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Isotope-shift factors with quantum electrodynamics effects for many-electron systems:
A study of the nuclear charge radius of 26mAl
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A method for calculating the field shift contribution to isotope shifts (IS) in many-electron atoms, incorpo-
rating quantum electrodynamics (QED) effects, is introduced. We also implement the model QED approach
to incorporate QED contribution to the nuclear recoil effect at the high-order correlation effects treatment
level. The proposed computational scheme is used to revise the value of the root-mean-square (rms) nuclear
charge radius of the isomer of aluminum-26, 26mAl. This radius is important for the global analysis of the Vud

element of the Cabibbo-Kobayashi-Maskawa matrix. The difference in mean-square nuclear charge radii of 27Al
and 26mAl, obtained by combining the calculated atomic factors with recently measured isotope shift of of the
3s23p 2P3/2 → 3s24s 2S1/2 transition in Al, is 0.443(44)(19) fm2, where the first and second uncertainties are
experimental and theoretical ones, respectively. The latter is reduced by a factor of 4 with respect to the previous
study. Using this value and the known value of the rms charge radius of 27Al, the resultant value Rc(26mAl) =
3.132(10) fm is obtained. With the improved accuracy of the calculated IS factors, the error in Rc(26mAl) is
now dominated by the experimental uncertainty. Similar revision of rms charge radii is made for the 28Al, 29Al,
30Al, 31Al, and 32Al isotopes using existing IS measurements. Additionally, atomic factors are computed for the
3s23p 2P3/2 → 3s24s 2S1/2, 3s23p 2P1/2 → 3s25s 2S1/2, and 3s23p 2P3/2 → 3s25s 2S1/2 transitions in Al, which
can be used in future experimental studies.

DOI: 10.1103/PhysRevA.110.012807

I. INTRODUCTION

Accurate determination of nuclear charge radii serves as
sensitive examination of various elements of nuclear structure
[1], providing an important benchmark for the development
of nuclear models [2–5]. Precise charge radii measurements
can also be used to constrain the parameters of the equation of
state of nuclear matter [6,7].

The nuclear charge radii of some isotopes can be used as an
important component to test fundamental particle models. The
Cabibbo-Kobayashi-Maskawa (CKM) matrix plays a central
role in describing the quark-flavor mixing via the weak inter-
action in the standard model (SM). According to the SM, the
CKM matrix has to be unitary. However, this should be ver-
ified experimentally. Nonunitarity can be a manifestation of

*Contact author: skripnikov_lv@pnpi.nrcki.ru;
leonidos239@gmail.com; http://www.qchem.pnpi.spb.ru

new physics beyond the SM. Significant efforts are undertaken
to verify the property of unitarity [8]. The deviation from the
top-row unitarity of the CKM matrix can be characterized by
the �CKM = 1 − (|Vud |2 + |Vus|2 + |Vub|2) parameter, which
is expected to be zero in the unitary case. The value of Vud can
be derived from the global analysis of superallowed 0+ → 0+
nuclear β decay of certain isotopes [8]. Among them, the
superallowed β decay of 26mAl isomer is of key importance,
as it has the smallest nuclear structure-dependent corrections
[8]. Several radiative corrections have to be calculated to
connect the experimentally measured f t value, characterizing
the superallowed β decay, with the vector coupling constant
GV and the Vud matrix element. One of these corrections is
the isospin-symmetry-breaking constant, which depends on
the nuclear mean-square (ms) charge radius.

Nuclear ms charge radii can be determined through mea-
surements of the spectral line isotope shifts (IS) between
different isotopes of a given atom [1]. The corresponding
technique also becomes a testing ground to probe higher-order
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nuclear structure effects and new long- and intermediate-
range interactions [9–12]. IS arises mainly due to differences
in the masses and nuclear electrostatic potentials of the iso-
topes, i.e., due to nuclear recoil and field shift effects [1].
The purpose of the atomic electronic structure theory is to
calculate these effects and connect experimental observables
with fundamental nuclear properties. A very accurate descrip-
tion of IS effects can be achieved in highly charged ions,
where electron correlation effects are suppressed and methods
of rigorous quantum electrodynamics (QED) are successfully
applied (see, e.g., Refs. [13–16] and references therein). For
neutral many-electron atoms, the electronic structure prob-
lem becomes very challenging as electron correlation effects
are not suppressed and significantly contribute to the atomic
factors that describe the IS effects. As a result, approximate
treatment of electron correlations usually provides the dom-
inant source of uncertainty in the extracted ms charge radii,
negating the experimental achievements. Electron correlation
effects also make it difficult to rigorously calculate QED
corrections to IS atomic factors, and attempts to treat them
in neutral many-electron systems usually result in order-of-
magnitude estimates at best.

Until recently [17], the value of the ms charge radius for
26mAl was known only from extrapolations [18,19]. The IS
study [17] resulted in a significant reexamination of the nu-
clear ms charge radius of 26mAl. However, the extraction of the
radius from these measurements requires input from atomic
theory [17,20]. The IS between 26mAl and 27Al was mea-
sured using collinear laser spectroscopy of the 3s23p 2P3/2 →
3s24s 2S1/2 transition [17], and the uncertainty in the ex-
tracted ms charge radii difference between 26mAl and 27Al was
strongly dominated by the atomic theory calculations.

In this paper, we undertake the accurate determination of
atomic factors, which allows for a significant reduction in
the theoretical and, hence, total uncertainty of the ms charge
radius of 26mAl as well as 28Al, 29Al, 30Al, 31Al, and 32Al
isotopes. To achieve this, we develop a computational scheme
to perform high-precision relativistic electronic structure cal-
culations within the coupled cluster theory with inclusion
of up to quadruple excitation amplitudes. Furthermore, we
develop an effective approach to incorporate leading-order
QED effects for these problems with precision comparable to
that previously available only for similar transitions in highly
charged ions, treated within the rigorous QED approaches.

II. THEORY

A. Leading-order isotope-shift effect

The isotope shift (IS) of the atomic transition energy
�νM ′,M = νM ′ − νM can be parametrized as follows:

�νM ′,M = (kNMS + kSMS)

(
1

M ′ − 1

M

)
+ Fδ〈r2〉M ′,M . (1)

Here kNMS and kSMS are the normal and specific mass shift
constants, characterizing the nuclear recoil effect, M and M ′
are the masses of the considered pair of isotopes. Constant
F characterizes the field shift effect due to change of the
nuclear ms charge radius δ〈r2〉M ′,M = 〈r2〉(M ′) − 〈r2〉(M ). In

this work the field shift (FS) constant F is defined as

F = d ν

d〈r2〉 , (2)

where ν is the electronic transition energy, and the derivative
is calculated at the point rrms =

√
〈r2〉 = 3.061 fm, which

corresponds to 27Al [20,21].
Provided the isotope shift is known, the difference

δ〈r2〉M ′,M can be extracted if one knows the values of the
atomic factors kNMS, kSMS, and F . These values can be ob-
tained theoretically through the solution of the electronic
many-body problem. To incorporate relativistic effects, one
can use the Dirac-Coulomb(-Breit) Hamiltonian

H = �+

(∑
i

[c αi · pi + βic
2 + Hnuc(i)] + Vee

)
�+, (3)

where αi, β are the Dirac matrices, pi denotes the momentum
of the ith electron, Hnuc is the electron-nucleus interaction op-
erator, summation is over all electrons, �+ is the projector on
the positive-energy states [obtained in the Dirac-Hartree-Fock
(DHF) procedure], and Vee is the electron-electron interaction.
In this work we considered the Coulomb and Coulomb-Breit
interelectronic interaction operators.

