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Eighth-order Foldy-Wouthuysen transformation

Ulrich D. Jentschura
Department of Physics and LAMOR, Missouri University of Science and Technology, Rolla, Missouri 65409, USA

(Received 28 May 2024; accepted 3 July 2024; published 19 July 2024)

The calculation of higher-order binding corrections to bound systems is a fundamental problem of theoretical
physics. For any nonrelativistic expansion, one needs the Foldy-Wouthuysen transformation, which disentangles
the particle and the antiparticle degrees of freedom. This transformation is carried out here to eighth order in
the momenta or to eighth order in the momentum operators, which is equivalent to the eighth order of the fine-
structure constant. Matrix elements of the eighth-order terms are evaluated for F5/2 and F7/2 states in hydrogenlike
ions and compared with the Dirac-Coulomb energy levels.
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I. OVERVIEW

The Foldy-Wouthuysen transformation [1] is one of the
most essential ingredients of the bound-state formalism [2].
Specifically, the Foldy-Wouthuysen transformation enables
one to disentangle the particle and antiparticle degrees of free-
dom and write separate particle and antiparticle Hamiltonians
for spin-1/2 particles coupled to electromagnetic and gravita-
tional fields [3]. In the case of a free Dirac particle, the Foldy-
Wouthuysen transformation can be carried out to all orders
in the momentum operators, and the transformed Hamiltonian
takes the simple form [see Eq. (11.17) of Ref. [2]]

HFW =
(√

�p 2 + m2 · 12×2 0
0 −

√
�p 2 + m2 · 12×2

)
, (1)

where �p is the momentum operator. In other cases,
where the electron is subjected to nontrivial couplings to
electromagnetic or gravitational fields [3], it is possible to
carry out the Foldy-Wouthuysen transformation only up to a
finite order in a chosen expansion parameter, which can, in
many cases, be chosen as a typical momentum scale of the
physical problem. Here we are concerned with an electron
coupled to a general electromagnetic field, described by a
vector potential �A and a scalar potential �.

For bound systems, including bound Coulomb systems and
electrons bound in a Penning trap [4,5], one can identify the
typical momentum scale as αmc, where m is the electron mass,
c is the speed of light, and α is the fine-structure constant
or a generalization thereof. Henceforth, we will use natural
units with h̄ = ε0 = c = 1 and e2 = 4πα. Specifically, for
electrons bound in Penning traps, one can define a general-
ized cyclotron fine-structure constant according to Eq. (35) of
Ref. [5]. We define the kinetic momentum

�π = �p − e �A, (2)

where e is the electron charge. For the electric field �E and
the magnetic field �B, as well as its time derivative e∂t �E , we
assume the scaling [see Eq. (47) of Ref. [5]]

�π ∼ α, e �A ∼ α, e �B ∼ α2,

V ≡ e�, e �E = −�∇V ∼ α3, e∂t �E ∼ α5. (3)

For the fourth-order Foldy-Wouthuysen transformation, a par-
ticularly instructive derivation is presented in Ref. [6]. The
sixth-order Foldy-Wouthuysen transformation has been con-
sidered extensively in the literature [see Eqs. (36)–(38) of
Ref. [7], Ref. [8], Eqs. (15) and (20) of Ref. [9], Eq. (7) of
Ref. [10], and Ref. [11]].

One might be surprised about the scaling e �B ∼ α2, e.g.,
when comparing to Eq. (30) of Ref. [12]. Our assumption here
is that both terms �p and e �A in the relation �π = �p − e �A carry
the same power of α. Let us consider the vector potential for
a homogeneous magnetic trap field in the symmetric gauge,
�A = 1

2 ( �B × �r ). In view of the fact that the position opera-
tor fulfills the scaling |�r | ∼ α−1, we require that e �B ∼ α2

to restore the scaling of �π . This particular scaling is rele-
vant, for example, for the strong field encountered in Penning
traps [5,13,14], where the fine-structure constant α finds a
natural generalization in terms of a cyclotron fine-structure
constant αc.

Here it is our goal to extend the formalism to the eighth
order in the fine-structure constant. We venture to obtain the
general Hamiltonian for electromagnetic coupling in Sec. II
and apply the obtained results to subsets of bound states in
hydrogenlike systems in Sec. III, which leads to a verification
of the results against the analytically known Dirac-Coulomb
energy. Extensive use is made of computer algebra [15]. Con-
clusions are given in Sec. IV.

