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Quantum distillation is a modern technology to decrease the von Neumann entropy of a subsystem by coherent
system dynamics. Here we propose an active quantum distillation protocol, in which a bang-bang theme is
applied to actively control the coherent dynamics of our system in order to obtain a subsystem with the von
Neumann entropy as low as possible. For a bipartite bosonic system, we derive the analytical expression of
the entropy lower bound of one subsystem under any unitary transformation for mixed states with conservation
of particles. The lower bound is validated by numerical simulations on the Bose-Hubbard model, where the
coherent evolution is controlled by tuning one interaction term of the Hamiltonian. Our protocol can be used to
decrease the entropy of one subsystem lower than the total bipartite state and increase the number of bosons or
only distill out very few bosons in the subsystem.
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I. INTRODUCTION

Decreasing the entropy of a quantum system is an essential
task in quantum science and technologies. Low entropy states
play an important role in the study of quantum many-body
physics, such as the quantum phase transition [1,2], topolog-
ical order states [3,4], and Bose-Einstein condensation [5–7].
To get manifests of those quantum phenomena one must
measure some physical quantities on low entropy states. For
example, the quantum phase transition is usually accompanied
by close of energy gap between their eigenstates, and topolog-
ical order systems have a topological entanglement entropy
on their ground states. Consider a thermal state ρ = e−β(H+V )

with Hamiltonian H + V and inverse temperature β = 1/T . If
we increase the strength of the potential V , it is equivalent to
increase the inverse temperature of the state. A similar idea
is also mentioned in quantum virtual cooling [8], which is
to square the state to get half of the temperature. Thus the
temperature somehow does not capture the essence of the low-
energy quantumness. However, as a fundamental quantity in
thermodynamics and quantum information, low entropy is the
most essential manifestation of the high purity of a quantum
state.

In order to get low entropy states, quantum distillation
[9–11] technologies are proposed. Quantum distillation refers
to a quantum dynamics that makes the final states smaller
samples with purer quantum states than initially present. In
the case of fermions, numerical simulation shows that dur-
ing the expansion and with the strongly repulsive interaction,
doublons group together and form a low entropy state [10]. In
the experiment with a cloud of bosonic atoms trapped in one-
dimensional optical lattices [11], some singlons are observed
to quantum distill out of the doublon center.

Here, to avoid confusion, we point out that the term “dis-
tillation” can also be used for distilling smaller number of
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higher quality states, from higher number of copies of states
with lower quality, such as entanglement distillation [12–14].
However, as in the relevant literature [9–11], we use the other
meaning of “distillation” here, which refers to making the
final state purer, regardless of the number of copies.

The advancement of quantum simulation techniques based
on cold atom experiments has made it possible to experimen-
tally implement quantum distillation protocols. Controlling
the interaction Hamiltonians for Bose-Hubbard models has
been achieved on cold atom experiment platforms [15–26].
And experimentalists can measure the entanglement entropy
and mutual information in Bose-Hubbard models by using
quantum interference of many-body twins to measure second-
order Rényi entropy [27]. The boson-related Hamiltonians can
also be simulated on a superconducting quantum simulator
using a boson-to-qubit mapping [28,29].

Here we aim at getting low entropy states from a thermal
mixed state in a bosonic system through quantum distillation.
To be exact, we focus on decreasing the entropy of one sub-
system lower than the total system without distilling out many
bosons from this subsystem. Previous quantum distillation
protocols were based on the expansion from a confined region
pure state to another empty lattice. In the final state, the region
where doublons group together has entropy nearly equal to
zero [10]. For an initial pure state, the entropy of the final
target state will be never less than the total state. In this
paper we propose active quantum distillation, which is a pre-
cise quantum control protocol to decrease the von Neumann
entropy without distilling out many bosons. For a bipartite
bosonic mixed state AB, we derive the analytical expression
of the entropy lower bound of subsystem B under a unitary
transformation UAB. We then construct a unitary evolution by
only controlling the interaction Hamiltonian between B and A
as illustrated in Fig. 1. The control protocol is constructed by
a simple greedy search algorithm.

Our protocol can be used to group bosons together or to
distill out some bosons based on different site configurations
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FIG. 1. Active quantum distillation protocol for decreasing the
entropy of system B in the Bose-Hubbard model. The strength of the
interaction terms in the Hamiltonian is controlled during the time
evolution. The total time t f is divided into N time steps, each of
which is δt . The interaction strength can be discretely controlled such
that the system will evolve along the direction of decreasing SB to
minimum.

and control parameter choices. In the general case where
subsystem A has more than two sites, by choosing appropriate
control parameters, we can decrease the entropy of B lower
than the entropy of initial total state AB, and increase the
number of bosons in B or only distill out very few bosons.
If subsystem A has only one site, we group particles together
and decrease the entropy of ρB to the entropy of ρAB, which
is the lower bound of the entropy of ρB under the unitary
transformation UAB. The essence of the quantum distillation
phenomenon is to get a purer state with more bosons. We
explain this quantum distillation phenomenon from the per-
spective of quantum information theory. Also the protocol
stability is tested by numerical simulations.