Within the Breit approximation and to the lowest order in
the electron-to-nucleus mass ratio m/M the mass shift effect
can be calculated using the following relativistic operators
[22–25]:

HNMS = 1

2M

∑
i

{
p2

i − αZ

ri

[
αi + (αi · ri )ri

r2
i

]
· pi

}
, (4)

HSMS = 1

2M

∑
i �=k

{
pi · pk − αZ

ri

[
αi + (αi · ri )ri

r2
i

]
· pk

}
, (5)

where Z is the proton number, α is the fine-structure constant
and ri is the coordinate of the ith electron. Note that HSMS is
a two-electron operator. The constants kNMS and kSMS (up to
a multiplier of 1/M) can be calculated as expectation values
of the operators (4) and (5) with the wave functions obtained
using the Dirac-Coulomb-Breit Hamiltonian (3).

B. QED contribution to the field shift

In most electronic structure studies of many-electron atoms
(with more than 10 electrons), the Dirac-Coulomb-Breit ap-
proximation appears to be sufficient, as the uncertainty due
to the treatment of electron correlation effects is usually quite
significant. However, for the precise study of highly charged
ions (HCI), where electron-electron correlations are strongly
suppressed in comparison to the electron-nucleus interaction,
the treatment of quantum electrodynamics effects becomes
crucial (see Refs. [15,26–30] and references therein). The rig-
orous consideration of the QED contribution to the field shift
constant was recently undertaken for HCIs in Refs. [13,31].
The application of such methods to neutral many-electron
systems, where electron correlation effects are not suppressed
as in HCIs and have to be considered to high orders, is chal-
lenging. For these reasons, a prospective approach is the use
of effective (model) QED operators.

Let us suppose that QED contribution is modeled by
some effective operator HQED(r, 〈r2〉), which depends on the
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electron coordinate r and the ms nuclear charge radius 〈r2〉.
In the first order, the QED contribution to the total electronic
energy is given by the expectation value

EQED(〈r2〉) = 〈�〈r2〉|
∑

i

HQED(ri, 〈r2〉)|�〈r2〉〉, (6)

where �〈r2〉 is the many-electron wave function calculated us-
ing Hamiltonian (3), which depends on the ms nuclear charge
radius through the Hnuc operator. Therefore, the contribution
of the QED effects to the FS constant, F QED, can be calculated

as follows:

F QED = d〈�〈r2〉| ∑i HQED(ri, 〈r2〉)|�〈r2〉〉
d〈r2〉 . (7)

The leading QED contributions are given by the one-loop
vacuum polarization (VP) and self-energy (SE):

HQED = HVP + HSE. (8)

The dominant part of the VP interaction is represented by
the Uehling potential, for which one can use the analytical
expression for a finite nucleus case:

HUeh(r) = −2

3

α2

r

∫ ∞

0
dr′

∫ ∞

1
dt

√
t2 − 1

(
1

t3
+ 1

2t5

)
ρnuc(r′)r′(e−2t |r−r′ |/α − e−2t (r+r′ )/α ) , (9)

where ρnuc is the nucleus charge density normal-
ized according to

∫
ρnuc(r) d3r = Z , and 〈r2〉 =∫

r2ρnuc(r) d3r/
∫

ρnuc(r) d3r. A simple expression can
be obtained for the homogeneous charge distribution model
[32]. Due to the known explicit expression, one can directly
calculate the VP contribution to F QED within Eq. (7). The
contribution of the higher-order part of the VP interaction,
given by the Wichmann-Kroll potential, is negligible. The
discussion of this term is beyond the scope of this work.

The treatment of the SE QED effects is more challenging.
Several approximate expressions have been suggested to take
into account this effect on binding energies of HCIs and atoms
[33–42]. The main idea is the scaling of the SE contribution
of interest to the Lamb shift result for the Coulomb poten-
tial. In Ref. [33], in contrast to many other suggestions, an
expression for HSE was proposed, that is based on the use of
diagonal and off-diagonal matrix elements of the self-energy
operator for H-like ions. The scaling is possible due to the
fact that the dominant part of the QED effects comes from
the vicinity of the nucleus and the proportionality property
of the atom radial wave functions having different principal
quantum numbers n and the same relativistic quantum number
κ = (−1) j+l+1/2( j + 1/2).

In Ref. [43], a slightly different form of the SE effective op-
erator from Ref. [33] was introduced and implemented, which
can be conveniently used in molecular and atomic studies.
The approach uses the same SE matrix elements calculated
in Ref. [33] for H-like systems. The model SE operator from
Ref. [43] can be written in the following form:

HSE =
∑

k,k′,ljm

|hkljm〉Xkljm,k′ljm〈hk′ljm|, (10)

where hkljm(r) are an orthonormalized set of numerically
linearly independent functions, being linear combinations of
functions of the type

h̃nljm(r) = ηnljm(r)θ (Rcut − |r|). (11)

Here θ (Rcut − |r|) is the Heaviside step function, ηnljm(r) are
H-like functions (with principal quantum numbers n � 5), and
Rcut is a small radius, which can be varied slightly to study
the stability of the results obtained. Xkljm,k′ljm in Eq. (10) are
matrix elements of the SE operator over the hkljm functions

and, for the reasons mentioned above, to good accuracy they
are the linear combinations of the corresponding matrix ele-
ments over the H-like functions. Note, that the SE operator
is diagonal in ljm. The expressions for both diagonal and
off-diagonal matrix elements of SE operator can be derived,
e.g., within the two-time Green’s function method [44]:

〈ηn| 1
2 [SE(εn) + SE(εn′ )]|ηn′ 〉, (12)

where SE(εn) is the renormalized SE operator. The model
SE operator introduced in Ref. [33] or its variant proposed in
Ref. [43] can be used to calculate the SE contribution to the
total electronic energy in various systems [33,37,43,45–59].
However, they cannot be directly applied to evaluate the SE
contribution to the FS constant (7).

Let us now consider how one can calculate this contribu-
tion for many-electron systems using existing well-developed
methods to treat electron correlation effects. According to
Eqs. (6), (8), and (10), the SE contribution to the total elec-
tronic energy can be expressed as follows:

ESE(〈r2〉) = 〈�〈r2〉|
∑

i

HSE(ri, 〈r2〉)|�〈r2〉〉 (13)

=
∑
p,q

X 〈r2〉
p,q D〈r2〉

p,q , (14)

where, for brevity, we replaced the set of indices kljm by one
index p (or q) for elements of the matrix ||X || in Eq. (10).
We also explicitly indicated the dependence of these matrix
elements on the ms nuclear charge radius, and D〈r2〉

p,q are el-
ements of the one-particle density matrix in the same basis
of functions hp, which corresponds to the electronic wave
function �〈r2〉. Now we have