II. DIRECT CALCULATION

A. Unitary transformation

We start with the well-known Dirac Hamiltonian HD cou-
pled to a general electromagnetic field,

HD = �α · �π + βm =
(

(m + e�)12×2 �σ · �π
�σ · �π (−m + e�)12×2

)
,

�α =
(

0 �σ
�σ 0

)
, β =

(
12×2 02×2

02×2 −12×2

)
. (4)

The Dirac Hamiltonian couples upper and lower compo-
nents of the Dirac bispinor. The aim of the (unitary)
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Foldy-Wouthuysen transformation is to separate the upper
(particle) from the lower (antiparticle) degrees of freedom,
through an iterative procedure. We write the Hamiltonian as
a sum of even terms E and odd terms O in bispinor space (see
also Chap. 11 of Ref. [2]),

HD = E + O, (5a)

E = 1

2
(H + βHβ ), O = 1

2
(H − βHβ ), (5b)

E = βm + e� =
(

(m + e�)12×2 02×2

02×2 (−m + e�)12×2

)
,

(5c)

O = �α · �π =
(

0 �σ · �π
�σ · �π 0

)
. (5d)

The aim is to eliminate the odd terms O through unitary
transformations. These transformations, necessarily, in order
to preserve the physical interpretation of the operators, need
to conserve parity [see the remarks following Eq. (7.33) of
Ref. [16] and the comprehensive discussion in Ref. [17]].
In short, it has been shown in Ref. [17] that, if one uses a
unitary transformation which breaks parity, the Dirac Hamil-
tonian can be disentangled into what seems to be particle
and antiparticle Hamiltonians, but the operators inside the
disentangled (diagonal) Hamiltonian have changed their phys-
ical interpretation. Spurious terms [18] which could otherwise
break particle-antiparticle symmetry in gravitational fields
were shown to be absent in Ref. [17], if the parity-conserving
standard Foldy-Wouthuysen transformation is used (see also
Ref. [19]). One defines the Hermitian operator S and the
unitary operator U = exp(iS) as

S = −iβ
O
2m

, S = S+, U = eiS. (6)

The odd operator O defined in Eq. (5d) is proportional to
the kinetic momentum �π , and hence the Foldy-Wouthuysen
transformation eliminates the odd terms order by order in an
expansion in the momenta. The transformed Hamiltonian is
written in terms of nested commutators,

HFW = exp(iS)(H − i∂t ) exp(−iS)

= H + [iS, H − i∂t ] + 1

2!
[iS, [iS, H − i∂t ]]

+ 1

3!
[iS, [iS, [iS, H − i∂t ]]]

+ 1

4!
[iS, [iS, [iS, [iS, H − i∂t ]]]] + · · · , (7)

where we note the identity [iS, H − i∂t ] = i[S, H] − ∂t S.
Though the intensive use of computer algebra generalized

to the symbolic commutation relations [15] of kinetic momen-
tum operators with the four-vector and scalar potentials, it is

possible to carry out the transformation through eighth order
in the fine-structure constant, under the proviso of the scaling
implied by Eq. (3). The result of the iterative eighth-order
transformation [17] can be written as

HFW = H[0] + H[2] + H[4] + H[6] + H[8]. (8)
The superscript denotes the power of the coupling parameter
at which the term becomes relevant. The coupling parameter
is usually denoted by α. From the zeroth to the third order in
α, the terms read

H[0] = βm, �	 =
(

�σ 02×2

02×2 �σ
)

, (9)

H[2] = β

2m
( �	 · �π )2 + V. (10)

The α4 terms can be expressed very compactly and are found
to be in agreement with Refs. [6,20],

H[4] = − β
1

8m3
( �	 · �π )4 − ie

8m2
[ �	 · �π, �	 · �E ]. (11)

For the α6 terms, we indicate three alternative representations

H[6] = β( �	 · �π )6

16m5
− 5ie

128m4
[ �	 · �π, [ �	 · �π, [ �	 · �π, �	 · �E ]]]

+ ie

8m4
{( �	 · �π )2, [ �	 · �π, �	 · �E ]} + β

e2 �E2

8m3

= β( �	 · �π )6

16m5
+ 5ie

128m4
[( �	 · �π )2, { �	 · �E , �	 · �π}]

+ 3ie

64m4
{( �	 · �π )2, [ �	 · �π, �	 · �E ]} + β

e2 �E2

8m3

= β( �	 · �π )6

16m5
+ 3ie

32m4
[( �	 · �π )3, �	 · �E ].

