is usually set at � = π/2T for the clock operation.

Finally, a second rf π
2 pulse resonantly drives the atoms to

|ψ f 〉 = e−iπ Ŝx/2 |ψ (2τπ + T )〉 , (E5)

on which the projection measurement is performed. The sen-
sitivity function g(t ) is given by [29]

g(t ) = − 2

N

∂

∂ϕ
〈ψ f | Ŝz |ψ f 〉 . (E6)

Accordingly, the Dick-effect-limited Allan deviation of the
locked local oscillator is computed by

[
σ Dick

y (τ )
]2 = 1

τ

∞∑
n=1

|gn/g0|2S f
y (n/Tc), (E7)

with the parameters

gn = 1

T

∫ Tc

0
g(t )e−i 2πnt

Tc dt, (E8)

and the one-sided power spectral density S f
y (n/Tc) of rela-

tive frequency fluctuations of the free running local oscillator
at frequencies n/Tc. As illustrated in Fig. 5(c), g(t ) grows
strongly from zero to a value gd < 1 within the first light π

pulse, stays at gd during the dark period, and rapidly goes
down to zero when the second light π pulse is launched.

Thus far, no approximation has been made. However, it is
challenging to solve Eqs. (E1) and (E2) for a large number
of atoms due to the extremely expanded space dimension 3N .
One may use the approximation

g(t ) ≈ (gd/2)(1 − cos πt/τπ ), (E9)

during the first light π pulse and

g(t ) ≈ (gd/2)[1 + cos π (t − τπ − T )/τπ ], (E10)

within the second light π pulse duration to estimate σ Dick
y (τ ).

Additionally, in the limit T � (τπ/2), two light π pulses
nearly transfer all atoms between |s〉 and |e〉. Thus, one may
approximately evaluate gd using the two-level model,

gd ≈
∣∣∣∣ ∂

∂ϕ
〈ψSSS| eiπ Ŝx/2(Ŝz/N )e−iπ Ŝx/2 |ψSSS〉

∣∣∣∣. (E11)

Using Eqs. (E9)–(E11), the Dick-effect-limited Allan devia-
tion can be evaluated for a large ensemble of atoms.
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