F SE =
∑
p,q

dX 〈r2〉
p,q

d〈r2〉 D
〈r2

0 〉
p,q +

∑
p,q

X
〈r2

0 〉
p,q

dD〈r2〉
p,q

d〈r2〉 , (15)

where 〈r2
0〉 is the ms nuclear charge radius corresponding to

reference isotope and all derivatives are taken at this point.
The derivative of the density matrix pertains to the electronic
problem and can be solved using techniques such as numerical
differentiation. Therefore, the second term on the right-hand
side of Eq. (15) can be readily calculated using existing tech-
niques.
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To calculate SE contribution due to the first term of
Eq. (15), we have to work out a procedure for computing
the derivative of the SE matrix elements with respect to the
nuclear ms charge radius. In Refs. [60–66] the nuclear size
dependence of the diagonal matrix elements of the SE oper-
ator over the functions of H-like ions has been explored and
parametrized as follows for ns, np1/2, and np3/2 states:

�ESE = 〈ηnlj |SE|ηnlj〉

= α

π
�ENS

(
nl

1

2
, R

)
GNSE(nlj, R), (16)

where we have omitted the total angular momentum projec-
tion in the index of the function η, R =

√
5
3

√
〈r2〉, �ENS is

the nuclear size (NS) correction to the Dirac energy for the
considered state ηnlj , and GNSE is a slowly varying function of
Z and R [62]. Note that we use the nlj notation instead of the
n jl one employed in Ref. [62]. Let us consider the derivative
of the matrix element (16):

d�ESE(nlj, R)

d〈r2〉
∣∣∣∣
R0

= �ESE(nlj, R0)

⎡⎣ d�ENS(nl1
2 ,R)

d〈r2〉
∣∣
R0

�ENS
(
nl1

2 , R0
) +

dGNSE (nlj,R)
d〈r2〉

∣∣
R0

GNSE(nlj, R0)

⎤⎦,

(17)

where R0 =
√

5
3

√
〈r2

0〉. Equation (17) is of crucial practical
importance. �ESE(R0) is the difference of the SE matrix ele-
ments calculated for the finite and point nuclei, that is the NS
correction to the SE contribution. The NS corrections for both
diagonal and off-diagonal SE matrix elements, evaluated for
H-like functions, were calculated and tabulated in Ref. [33].
By considering the formulas compiled in Ref. [62], one can
realize that the expression in square brackets in Eq. (17) is
almost independent on the principal quantum number n in the
leading order (see below). Using the analytical expressions for
�ENS(ns, R) and �ENS(np1/2, R) [67], one obtains

d�ENS(ns,R)
d〈r2〉

∣∣
R0

�ENS(ns, R0)
=

d�ENS(np1/2,R)
d〈r2〉

∣∣
R0

�ENS(np1/2, R0)
= γ

R2
0

, (18)

where γ =
√

1 − (αZ )2. Our numerical calculations within
the HFD code [68,69] confirm this analytical result with high
accuracy. The second term in the square brackets in Eq. (17)
is independent of n for ns and np3/2 states according to
the explicit expression for GNSE(nlj, R) given in Ref. [62].
A certain dependence on n does exist for np1/2 states due
to the dependence of the parameter a21 = −2(n2 − 1)/n2,
which enters into the expression for GNSE(nlj, R) [see Eq. (11)
of Ref. [62]]. To explore this dependence, we set

√
〈r2〉 ≈

(2Z )1/3 + 0.57 fm approximately following the empirical de-
pendence of

√
〈r2〉 on the nucleon number [70]. We found that

non-negligible dependence occurs in the region of Z = 36–40.
If we are outside this range, one can write

d�ESE(nlj, R)

d〈r2〉
∣∣∣∣
R0

= �ESE(nlj, R0)M(lj, R0), (19)

where M(l j, R) is a function of l, j, R, but not n. Putting it all
together, we obtain that

dXkljm,k′ljm(〈r2〉)

d〈r2〉 = X NS
kljm,k′ljmM(l j, R0), (20)

where X NS
kljm,k′ljm = Xkljm,k′ljm|R0

− Xkljm,k′ljm|0 represents the
NS correction to the matrix element Xkljm,k′ljm. The deriva-
tives in Eq. (20) can be readily evaluated as the nuclear size
contribution to all required diagonal and off-diagonal matrix
elements of SE are available from Ref. [33]. To cover the
range of Z mentioned above, a more accurate expression,
which takes into account the principal quantum number de-
pendence in the calculation of SE matrix elements over the
H-like p1/2 functions, is to be considered, but this is out of the
scope of the present interest. Note that the first term in Eq. (15)
can be calculated as an expectation value of the operator

F SE,1 ≈
∑

k,k′,ljm

|hkljm〉X ′
kljm,k′ljm〈hk′ljm|, (21)

where X ′
kljm,k′ljm = dXkljm,k′ ljm (〈r2〉)

d〈r2〉 .
In Ref. [33], the SE matrix elements for the point nucleus

as well as the NS corrections for these elements are provided
for many elements with step in Z equal to 5. For the other ele-
ments, it is proposed to use an interpolation formula suggested
in Ref. [72]. However, in the present case, we are studying
a more delicate problem than the total SE matrix elements.
For the approach introduced above, the finite nuclear size
SE effect is important. To calculate the corresponding matrix
elements, one can compute the difference between the interpo-
lated SE matrix elements with and without including the finite
nuclear size effect. However, there is some inconsistency in
such an approach, as the finite nuclear size SE corrections
tabulated in Ref. [33] were obtained for the specific rms
charge radii of reference elements (e.g., Z = 10,15,20, etc.).
According to our analysis, a more stable interpolation result
for the NS contribution to SE can be obtained if one first
scales the NS SE contributions for the reference elements
included in the interpolation procedure to the required rms
charge radius of an element under consideration. For such a
scale, one can use Eq. (18). The reliability of the described
scheme was verified by performing ab initio calculations of
the NS SE contributions directly for Al (see below).

The approach that we introduced above can be combined
with methods to treat high-order electron correlation effects
in many-electron atoms and even in molecules, such as the
coupled cluster method with single, double, triple, and per-
turbative quadruple excitations CCSDT(Q) [73,74], which
includes all terms of the perturbation theory up to the sixth
order and some terms to all orders. The simultaneous consid-
eration of QED and electron correlation effects is important
for such systems as discussed below. We should mention that
in Ref. [31] probably a similar strategy of estimating the SE
contribution to the FS constant was applied to boronlike Ar,
although without a discussion and details.

C. QED contributions to the mass shift

The rigorous QED theory of the nuclear recoil effect
beyond the Breit approximation has been developed in
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TABLE I. QED contributions to the field shift F constant (in MHz/fm2) for the 2p1/2 → 2s1/2 transition in Li-like ions.

Ion VP (Uehling) SE Total (this work) Zubova et al. (2014) [71] Zubova et al. (2016) [13]

Ar15+ −24 64 40 44
Bi78+ −0.099 × 107 0.137 × 107 0.038 × 107 0.039(11) × 107 0.0439(35) × 107

U87+ −0.276 × 107 0.385 × 107 0.109 × 107 0.087(30) × 107 0.1026(82) × 107

Refs. [22,24,75] (see also Refs. [14,76,77]). In the leading
order it reduces to the approximation given by Eqs. (4) and
(5). Recently, a model QED approach has been formulated
to account for the QED corrections to the one-electron part
of the mass shift [16] beyond the approximation (4). In this
reference, the QED effects on the nuclear recoil were encoded
into the effective operator that has the same structure as those
introduced in Ref. [33] for the SE effect. Both diagonal and
off-diagonal matrix elements over the H-like functions were
calculated and tabulated for many elements, and correspond-
ing interpolation formulas were provided where necessary.
Some test applications have been outlined [16]. In this paper,
we have adapted this approach by replacing the SE matrix
elements with the nuclear recoil QED matrix elements in the
operator (10), which has already been interfaced [43] to rela-
tivistic program packages, allowing one to perform correlation
calculations for many-electron systems.