− ie

128m4
[( �	 · �π )2, { �	 · �π, �	 · �E}] + β

e2 �E2

8m3
. (12)

Here {A, B} = AB + BA denotes the anticommutator. The last
form of the sixth-order terms in Eq. (12) is in agreement
with the sixth-order terms from Eq. (8) of Ref. [11]. The
sixth-order terms are also compatible with Eqs. (36)–(38) of
Ref. [7], with Eq. (7) of Ref. [10], and with the approach from
Ref. [8]. Alternatively, the result in Eq. (18) can be obtained
by applying the unitary transformation outlined in Eq. (19)
of Ref. [9] to the Hamiltonian given in Eq. (15) of Ref. [9],
which is tantamount to the Hamiltonian obtained by adding
the terms given in Eqs. (15) and (20) of Ref. [9].

The eighth-order term are naturally written as a sum of a
kinetic term K, a term D involving temporal derivatives of the
electric field, terms quadratic in the electric field, denoted by
Q, and linear terms in the electric field, which we denote by
L. The result is

H[8] =K + D + Q + L, K = −β
5

128m7
( �	 · �π )8, D = − ie2

32m4
[ �	 · �E , �	 · ∂t �E ] + e

48m5
β{( �	 · �π )3, �	 · ∂t �E},

Q = 7βe2

192m5
[ �	 · �π, �	 · �E ][ �	 · �π, �	 · �E ] − 3βe2

64m5
{ �	 · �π, �	 · �E}{ �	 · �π, �	 · �E} − βe2

24m5
[ �	 · �π, [ �	 · �π, ( �	 · �E )2]],
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L = − 5ie

1024m6
[ �	 · �π, [ �	 · �π, [ �	 · �π, [ �	 · �π, [ �	 · �π, �	 · �E ]]]]] − ie

32m6
{ �	 · �π, { �	 · �π, [ �	 · �π, [ �	 · �π, [ �	 · �π, �	 · �E ]]]}}

− ie

48m6
{ �	 · �π, { �	 · �π, { �	 · �π, { �	 · �π, [ �	 · �π, �	 · �E ]}}}}. (13)

For alternative representations, we note the identities

Q = − βe2

96m5
{ �	 · �E , 4( �	 · �π )2 �	 · �E + 4 �	 · �E ( �	 · �π )2 + �	 · �π �	 · �E �	 · �π}, (14a)

L = 65ie

3072m6
[( �	 · �π )4, { �	 · �π, �	 · �E}] − 77ie

1536m6
[( �	 · �π )5, �	 · �E ]

− 43ie

1536m6
[( �	 · �π )3, ( �	 · �π )2 �	 · �E + �	 · �E ( �	 · �π )2 + �	 · �π �	 · �E �	 · �π ]. (14b)

The particle-antiparticle symmetry implies that the terms are
invariant when the following transformations are simultane-
ously applied: (i) multiplication by an overall factor −1,
(ii) replacement β → −β, (iii) replacements �π → −�π and
∂t → −∂t , (iv) replacement �	 → − �	, and (v) replacements
e → −e, V → −V , and �E → − �E .

B. General particle Hamiltonian

The upper left 2 × 2 submatrix of HFW constitutes the
particle Hamiltonian, while the lower left 2 × 2 submatrix
of HFW constitutes the antiparticle Hamiltonian. Here we
concentrate on the particle Hamiltonian. Formally, the particle
Hamiltonian can be found from the results given in Eqs. (10)–
(13) under the replacements �	 → �σ and β → 12×2, The
general Foldy-Wouthuysen transformed particle Hamiltonian
HFW under the presence of the external electric and magnetic
fields is obtained as

HFW = βm + H [2] + H [4] + H [6] + H [8]. (15)

We find

H [2] = 1

2m
(�σ · �π )2 + V, (16)

H [4] = − 1

8m3
(�σ · �π )4 − ie

8m2
[�σ · �π, �σ · �E ], (17)

H [6] = (�σ · �π )6

16m5
+ 5ie

128m4
[(�σ · �π )2, {�σ · �E , �σ · �π}]

+ 3ie

64m4
{(�σ · �π )2, [�σ · �π, �σ · �E ]} + e2 �E2

8m3
. (18)

In order to fix ideas, we point out that the expression (�σ ·
�π )2 = �π2 − e�σ · �B contains both the orbital and the spin
coupling to the magnetic field. If �A = 1

2 ( �B × �r ) and the homo-
geneous trap field �B is directed along the z axis, we have (�σ ·
�π )2 = �p 2 − e�L · �B + m2ω2

c
4 ρ2 − e�σ · �B, where ωc = |e|B

m is the
cyclotron frequency and ρ2 = x2 + y2 is the coordinate per-
pendicular to the axis of the magnetic field.

The eighth-order term comprises the kinetic term K , a term
D involving temporal derivatives of the electric field, terms
quadratic in the electric field, denoted by Q, and linear terms
in the electric field, which we denote by L,

H [8] = K + D + Q + L, K = − 5

128m7
(�σ · �π )8, D = − ie2

32m4
[�σ · �E , �σ · ∂t �E ] + e

48m5
{(�σ · �π )3, �σ · ∂t �E},

Q = 7e2

192m5
[�σ · �π, �σ · �E ][�σ · �π, �σ · �E ] − 3e2

64m5
{�σ · �π, �σ · �E}{�σ · �π, �σ · �E} − e2

24m5
[�σ · �π, [�σ · �π, (�σ · �E )2]],

L = − 5ie

1024m6
[�σ · �π, [�σ · �π, [�σ · �π, [�σ · �π, [�σ · �π, σ · �E ]]]]] − ie

32m6
{�σ · �π, {�σ · �π, [�σ · �π, [�σ · �π, [�σ · �π, σ · �E ]]]}}

− ie

48m6
{�σ · �π, {�σ · �π, {�σ · �π, {�σ · �π, [�σ · �π, σ · �E ]}}}}. (19)

For alternative representations, we note identities analogous to Eqs. (14a) and (14b),

Q = − e2

96m5
{�σ · �E , 4(�σ · �π )2 �σ · �E + 4�σ · �E (�σ · �π )2 + �σ · �π �σ · �E �σ · �π}, (20a)

L = 65ie

3072m6
[(�σ · �π )4, {�σ · �π, �σ · �E}] − 77ie

1536m6
[(�σ · �π )5, �σ · �E ]

− 43ie

1536m6
[(�σ · �π )3, (�σ · �π )2 �σ · �E + �σ · �E (�σ · �π )2 + �σ · �π �σ · �E �σ · �π ]. (20b)
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III. APPLICATIONS

A. Coulomb field coupling

One of the important applications of the Hamiltonian (15)
concerns Coulombic bound states, which are relevant to one-
electron ions in the central field of a nucleus of charge number
Z . In this case, we have the relations

eA0 =V = −Zα

r
, �A = �0, �B = �0, (21)

e �E = − e �∇A0 = −�∇V, �π = �p. (22)

The scalar potential and electric field are time independent in
this case. One ends up with the following leading term, where
the subscript C indicates the relevance for the Coulomb field:

H [2]
C = �p 2

2m
+ V = �p 2

2m
− Zα

r
. (23)

This is the Schrödinger-Coulomb Hamiltonian in the
nonrecoil approximation (Chap. 4 of Ref. [2]). For
the evaluation of the fourth-order corrections, we need

the identities

ie[�σ · �p, �σ · �E ] = −�∇2V − 2�σ · ( �∇V × �p ), (24a)

e{�σ · �p, �σ · �E} = −{�σ · �p, �σ · �∇V } = −i[ �p 2,V ]. (24b)

For the Coulomb field, the well-known leading relativistic
correction to the Foldy-Wouthuysen Hamiltonian reads

H [4]
C = − �p4

8m3
+ 1

8m2
�∇2V + 1

4m2 �σ · ( �∇V × �p)

= − �p4

8m3
+ π (Zα)

2m2
δ(3)(�r) + Zα

4m2r3 �σ · �L, (25)

where �L is the orbital angular momentum operator. The sixth-
order corrections attain the form

H [6]
C = �p6

16m5
− 3{ �p 2, �∇2V }

64m4
− 3{ �p 2, �σ · ( �∇V × �p )}

32m4

+ 5

128m4
[ �p 2, [ �p 2,V ]] + ( �∇V )2

8m3
. (26)

With ∂t �E = �0, we have, for the eighth-order corrections,

H [8]
C = KC + DC + QC + LC, KC = − 5

128m7 �p8, DC = 0, (27a)

QC = 7[ �∇2V + 2�σ · ( �∇V × �p )][ �∇2V + 2�σ · ( �∇V × �p )]