There is an additional QED contribution to the nuclear
recoil effect. It is induced by the perturbation of the electronic
wave function by the SE and VP interactions [31,78]. This
effect can be taken into account by calculating the difference
between the values of the mass shift constants calculated with
and without inclusion of the Uehling and model SE operators
into the electron correlation calculation.

III. CALCULATIONS

In this section, we perform test calculations of the QED
effects, provide details of the electronic structure calculations
of the IS atomic factors in Al including a discussion of dif-
ferent approaches for their calculation, and finally outline the
uncertainty estimation procedure.

A. Test of model QED calculations

In the previous section, we introduced a model approach to
calculate the QED corrections to the FS constant F . The most
straightforward way to validate such an approach is to com-
pute the QED corrections for F for highly charged ions, for
which rigorous ab initio QED calculations are available and
where a clear comparison can be made. This is particularly
feasible when electronic correlation effects are suppressed, al-
lowing one to focus on the QED effect of interest. In Ref. [13],
such calculations were performed for Li-like ions.

Table I gives the values of the QED contributions to the FS
constant of the 2p1/2 → 2s1/2 transition in Li-like HCIs. Elec-
tron correlation effects were considered within the relativistic
coupled cluster with single and double excitation amplitudes
method, CCSD. For the elements considered, we used the
AAE4Z basis sets [79–81] truncated after d-type functions
and the Dirac-Coulomb-Breit Hamiltonian.

One can see an agreement within 15% between the QED
contributions to the FS constants in Li-like Bi and U ob-
tained in this work and within the rigorous QED treatment in
Ref. [13]. For Ar, we also observe a good agreement with the
QED estimation performed in Ref. [71]. The small deviation
may be caused by some higher-order QED terms considered
in Ref. [13] but omitted in our model approach. The difference
between our values and those of Ref. [13] can be consid-
ered as an uncertainty estimation of the present approach.
The achieved agreement is already more than sufficient for
the present purposes and surpasses previous attempts of the
effective QED calculations [78]. It is worth noting that in the
Al atom of the present interest, we also consider the s → p
type transitions, much like in these Li-like HCIs.

In Sec. II C we also adapted the model approach to the
nuclear recoil effect beyond the approximation given by the
operator (4), that is, to the corresponding QED contribution.
To test the approach, we calculated this QED contribution
to the mass shift constant for the 2p1/2 → 2s1/2 transition
in Li-like U, for which rigorous QED calculations are avail-
able [82]. In the independent particle approximation, our
calculated QED contribution, −2 221 921 GHz u, practically
coincides with that of Ref. [82], −2 221 736 GHz u, as
expected due to the model QED operator definition. More
interestingly, the correlation contribution calculated in this
work, 60 973 GHz u, is also in excellent agreement with the
rigorous QED result [82], 59 543 GHz u.

B. Computational details

To achieve a balanced description of relativistic and elec-
tronic correlation effects, we employed the relativistic coupled
cluster method with single, double, and iterative full triple
excitations, CCSDT, method for all electrons of Al and used
the Dirac-Coulomb Hamiltonian [74]. Note that all triple ex-
citations from all the electronic shells were considered. In the
correlation calculations, the virtual energy cutoff was set to
500 hartree. We used the uncontracted augmented all-electron
quadruple-zeta AAE4Z basis set [79], extended by additional
s-, p-, and h-type functions. In total, this basis set includes
31s21p10d7 f 4g4h Gaussian-type functions and will be re-
ferred to as MBas below.

To account for the higher-order correlation effects, we cal-
culated the difference between the values of the considered
properties obtained within the relativistic CCSDT(Q) [73]
and the CCSDT methods. These calculations were performed
within the uncontracted augmented all-electron triple-zeta
AAE3Z basis set [79], extended by additional s-, p-, and
d-type functions, and will be referred to as SBas. About
2 × 1010 quadruple excitations were taken into account per-
turbatively.
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To account for the effects of a larger basis set, the fol-
lowing corrections were computed. (i) First, we evaluated
the difference between the values obtained within the CCSD
method using a very large basis set, LBas, and the basis
MBas used in our main model. The LBas basis set includes
50s50p33d20 f 9g7h6i functions. For s- and p- type functions,
we used the exponent parameters forming a geometric pro-
gression with a common ratio of 1.77, and the largest term was
set to 7 × 108. For d-type functions, we used a progression
with a common ratio of 1.85, and the largest term was set to
1 × 106. For f -type functions, a progression with a common
ratio of 1.8 and the largest term equal to 500 was used. For
g-, h-, and i-type functions, we used the natural-like basis set
constructed within the procedure developed in Refs. [83,84].
(ii) Second, we calculated the contribution of k-type functions
(L = 7). Finally we computed the extrapolated contribution of
basis functions with higher L using the approach described in
Refs. [43,58].

Next, we calculated the correlation contribution induced
by including virtual orbitals above 500 hartree. This correc-
tion was computed using the relativistic coupled cluster with
single, double, and perturbative triple excitations, CCSD(T),
method [74,85] for all properties except for the SMS constant,
for which this correction was calculated at the CCSD level.

At the next stage, we calculated the contribution of the
Breit interelectronic interaction in the zero-frequency limit.
For this, we computed the difference between the values ob-
tained within the Dirac-Coulomb-Breit and Dirac-Coulomb
Hamiltonians at the CCSDT level using the SBas basis set and
without using the virtual energy cutoff.

Finally, we calculated the contributions of the QED ef-
fects. For transition energies, we used the model SE and VP
approach [33,43]. To compute the QED contribution to the nu-
clear recoil effect, we employed the model operator developed
in Ref. [16], which was adapted for the high-order correlation
calculations in this paper. We also took into account the QED
contribution due to perturbation of the electron wave function
by the model SE and VP operators. To account for the contri-
bution of the QED effects on the FS constant, we employed
the approach developed in this work.

Relativistic four-component calculations were performed
within the locally modified DIRAC15 code [86,87]. The basis-
set corrections for the SMS factor at the CCSD level were
calculated using the EXP-T code [88–90]. The high-order
correlation effects within the CCSDT, CCSDT(Q), the cou-
pled cluster single, double, triple, and quadruple, CCSDTQ,
and the coupled cluster single, double, triple, quadruple,
and perturbative fivefold excitations CCSDTQ(P) [73,74], ap-
proaches were computed using the locally modified MRCC

code [91]. To treat the Fermi nuclear charge distribution, we
used the code developed in Ref. [59]. Matrix elements of
the NMS and SMS operators were calculated using the code
developed in Ref. [92]. Two-electron integrals of the Breit in-
teraction operator over atomic bispinors were computed using
the code from Ref. [93].