192m5
+ 3[ �p 2,V ][ �p 2,V ]

64m5
− [�σ · �p, [�σ · �p, ( �∇V )2]]

24m5
, (27b)

LC = 5[�σ · �p, [�σ · �p, [�σ · �p, [�σ · �p, �∇2V + 2�σ · ( �∇V × �p )]]]]
1024m6

+ {�σ · �p, {�σ · �p, [�σ · �p, [�σ · �p, �∇2V + 2�σ · ( �∇V × �p )]]}}
32m6

+ 1

48m6
{�σ · �p, {�σ · �p, {�σ · �p, {�σ · �p, �∇2V + 2�σ · ( �∇V × �p )}}}}. (27c)

B. Application: F5/2 states

We now compare the eighth-order corrections to the bound-state energy obtained from Eq. (27a) to the bound-state energies
of the Dirac-Coulomb problem. It is well known that the Dirac-Coulomb problem can be solved exactly (Chap. 8 of Ref. [2]),
with the result

ED = m

(
1 + (Zα)2

(nr + γ )2

)−1/2

, nr = n − j − 1

2
, γ =

√(
j + 1

2

)2

+ (Zα)2. (28)

For nF5/2 states, the presence of large spin-orbit coupling implies the emergence of nontrivial corrections to the energy from the
corresponding higher-order terms in Eq. (27a). One expands as follows:

ED(nF5/2) = m − (Zα)2m

2n2
+ (Zα)4m

(
3

8n4
− 1

6n3

)
− (Zα)6m

(
1

216n3
+ 1

24n4
− 1

4n5
+ 5

16n6

)

+ (Zα)8m

(
− 1

3888n3
− 1

432n4
− 1

432n5
+ 5

48n6
− 5

16n7
+ 35

128n8

)
+ O(Zα)10. (29)

Within the Foldy-Wouthuysen method, the eighth-order terms
comprise several effects, namely, the combined effect of the
third-order perturbative terms E [8] = E [8]

c generated by the
fourth-order Hamiltonian H [4], the mixed fourth- and sixth-
order terms E [8]

m , and the diagonal element of eighth-order
E [8]

d ,

E [8] = E [8]
c + E [8]

m + E [8]
d . (30)

The terms will be further examined in the following. Let G′
be the reduced Green’s function

G′ =
(

1

ES − HS

)′
, (31)

where ES is the Schrödinger-Coulomb energy ES = − (Zα)2m
2n2

and HS = H [2]
C is the Schrödinger-Coulomb Hamiltonian.
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Then

E [8]
c = 〈H [4]G′(H [4] − 〈H [4]〉)G′H [4]〉, (32a)

E [8]
m = 2〈H [4]G′H [6]〉, (32b)

E [8]
d = 〈H [8]〉 = 〈KC〉 + 〈QC〉 + 〈LC〉. (32c)

After lengthy algebra, we obtain the results
〈KC〉nF5/2

(Zα)8m
= − 2

693n3
+ 65

1386n5
− 1549

5544n7
+ 35

128n8
,

(33a)

〈QC〉nF5/2

(Zα)8m
= − 4

31 185n3
+ 131

99 792n5
− 23

13 860n7
,

(33b)

〈LC〉nF5/2

(Zα)8m
= − 281

249 480n3
+ 5975

399 168n5
− 599

13 860n7
,

(33c)

E [8]
d (nF5/2)

(Zα)8m
= − 1033

249 480n3
+ 25 219

399 168n5
− 8989

27 720n7

+ 35

128n8
, (33d)

For absolutely clarity, we should emphasize the all matrix
elements are calculated with nonrelativistic Schrödinger-Pauli
two-component reference-state wave functions (Chap. 6 of
Ref. [2]). Summing up the results for the combined third-order
perturbation theory term and the mixed term, we obtain

E [8]
c (nF5/2)

(Zα)8m
= − 169 721

23 950 080n3
− 19

1728n4
+ 4 560 727

41 912 640n5

+ 955

3024n6
− 1052

693n7
+ 21

16n8
, (34)

E [8]
m (nF5/2)

(Zα)8m
= 262 729

23 950 080n3
+ 5

576n4
− 3 652 871

20 956 320n5

− 40

189n6
+ 28271

18 480n7
− 21

16n8
, (35)

E [8](nF5/2)

(Zα)8m
= − 1

3888n3
− 1

432n4
− 1

432n5
+ 5

48n6

− 5

16n7
+ 35

128n8
. (36)

The latter terms confirm Eq. (29).

C. Application: F7/2 states

The calculation proceeds in full analogy with nF5/2 states.
The Dirac-Coulomb energy finds the expansion

ED(nF7/2) = m − (Zα)2m

2n2
+ (Zα)4m

(
3

8n4
− 1

8n3

)

− (Zα)6m

(
− 1

512n3
− 3

128n4
+ 3

16n5
− 5

16n6

)

+ (Zα)8m

(
− 1

16384n3
− 3

4096n4
− 1

1024n5

+ 15

256n6
− 15

64n7
+ 35

128n8

)
+ O(Zα)10. (37)

After lengthy algebra, we obtain the results

〈KC〉nF7/2

(Zα)8m
= − 2

693n3
+ 65

1386n5
− 1549

5544n7
+ 35

128n8
,

(38a)

〈QC〉nF7/2

(Zα)8m
= − 5

18 144n3
+ 247

90 720n5
− 1

315n7
, (38b)

〈LC〉nF7/2

(Zα)8m
= 13 261

7 983 360n3
− 156 853

7 983 360n5
+ 9589

221 760n7
,

(38c)

E [8]
d (nF7/2)

(Zα)8m
= − 121

80 640n3
+ 2417

80 640n5
− 965

4032n7
+ 35

128n8
.

(38d)

The combined third-order terms E [8]
c (nF7/2) and mixed terms

E [8]
m (nF7/2) find the representations

E [8]
c (nF7/2)

(Zα)8m
=− 548 047

232 243 200n3
− 253

61 440n4
+ 2 636 603

50 803 200n5

+ 1427

8064n6
− 22 847

20 160n7
+ 21

16n8
, (39)

E [8]
m (nF7/2)

(Zα)8m
= 55 147

14 515 200n3
+ 13

3840n4
− 8 417 851

101 606 400n5

− 1909

16 128n6
+ 7649

6720n7
− 21

16n8
. (40)

The sum

E [8](nF7/2)

(Zα)8m
= E [8]

c (nF7/2)

(Zα)8m
+ E [8]

m (nF7/2)

(Zα)8m
+ E [8]

d (nF7/2)

(Zα)8m

= − 1

16 384n3
− 3

4096n4
− 1

1024n5

+ 15

256n6
− 15

64n7
+ 35

128n8
(41)

reproduces the terms of order (Zα)8 from the Dirac-Coulomb
bound-state energy (37).

IV. CONCLUSION

In this article, we have extended the treatment of the
Foldy-Wouthuysen transformation to eighth order, based on
the scaling of the operators outlined in Eq. (3). The re-
sults were obtained by a straightforward application of the
elimination of odd operators by repeated unitary transforma-
tions of the form outlined in Eq. (6). The sixth-order terms
[Eqs. (12) and (18)] were obtained in full agreement with
the literature (Refs. [7–11]). For the eighth-order terms, we
gave results in Eqs. (13) and (19). We applied our general
results to the relativistic bound Coulomb problem in Sec. III.
An application to nF5/2 and nF7/2 states, which present large
spin-orbit couplings, confirms, analytically, that the Dirac-
Coulomb bound-state energy can be obtained, within the
Foldy-Wouthuysen formalism, as a sum of combined third-
order perturbative effects generated by the leading relativistic
corrections [Eq. (32a)], mixed fourth-order and sixth-order
Hamiltonian terms [Eq. (32b)], and diagonal elements of the
eighth-order Hamiltonian [Eq. (32c)]. The latter terms are
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obtained as diagonal elements of our eighth-order terms for
the Coulomb field, evaluated on Schrödinger-Pauli wave func-
tions (Chap. 6 of Ref. [2]). As outlined in Ref. [8], the results
are important in a wider context, in view of the fact that
the Foldy-Wouthuysen Hamiltonian determines (part of) the
matching coefficients in the Hamiltonian of Nonrelativistic
Quantum Electrodynamics (NRQED).
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APPENDIX: COMPARISON WITH THE LITERATURE

We compare our results with those of Ref. [11]. We note
that the Foldy-Wouthuysen Hamiltonian derived in Ref. [11]
is derived based on the Douglas-Kroll-Hess [21,22] approach,
which treats the kinetic-energy term in the relativistic Hamil-
tonian on a special footing and differs from the approach
chosen here. The result for the eighth-order terms given in
Eq. (8) of Ref. [11] can be written as the sum H ′[8] = K +
D′ + Q′ + L′, where