C. Property calculations

While calculations of the transition energies are straightfor-
ward, questions often arise about how to calculate properties

such as the IS factors [78,94]. In experiments, the IS is
obtained by comparing transition energies for two isotopes,
which have different ms charge radii. In theoretical treatments
one can use this approach by computing the transition energies
for a given atom and two different ms charge radii. Then, the
FS constant can be determined as the ratio of the computed
energy shift to the shift of the ms charge radii used in the
calculation. In Eq. (2), one should perform this calculation
with an infinitesimal ms shift. Alternatively, the field shift
constant for a given state can be calculated using the following
expression:

〈O〉 = 〈�|
∑

i

O(i)|�〉, (22)

where O = dHnuc(〈r2〉)/d〈r2〉, Hnuc is the electron-nucleus in-
teraction operator, and � is the many-electron wave function.
In other words, one can calculate the FS as an expectation
value of the one-electron operator dHnuc/d〈r2〉. There are also
different possibilities how one can calculate the expectation
value. For example, one can perform an analytical calculation
of the one-particle density matrix and evaluate the trace of
this matrix with the corresponding matrix elements. On the
other hand, one can calculate it using the finite field technique.
According to the Hellmann-Feynman theorem, for the ex-
act electronic wave function the results calculated within the
different approaches should be the same. We performed test
calculations using three strategies to evaluate the FS constant.

(i) In the method A-relaxed we calculated

F (A,relaxed) = E
(〈

r2
0

〉 + h
) − E

(〈
r2

0

〉 − h
)

2h
. (23)

Here 〈r2
0〉 = 3.0612 fm2 is the ms charge radius of 27Al

[20,21] and h = 0.5 fm2. In this calculation we directly
changed the nuclear potential operator corresponding to the
Gaussian nuclear charge distribution. This change has been
made already at the DHF stage of the calculation. In this
work, we consider two specific models of the nuclear charge
distribution: the Gaussian and Fermi ones (see below). When
we change the rms charge radius, other nuclear moments also
change according to the considered model of the charge dis-
tribution. This should be taken into account when considering
Eq. (2).

(ii) In the method A-unrelaxed the field shift constant was
calculated as

F (A,unrelaxed) = E (λ) − E (−λ)

2λ
, (24)

where E (λ) is the total energy calculated for the elec-
tronic Hamiltonian perturbed by the operator [Hnuc(〈r2〉 +
h) − Hnuc(〈r2〉 − h)]/2h with a factor λ. In calculations we
set λ = 1. The perturbating operator was added to the Hamil-
tonian after the DHF stage of the calculation, but before the
correlation stage. Therefore, the orbital relaxation effects were
not considered. One-electron orbitals were obtained for the
reference isotope with the ms charge radius 〈r2

0〉.
(iii) Finally, in method B, we performed calculations cor-

responding to the expression (22). Namely, we calculated the
one-particle density matrix D using the �-equations coupled
cluster technique [74,95], and then evaluated the trace of this
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TABLE II. Values of the field shift constant F (in MHz/fm2) for
the 3s23p 2P1/2 → 3s24s 2S1/2 transition in Al within the different
strategies to calculate this property and different methods to treat the
electron correlation effects. A small basis set was employed for these
test calculations.

Method A-relaxed A-unrelaxed B

DHF 63.69 13.20 13.20
CCSD 74.46 74.62 74.62
CCSD(T) 74.09 73.92
CCSDT 73.81 73.82 73.82
CCSDT(Q) 73.79 73.80
CCSDTQ 73.79 73.79
CCSDTQ(P) 73.79 73.79

matrix with the matrix elements of the operator dHnuc/d〈r2〉:

F (B) =
∑
p,q

Dp,q

(
dHnuc

d〈r2〉
)

p,q

. (25)

In all cases we used the Gaussian nuclear charge distribution
model [96] with the Gaussian nuclear charge distribution pa-
rameter ξ = 1.5/〈r2〉, for which the Hnuc operator is

Hnuc = −Z

r
erf (

√
ξr). (26)

In this case, the derivative dHnuc/d〈r2〉 can be taken analyti-
cally:

dHnuc

d〈r2〉 = 2Zξ 3/2

3
√

π
e−ξr2

. (27)

Thus, in contrast to the A-relaxed and A-unrelaxed methods,
the method B does not suffer from the numerical differentia-
tion errors.

In all these test calculations, we used the manually ex-
tended uncontracted all-electron double-zeta AE2Z basis set
[79] and different levels of electronic correlation effects treat-
ment. This basis set is smaller than that used in the actual
calculation scheme described above. However, it allowed
us to consider the correlation effects up to the relativistic
CCSDTQ(P) method. No virtual orbitals energy cutoff was
applied, and all electrons were included in the correlation
treatment. Table II summarizes the results of applying three
strategies of calculating the IS factor for the 3s23p 2P1/2 →
3s24s 2S1/2 transition in the Al atom.

Note that the �-equations approach used in the method B
is not implemented for the CCSD(T), CCSDT(Q), and CCS-
DTQ(P) models, while for the CCSDTQ model it was found
to be too computationally expensive. As h → 0, [Hnuc(〈r2〉 +
h) − Hnuc(〈r2〉 − h)]/2h → dHnuc/d〈r2〉, and in the absence
of numerical differentiation errors, this model becomes iden-
tical to the A-unrelaxed model. As one can see from Table II,
we indeed have good agreement between the predictions of
these models. Therefore, the numerical differentiation errors,
which can potentially arise in the A-unrelaxed method, are
negligible at the considered level of precision within the con-
sidered single-reference CC methods (similar conclusion was
also made for other properties [59,97]).

TABLE III. Values of the first term of Eq. (4) to the NMS effect
(in GHz u) for the 3s23p 2P1/2 → 3s24s 2S1/2 transition in Al within
the different strategies to calculate this property and different meth-
ods to treat the electron correlation effects. A small basis set was
employed for these test calculations.

Method A-relaxed A-unrelaxed B

DHF −356.79 −1487.44 −1487.44
CCSD −400.26 −391.35 −391.35
CCSD(T) −399.68 −403.61
CCSDT −399.25 −399.32 −399.32
CCSDT(Q) −399.23 −399.61
CCSDTQ −399.24 −399.24
CCSDTQ(P) −399.24 −399.25

The methods A-relaxed and A-unrelaxed mainly differ in
the way they account for the orbital relaxation effects. How-
ever, it is expected that for the exact treatment of the electron
correlation effects, both methods should yield identical re-
sults. The deviation between the results can provide partial
information about the quality of the nonvariational method
used to treat the electron correlation effects. However, the
coincidence of the results does not necessarily mean that
the correlation is accounted for exactly. Table II compares the
results obtained within these two methods. We begin with the
DHF values, which differ by a factor of 5. However, already
at the CCSD level, the deviation is 0.22%. It slightly increases
at the CCSD(T) level to 0.24%. However, at the higher-order
correlation treatment levels, the methods A-relaxed and A-
unrelaxed give essentially the same results with deviation
smaller than 0.01%.

Let us now perform a similar analysis for the contribution
of the first term of the normal mass shift effect (4). As one
can see, this operator is proportional to the nonrelativistic
operator of the kinetic energy T . Similar to the FS case, we
can consider three methods of calculating this effect in the
first order. (i) In the A-relaxed method, we added this operator
at the DHF stage of electronic calculation to account for the
orbital relaxation effects. Then, the effect was calculated as
the numerical derivative [E (λ) − E (−λ)]/2λ, where E (λ) is
the total energy value obtained when the operator T is added
to the electronic Hamiltonian with the factor λ = 10−5. (ii)
In the method A-unrelaxed, the operator was added after the
DHF stage, but before the coupled cluster stage. The value
was also calculated as the numerical derivative using the same
value of the λ parameter. (iii) In the method B, we calculated
the trace of the one-particle density matrix with the matrix
elements of the operator T . No numerical derivatives were
needed in this case.