D′ = − ie2

32m4
[�σ · �E , �σ · ∂t �E ], (A1a)

Q′ = − e2

32m5
{�σ · �E , 2(�σ · �π )2 �σ · �E + 2�σ · �E (�σ · �π )2

+ �σ · �π �σ · �E �σ · �π}, (A1b)

L′ = 11ie

1024m6
[(�σ · �π )4, {�σ · �π, �σ · �E}]

− 31ie

512m6
[(�σ · �π )5, �σ · �E ]

− 9ie

512m6
[(�σ · �π )3, (�σ · �π )2 �σ · �E + �σ · �E (�σ · �π )2

+ �σ · �π �σ · �E �σ · �π ]. (A1c)

Here, D′ is the term from Eq. (8) in Ref. [11] which contains
temporal derivatives, Q′ is the term from Eq. (8) in Ref. [11]
which is quadratic in the electric fields, and L′ is the term from
Eq. (8) in Ref. [11] which is linear in the electric fields. The
kinetic term K of eighth order agrees with the corresponding
term from Eq. (13) here.

Specifically, the term D′ lacks the terms proportional to the
anticommutator {(�σ · �π )3, �σ · ∂t �E} in comparison to our result
for D given in Eq. (13). The results for Q′ and L′ differ from
those given in Eqs. (14a) and (14b) in the prefactors of the
individual terms.

One can easily specialize the four operators given in
Eqs. (A1b) and (A1c) to the case of a Coulomb field, on the
basis of Eq. (21). This leads to the operators Q′

C and L′
C . The

diagonal matrix elements for nF5/2 evaluate to

〈Q′
C〉nF5/2

(Zα)8m
= − 37

249 480n3
+ 779

498 960n5
− 29

13 860n7
, (A2a)

〈L′
C〉nF5/2

(Zα)8m
= − 23

20 790n3
+ 1399

95 040n5
− 593

13 860n7
. (A2b)

For nF7/2 states, we have the results
〈Q′

C〉nF7/2

(Zα)8m
= − 131

332 640n3
+ 1301

332 640n5
− 16

3465n7
, (A2c)

〈L′
C〉nF7/2

(Zα)8m
= 947

532 224n3
− 7921

380 160n5
+ 1101

24 640n7
. (A2d)

These results differ individually from those given in Eqs. (33)
and (38), for the diagonal matrix elements of the operators
QC and LC , but their sum reproduces our results for both
fine-structure components F5/2 and F7/2 investigated here. We
have carried out similar calculations for states with a dif-
ferent angular symmetry (e.g., G states) and find a similar
behavior. These observations support the conjecture that the
eighth-order Hamiltonian derived here and in Ref. [11] lead to
equivalent diagonal elements for hydrogenic reference states.

However, the Hamiltonians derived here and in Ref. [11]
are not equivalent for time-dependent problems. Let us con-
sider a binding Coulomb field added to an external plane-wave
laser field (in the length gauge), polarized along the z axis,
with

eA0 = −Zα

r
− e

EL

ωL
z sin(ωLt ), (A3)

where EL is the peak laser field during a laser period and
ωL is the laser angular frequency. The vector potential still
vanishes, so that the relation �π = �p is retained. The spa-
tially homogeneous, but time-dependent, laser field is �EL(t ) =
êzEL cos(ωLt ). The total �E field (Coulomb plus laser field)
fulfills e �E = �∇ Zα

r + eêzEL cos(ωLt ). The commutator [�σ ·
�E , �σ · ∂t �E ] vanishes, but the term

H [8] ∼ D ∼ e

48m5
{(�σ · �p )3, �σ · ∂t �EL(t )}, (A4)

from the D term in our Eq. (19), generates a contribution
proportional to sin(ωLt ), in view of the time derivative of the
laser field. Its sinusoidal (as opposed to cosinusoidal) time
dependence cannot be compensated by any term proportional
to the laser field itself, �EL(t ) ∝ cos(ωLt ), i.e., the sinusoidal
term cannot be compensated by any other term in H [8] which
is free from time derivatives of the electric field. Hence, the
Hamiltonians derived here and in Ref. [11] cannot be com-
pletely equivalent for time-dependent problems.

The eighth-order Hamiltonians derived here and in
Ref. [11] could potentially be equivalent up to a unitary
transformation, in a somewhat distant analogy to the uni-
tary transformation given in Eq. (19) of Ref. [9], which
was applied in Ref. [9] to different forms of the sixth-order
Foldy-Wouthuysen Hamiltonian (see also the nonstandard
Foldy-Wouthuysen transformation used in Refs. [20,23]). A
potential unitary transformation which brings the results com-
municated in Ref. [11] and those derived here into agreement
would only need to affect the eighth-order terms because the
sixth-order terms indicated here and in Ref. [11] are identical.
The special form of the S operator, which generates the Foldy-
Wouthuysen U transformation via the relation U = exp(iS)
for the nonstandard approach from Refs. [20,23], was recently
highlighted in Eq. (17) of Ref. [24]. In general, when two
Hamiltonians are related by a unitary transformation, their
matrix elements are identical provided one also applies the
unitary transformation to the wave functions. Within this
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context, we mention that unitary (gauge) transformations of
the wave functions can change their physical interpretation.
This (perhaps surprising) fact is relevant for the quantum dy-
namical formulation of laser-induced processes off-resonance
(see the footnote on p. 268 of Ref. [25] and the elucidating
discussion in Ref. [26]).

Another indication that the Hamiltonians derived here
and in Ref. [11] cannot be completely equivalent stems
from the calculation of off-diagonal matrix elements of the
Hamiltonian. As an example, we calculate off-diagonal el-
ements of the operators QC , Q′

C , LC , and L′
C , sandwiched

between |4F5/2〉 and |6F5/2〉 states, with the results
〈4F5/2|QC |6F5/2〉

(Zα)8m
= − 761

1 417 500 000
, (A5a)

〈4F5/2|Q′
C |6F5/2〉

(Zα)8m
= − 23

40 500 000
, (A5b)

〈4F5/2|LC |6F5/2〉
(Zα)8m

= − 5 007 493

1 134 000 000 000
, (A5c)

〈4F5/2|L′
C |6F5/2〉

(Zα)8m
= − 1 627 151

378 000 000 000
. (A5d)

The sums of these terms are
〈4F5/2|QC + LC |6F5/2〉

(Zα)8m
= − 5 616 293

1 134 000 000 000
, (A5e)

〈4F5/2|Q′
C + L′

C |6F5/2〉
(Zα)8m

= − 5 525 453

1 134 000 000 000
. (A5f)

Numerically, the difference between 〈4F5/2|QC +
LC |6F5/2〉 = −4.952 × 10−6(Zα)8m and 〈4F5/2|Q′

C +
L′

C |6F5/2〉 = −4.873 × 10−6(Zα)8m is about 1.6%. Because
the kinetic terms derived here and in Ref. [11] agree, this
observation implies that the off-diagonal matrix elements
derived from the total H [8] and H ′[8] differ.

For off-diagonal matrix elements of |4F7/2〉 and |6F7/2〉
states, the following results are obtained:

〈4F7/2|QC |6F7/2〉
(Zα)8m

= − 3587

2 835 000 000
, (A6a)

〈4F7/2|Q′
C |6F7/2〉

(Zα)8m
= − 49

27 000 000
, (A6b)

〈4F7/2|LC |6F7/2〉
(Zα)8m

= 14 493 239

1 134 000 000 000
, (A6c)

〈4F7/2|L′
C |6F7/2〉

(Zα)8m
= 1 731 391

252 000 000 000
. (A6d)

The sums of these terms are

〈4F7/2|QC + LC |6F7/2〉
(Zα)8m

= 11 623 639

2 268 000 000 000
, (A6e)

〈4F7/2|Q′
C + L′

C |6F7/2〉
(Zα)8m

= 3 822 173

756 000 000 000
. (A6f)

We observe that, numerically, the difference between
〈4F7/2|QC + LC |6F7/2〉 = 5.125 × 10−6(Zα)8m and
〈4F7/2|Q′

C + L′
C |6F7/2〉 = 5.056 × 10−6(Zα)8m is about

1.4%.
In the very recent paper [24], the standard approach to

the Foldy-Wouthuysen transformation was applied to obtain
a result for the eighth-order terms communicated in Eq. (16)
of Ref. [24]. The result from Ref. [24] differs from our result,
given in Eq. (19), in the sign of the term e

48m5 β{( �	 · �π )3, �	 ·
∂t �E}. In view of the aspects discussed in this Appendix, we
leave the final clarification of the eighth-order terms derived
here to those communicated in Refs. [11,23,24] as an open
problem for future investigations.
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