Table III presents the results obtained from the appli-
cation of three methods for calculating the contribution of
the first term in Eq. (4) to the NMS atomic factor for the
3s23p 2P1/2 → 3s24s 2S1/2 transition in aluminum. The com-
putational details are identical to those described above for
the FS.

As in the FS constant calculation, in the present case we
again obtain results within the schemes A-unrelaxed and B
that, as expected, deviate negligibly at all levels of correlation
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treatment. Next, we compare the A-relaxed and A-unrelaxed
results. At the CCSD level, the deviation between these meth-
ods is approximately 2%. As we progress to the CCSD(T)
level, the deviation reduces to less than 1%, and at higher
levels of correlation treatment the results almost coincide,
as expected for such high-level models as the full iterative
CCSDT approach or higher. The A-relaxed method demon-
strates a faster convergence for the considered property (see
also Ref. [98] with a related discussion about the strategy
of calculating the atomic enhancement factor of the scalar-
pseudoscalar nucleus-electron interaction).

Our comparison of the strategies of the property calcula-
tions was performed for the single-reference coupled cluster
methods employed in this work. Different methods of han-
dling electron correlation effects may behave differently.

In our study of the IS in Al, we used the A-relaxed scheme
to calculate the FS constant and the first term of Eq. (4) for
the NMS effect. For the remaining terms of the nuclear recoil
effects, we applied the A-unrelaxed approach due to technical
reasons. It is worth highlighting that employing a hierarchy of
single-reference CC methods enables a systematic considera-
tion of uncertainties.

D. Uncertainty estimation

We considered the following sources of theoretical uncer-
tainties for the calculated IS atomic factors and transition
energies in Al:

(i) The uncertainty stemming from the unaccounted cor-
relation effects beyond the CCSDT(Q) model was estimated
by considering the contribution of perturbative connected
quadruple excitation amplitudes, specifically the difference
between the CCSDT(Q) and CCSDT results.

(ii) To address the uncertainty due to the basis-set in-
completeness, we followed a two-stage approach. First, we
compared the basis-set corrections to the electron transition
energies, FS, and NMS factors calculated at the CCSD(T)
and CCSD levels. This comparison allowed us to estimate
the uncertainty arising from the reduced level of the electron
correlation effects treatment for the basis-set correction calcu-
lation. For the SMS factor, such an estimation was not feasible
due to technical reasons, so the total value of the basis-set
correction was used. Second, our calculation scheme involved
the basis functions up to L = 7. We used the doubled value of
the k-type function contribution as an estimation of possible
higher-order harmonics contribution to the considered IS pa-
rameters and the sum of the k-type function contribution and
an extrapolated higher-order harmonics contribution for the
case of transition energies.

(iii) The uncertainty associated with the contribution of
higher-lying virtual orbitals (with the orbital energies exceed-
ing 500 hartree) was evaluated by comparing this contribution
calculated in two basis sets, MBas and SBas, at the CCSD(T)
levels. It is noteworthy that the corrections calculated within
the CCSD and CCSD(T) levels nearly coincide with each
other.

(iv) For the uncertainty of the QED effects, we conserva-
tively set it to 30% of their values.

(v) As a measure of the uncertainty due to the missed
ω dependence in the Breit electron-electron interaction

we conservatively set it to 50% of the calculated Breit
correction.

(vi) Concerning the FS constant, we also compared the
different models of the nuclear charge distribution: the Gaus-
sian and Fermi ones. The discrepancy in the results obtained
within these two models was included in the uncertainty of the
FS constant (see also the analysis below).

The total uncertainty was estimated as the square root
of the sum of the squares of all the aforementioned
uncertainties.

IV. RESULTS AND DISCUSSION

The calculated values of the excitation energies in neutral
Al for the electronic states of interest are given in Table IV.
One can see good agreement between calculated and experi-
mental values [100].

The calculated values of the atomic IS factors are given in
Table V. The uncertainty estimation procedure is described in
the previous section. Note that the exact nuclear charge distri-
bution for the Al isotopes is unknown. In our calculation, we
used the one-parameter Gaussian model of the nuclear charge
distribution [96]. However, considering the similar models of
the charge distributions for a pair of isotopes may be too
restrictive [101]. To test a possible change in the nuclear
shape, we compared the values of the FS constants calculated
within two approaches using Eq. (23). In the first approach,
we calculated the numerical derivative (23) using the Gaus-
sian nuclear charge distribution for both terms in Eq. (23).
In the second approach, the term with the ms charge radius
〈r2

0〉 + h was calculated within the Gaussian nuclear charge
distribution, while the term with the ms charge radius 〈r2

0〉 − h
was calculated within the Fermi nuclear charge distribution.
Although the Gaussian and Fermi distributions differ very sig-
nificantly [102], we found that the values of the FS constants
calculated within the first and second approaches differ by less
than 0.007 MHz/fm2 for all of the considered transitions. This
effect is negligible with respect to other uncertainties. How-
ever, to be conservative, we included the value 0.01 MHz/fm2

in the uncertainty estimation of the FS constant to account for
the effect of the unknown nuclear shape [see item (vi) in the
previous section].

It is evident that the small uncertainties in the non-QED
calculations of the atomic IS factors necessitate the considera-
tion of the QED effects. These effects are typically overlooked
in theoretical IS studies of many-electron neutral atoms due
to uncertainties arising from the incomplete treatment of the
correlation effects. Of particular interest is the SE QED con-
tribution F SE to the FS constant, which was found to be
larger than the VP contribution (compare lines “QED-SE”
and “QED-VP” of Table V). In Sec. II B, we proposed an
effective method for performing such calculations for many-
electron systems, which allows the use of the relativistic
coupled cluster methods. The challenge arises from the lack
of exact knowledge of the contribution of the finite nuclear
size effect �ESE(nlj, R0) in Eq. (19). While the literature
provides calculations for Z = 10, 15, 20, etc. [33], it does
not cover Z = 13. In Sec. II B we mentioned that the inter-
polation procedure can be used. The good agreement between
the proposed technique and the rigorous QED treatment, as
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TABLE IV. Values of the transition energies in Al (in cm−1).

3s23p 2P1/2 → 3s24s 2S1/2 3s23p 2P3/2 → 3s24s 2S1/2 3s23p 2P1/2 → 3s25s 2S1/2 3s23p 2P3/2 → 3s25s 2S1/2

CCSDT 25315 25197 37644 37526
CCSDT(Q) – CCSDT 0 1 7 9
Basis-set corr. 28 28 32 32
High virt. −1 −1 −1 −1
Breit −8 0 −8 −1
QED 5 5 5 4
Total, this work 25339(10) 25230(9) 37679(13) 37570(14)
MCDHF(CV) [99] 25495 25376
MCDHF(CC) [99] 25351 25173
Experiment [100] 25347.756 25235.695 37689.407 37577.346

shown in Table I for Li-like ions, suggests that interpolation
is viable. However, since Al is a light atom with Z = 13, the
interpolation scheme for it is based on only one point with a
smaller Z (Z = 10). To verify the reliability of our approach,
three calculations of the field shift constant were per-
formed for the 3s23p 2P1/2 → 3s24s 2S1/2 transition in Al: (i)
employing Eqs. (15), (20), and the matrix elements X NS

kljm,k′ljm,

interpolated using the data from Ref. [33], along with the
analytical expressions for the derivative coefficients M(lj, R0)
obtained with the use of Eq. (17); (ii) using Eq. (15) with
the directly calculated finite nuclear size contributions to the
SE matrix elements and numerically computed dX 〈dr2〉

p,q /d〈r2〉
matrix elements within the ab initio QED methods [103–105];
(iii) directly applying Eq. (7). In the latter case, two sets of the

TABLE V. Values of the IS atomic factors for Al.

kNMS (GHz u)

3s23p 2P1/2 → 3s24s 2S1/2 3s23p 2P3/2 → 3s24s 2S1/2 3s23p 2P1/2 → 3s25s 2S1/2 3s23p 2P3/2 → 3s25s 2S1/2

CCSDT −415.4 −414.4 −618.1 −617.0
CCSDT(Q) – CCSDT 0.0 0.0 −0.1 −0.1
Basis-set corr. −0.7 −0.7 −0.8 −0.8
High virt. 0.1 0.1 0.1 0.1
Breit 0.4 0.1 0.4 0.1
QED 1.0 1.0 0.9 0.9
Total −414.7(0.5) −413.9(0.3) −617.6(0.5) −616.8(0.4)

kSMS (GHz u)

CCSDT 653.4 655.1 617.9 619.6
CCSDT(Q) – CCSDT −0.1 −0.6 −1.9 −2.3
Basis-set corr. 0.8 0.8 0.8 0.8
High virt. 0.5 0.5 0.4 0.4
Breit −0.5 0.0 −0.5 0.0
QED 0.2 0.2 0.2 0.2
Total 654.3(0.9) 656.0(1.0) 616.9(2.1) 618.6(2.5)

kNMS + kSMS (GHz u)

Total, this work 239.6(1.1) 242.1(1.0) −0.7 (2.1) 1.7(2.5)
MCDF(CV+VV) [20,99] 240.0(5.0)a 243.0(4.0)

F (MHz/fm2)

CCSDT 76.95 76.85 70.15 70.05
CCSDT(Q) – CCSDT −0.02 −0.01 0.02 0.03
Basis-set corr. 0.04 0.05 0.07 0.08
High virt. 0.01 0.01 0.01 0.01
Breit −0.07 0.00 −0.05 0.02
QED-VP 0.07 0.06 0.06 0.06
QED-SE −0.17 −0.17 −0.15 −0.15
Total 76.81(12) 76.80(6) 70.11(13) 70.10(8)
Refs. [20,99] 76.45(1.95)a 76.20(2.20)

aDerived from the data given in Table III of Ref. [99] (columns RIS3/Sep. and RATIP/Sep.) following the approach described in Ref. [20]
(see Refs. [20,99] for the description and abbreviations of these methods).
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TABLE VI. Values of the first-type QED contribution (see main
text) to the FS constant, F SE, for the 3s23p 2P1/2 → 3s24s 2S1/2

transition in Al obtained using three approaches (see main text) at
different levels of electron correlation treatment (in MHz/fm2).

DHF CCSD CCSD(T)

Term 1 of Eq. (15), extrap., analyt. −0.031 −0.182 −0.181
Term 2 of Eq. (15), extrap., analyt. 0.001 0.010 0.009
Sum −0.030 −0.172 −0.171
Term 1 of Eq. (15), numerical calc. −0.032 −0.183 −0.181
Term 2 of Eq. (15), numerical calc. 0.001 0.012 0.012
Sum −0.031 −0.170 −0.169
Eq. (7), numerical −0.031 −0.170 −0.169

SE matrix elements over the H-like functions were specially
calculated for Al for two different nuclear ms charge radii.
Consequently, F SE was calculated directly as a numerical
derivative. The approach (iii) is the most accurate, while the
approach (i) is the most approximate but relies solely on the
QED data published in the seminal paper [33] and does not
require any new QED calculations. This significantly simpli-
fies the problem of calculating the QED contribution since an
accurate evaluation of the SE matrix elements is not a trivial
issue.

The values of the F SE contribution to the FS constant using
the three approaches described above are given in Table VI for
the different levels of electronic correlation effects treatment:
DHF, CCSD, and CCSD(T). One can see good agreement
between the results obtained within these three approaches
at each level. Moreover, one can see that electron correlation
effects are crucial for this treatment. As can be seen from
Table VI, the dominant SE contribution to the FS constant
comes from the first term of Eq. (15), which implies a direct
differentiation of the SE matrix elements. The second term,
which does not include such a derivative, contributes more
than an order of magnitude less.

As noted in Sec. II C, two types of QED contributions to
the nuclear recoil effect were considered: (i) the effect beyond
the approximation given by Eq. (4), and (ii) the change of
the NMS and SMS operators expectation values due to the
perturbation of the electronic wave function by the SE and
VP interactions. Table VII provides the values of the QED
contribution of first type to the normal mass shift constant
kNMS calculated at the different levels of theory: DHF, CCSD,
and CCSD(T). As in the case of the SE contribution to the
FS constant, one can see a significant role of the electron
correlation effects. The related QED contribution to kSMS was
estimated to be about an order of magnitude smaller using the

TABLE VII. Values of the QED contribution to the nuclear recoil
effect (in GHz u) considered at different levels of theory.

Transition DHF CCSD CCSD(T)

3s23p 2P1/2 → 3s24s 2S1/2 0.2 1.2 1.2
3s23p 2P3/2 → 3s24s 2S1/2 0.2 1.2 1.2
3s23p 2P1/2 → 3s25s 2S1/2 0.1 1.1 1.1
3s23p 2P3/2 → 3s25s 2S1/2 0.1 1.1 1.1

rigorous QED treatment similar to Ref. [16]. The QED con-
tribution of the second type to the normal mass shift constant
kNMS was found to be smaller by about a factor of 5.5 and of
opposite sign compared to the first contribution being about
−0.2 GHz u for all the considered transitions. In addition, we
found that the second-type QED contributions to kNMS and
kSMS have similar absolute values but opposite signs, leading
to a near cancellation of these effects in the total nuclear recoil
factor kNMS + kSMS.

As one can see from Table IV, the basis-set and the Breit
interaction corrections also have opposite signs and similar
absolute values for kNMS and kSMS. Thus, these corrections
nearly cancel each other in the total nuclear recoil atomic fac-
tor. However, to be conservative, we calculated the uncertainty
of the total recoil effect as the square root of the sum of the
squares of the uncertainties for kNMS and kSMS, i.e., we did not
employ this cancellation. Note also that we did not find such
a cancellation for higher-order correlation effects, such as the
contributions of quadruple excitations.

In Ref. [17] the IS shift �ν27,26m = 377.5(3.4) MHz
was measured for the 3s23p 2P3/2 → 3s24s 2S1/2 tran-
sition. Using the previously calculated atomic factors
F = 76.2(2.2) MHz/fm2, kMS = 234(4) GHz u [20,99]
and nucleus masses from Refs. [106,107] the δ〈r2〉27,26m =
0.429(45)(76) fm2 value was deduced, where the first uncer-
tainty is the experimental one and the second is due to the
previously used atomic factors [20,99]. With the new atomic
factors we obtain from Eq. (1)

δ〈r2〉27,26m = 0.443(44)(19) fm2. (28)

The theoretical uncertainty of δ〈r2〉27,26m is reduced by a fac-
tor of 4 and now the uncertainty of the deduced ms charge
radius is dominated by the experimental uncertainty.

To obtain the absolute ms charge radius of 26mAl,
Rc(26mAl), the absolute ms charge radius of 27Al is required.
The latter was tabulated in Ref. [20], Rc(27Al) = 3.061(6)
fm, where the experimental data from the muonic atom
spectroscopy were combined with elastic electron scattering
measurements. Using this result together with the deduced
value of δ〈r2〉27,26m (28) we obtain the absolute rms nucleus
charge radius of 26mAl:

Rc(26mAl) = 3.132(10) fm. (29)

This value is in good agreement with the previously derived
value Rc(26mAl) = 3.130(15) fm [17], but 1.5 times more
accurate due to the improved accuracy of the IS atomic fac-
tors. Now the uncertainty of the absolute rms charge radius
is dominated by the uncertainties of the measured IS and
Rc(27Al) and not by the uncertainty of the calculated atomic
factors. The δ〈r2〉27,26m and Rc(26mAl) are summarized in
Table VIII.

By using the deduced δ〈r2〉27,26m value together with the
computed FS and MS atomic factors, one can determine the
theoretical uncertainty for the IS of the transition of interest
for the 26m,27Al pair. The resulting uncertainty, 0.4%, is dom-
inated by the uncertainty of the mass shift constant. We can
estimate the nonlinear (in m/M) mass shift effect contribution
to the IS for the 26m,27Al pair by comparing the IS values
calculated using Eq. (1), i.e., the linear in m/M effect, with
the recoil effect calculated by including the operators (4) and
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TABLE VIII. Values of δ〈r2〉27,26m (in fm2) and Rc(26mAl) (in
fm). The first uncertainty for δ〈r2〉27,26m is the experimental one and
the second is due to the atomic factors.

δ〈r2〉27,26m Rc(26mAl)

Refs. [18,19] 3.040(20)
Ref. [17] 0.429(45)(76) 3.130(15)
This work 0.443(44)(19) 3.132(10)

(5) into the electronic Hamiltonian and performing direct cal-
culations within the CCSD method for two masses: M(26mAl)
and M(27Al). In the latter case we obtain an estimation of the
nuclear recoil effect in all orders in m/M. According to this
calculation, the nonlinear contribution of the nuclear recoil
effect was found to be 0.08% of the total linear in m/M mass
shift value, i.e., about a factor of 5 smaller than the estimated
nuclear-recoil-effect theoretical uncertainty for the considered
transition (see Table V).

In Ref. [108] a detailed treatment of effects beyond the
considered approximation (1), such as the higher-order FS,
the nuclear polarization, and cross terms of the FS and MS
effects, was carried out for several isotopes of the slightly
heavier element Ca (Z = 20). In that work, it was found that
the nuclear polarization effect contribution to the IS of the
4s → 4p1/2 transition in Ca+ is smaller than the nonlinear
mass shift contribution. It reached 0.03% of the total IS value.
Contributions of other effects were even smaller. This is more
than an order of magnitude smaller than the present uncer-
tainty. Thus, such effects were beyond the scope of this study.

As a final application of the calculated atomic factors for
the 3s23p 2P3/2 → 3s24s 2S1/2 transition, we derived relative,
δ〈r2〉27,A, and absolute ms charge radii for Al isotopes with
mass numbers A = 28–32 using the measured IS values from
Ref. [20] and the absolute ms charge radius of 27Al [20,21].
The results for the δ〈r2〉27,A are shown in Table IX, and com-
pared with literature values in Fig. 1.

As shown in Fig. 1, the uncertainty resulting from atomic
calculations of δ〈r2〉27,A has now been reduced by a factor of 4,
and the total uncertainty is now dominated by the uncertainty
in the beam energy [20], rather than by atomic calculations.
The total uncertainties of the ms charge radii of all considered
Al isotopes are reduced by a factor of about 1.5.

In this paper we calculated the IS atomic factors for
three other transitions with similar accuracy (see Table V).
These data can be used for the interpretation of future exper-

15 16 17 18 19
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2
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m
2
)

This work
Atomic
calculations

Experiment
Ref. [12]

FIG. 1. Changes in the mean-square charge radii of Al isotopes.
The uncertainties arising from the atomic factors used in Ref. [20]
are represented by the shaded red area. Uncertainties associated to
the beam energy are not included.

iments. The 3s23p 2P1/2 → 3s25s 2S1/2 and 3s23p 2P3/2 →
3s25s 2S1/2 transitions are of particular interest because the
NMS and SMS contributions almost exactly cancel each other
resulting in a significantly reduced nuclear recoil effect con-
tribution to the IS.

V. CONCLUSION

We have developed the effective method to incorporate
the QED contributions into the field shift atomic constant
in neutral many-electron systems. The model operator used
to calculate the QED effects on the nuclear recoil IS factor,
as described in [16], has been adapted for the atomic IS
correlation calculations. These QED terms have proven to
be significant at our current level of precision achieved for
Al, surpassing the uncertainties inherent in electronic calcula-
tions. These advancements can now be applied in other studies
involving calculations of the IS atomic factors. Importantly,
the developed procedure can also be applied for calculating
FS factors in molecules.

As a result of these developments, we were able to reduce
the uncertainty of the field shift atomic parameter in Al by
more than an order of magnitude and the uncertainty of the
nuclear recoil parameter by a factor of 4 compared to the

TABLE IX. Changes in ms charge radii of Al isotopes with respect to 27Al (neutron number N = 14), δ〈r2〉27,A, and the absolute 〈r2〉
values along the Al isotopic chain extracted from the IS measurements [20] for the 3s23p 2P3/2 → 3s24s 2S1/2 transition. Uncertainties arising
from the IS measurement [20], beam energy [20], and atomic calculations are indicated for δ〈r2〉27,A with round, square, and curly brackets,
respectively. For 〈r2〉 the total uncertainty is given.

A N δ〈r2〉27,A (Ref. [20]) δ〈r2〉27,A (this work) 〈r2〉 (Ref. [20]) 〈r2〉 (this work)

28 15 0.003(10)[43]{72} −0.013(10)[43]{18} 9.373(91) 9.357(60)
29 16 0.142(8)[84]{134} 0.110(8)[83]{35} 9.511(163) 9.480(98)
30 17 0.164(15)[132]{196} 0.119(16)[132]{51} 9.534(239) 9.489(146)
31 18 0.301(16)[178]{250} 0.242(16)[177]{65} 9.671(311) 9.612(193)
32 19 0.12(9)[22]{31} 0.05(9)[22]{8} 9.490(391) 9.422(255)
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previous studies [20,99]. By combining the measured IS with
the obtained values of the atomic factors, the final theoretical
uncertainty of the charge radius of 26mAl has been reduced by
a factor of 1.5 compared to the previous study [17]. Similar
results were also derived for the 28Al, 29Al, 30Al, 31Al, and
32Al isotopes using existing IS measurements [20].
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