II. QUANTUM CONTROL MODEL

We consider the one-dimensional Bose-Hubbard model
with open boundary condition, whose Hamiltonian

Ĥ0 = −J
L−1∑

i

(b̂†
i b̂i+1 + H.c.) + U

2

L∑
i=1

n̂i(n̂i − 1), (1)

where b̂i (b̂†
i ) is the annihilation (creation) operator of the

bosonic mode of site i, n̂i = b̂†
i b̂i is the number operator of

mode i, J is the hopping strength, and U is the onsite interac-
tion energy between two bosons. Here we adopt a bang-bang
control protocol [30,31], which is widely used in quantum
control. In the language of bang-bang control protocol, the
total Hamiltonian

Ĥ (t ) = Ĥ0 + Ĥc(t ), (2)

where the Hamiltonian Ĥ0 specified by Eq. (1) is called the
drift Hamiltonian, and the control Hamiltonian

Ĥc(t ) = γ (t )J
(
b̂†

lA
b̂lA+1 + b̂†

lA+1b̂lA

)
, (3)

which plays a role like a switch to adjust the hopping strength
between lAth and (lA + 1)th sites. Let us divide our system
into subsystem A and subsystem B, where subsystem A con-
tains the sites from the first to the lAth, and subsystem B
contains the remaining sites. Then our central task is to min-
imize the von Neumann entropy of the subsystem B at a final
time t f by choosing a suitable γ (t ), which can be formulated
as

min
γ (t )

S[ρB(t f )], (4)

where ρB(t ) is the reduced state of ρAB(t ) [ρB(t ) =
TrAρAB(t )], and the von Neumann entropy S(ρ) = −Trρ ln ρ.
Note that the minimal entropy depends on the initial state
ρAB(0). In our protocol, we take the initial state of the whole
system ρAB(0) = e−βH0/Z with the partition function Z =
Tr(e−βH0 ), where β = 1

kBT , kB is the Boltzmann constant, and
T is the temperature. In most cases, the minimum entropy
obtained is smaller than S[ρAB(0)]. We will see in the fol-
lowing sections that, in the task of minimizing the subsystem
B entropy, our protocol is nearly equivalent to that capable
of applying any global unitary transformations when lA = 1.
And for general cases when lA > 1, our protocol has the
appropriate capacities to decrease the entropy of B to be less
than S[ρAB(0)] without losing many bosons.

III. ANALYTICAL LOWER BOUND
OF SUBSYSTEM ENTROPY

In this section we derive the analytical expression of the
lower bound of one subsystem entropy under any unitary
transformation. This lower bound is universal for all bosonic
systems but not restricted in the Bose-Hubbard model, since
in the derivation we only restrict the total particle number to
be conserved and all modes are the same after the unitary
transformation. In other words, letting N̂AB = ∑L

i=1 n̂i, in this
section we derive the lower bound under any unitary transfor-
mation which is generated by a Hamiltonian commuted with
N̂AB.

Suppose that ρAB = ρAB(0) is a bipartite state with to-
tal particle number NAB. The number of sites in A is
lA, and the number of sites in B is lB with lA + lB = L.
We take the occupation number bases {|n1, n2, . . . , nL〉},
which are defined as n̂i|n1, n2, . . . , nL〉 = ni|n1, n2, . . . , nL〉
and satisfy

∑L
i=1 ni = NAB. The reduced density operator

of A and B is ρA = TrBρAB and ρB = TrAρAB. The occu-
pation number bases for ρA are {|n1, n2, . . . , nlA〉A}, and
for ρB are {|nlA+1, . . . , nL〉B}. The number operator of A
is n̂A = ∑lA

i=1 n̂i, and the number operator of B is n̂B =∑L
i=lA+1 n̂i. Let n̂A|n1, n2, . . . , nlA〉A = nA|n1, n2, . . . , nlA〉A,

and n̂B|nlA+1, . . . , nL〉B = nB|nlA+1, . . . , nL〉B.
Both ρA and ρB are block-diagonal matrices, where differ-

ent blocks have bases corresponding to different nA and nB. So
we can write ρA = ⊕NAB

i=0ρA,i and ρB = ⊕NAB
i=0ρB,i. The dimen-

sion of each ρA,i is dA,i = (i + lA − 1)!/[i!(lA − 1)!], where
i = NAB, . . . , 1, 0. And the dimension of each block in ρB

is dB,i = (i + lB − 1)!/[i!(lB − 1)!], where i = 0, 1, . . . , NAB.
dA,i and dB,i satisfy

∑NAB
i=0 dA,i × dB,NAB−i = dAB, where dAB is

the dimension of ρAB.
Note that, for disentangled subsystems A and B, total sys-

tem AB is a direct sum of the sector labeled by nA and nB

012622-2



ACTIVE QUANTUM DISTILLATION PHYSICAL REVIEW A 110, 012622 (2024)

(also known as the superselection rule [32]):

ρA ⊗ ρB = ⊕
nA+nB=NAB

ρnA,nB , (5)

where ρnA,nB is a sector whose subsystem A only has bases
with nA and subsystem B only has bases with nB. There exist
unitary transformations that can entangle A and B:

UρA ⊗ ρBU † = ⊕
nA+nB=NAB

ρ̃nA,nB

+ {non-block-diagonal elements}, (6)

where “non-block-diagonal elements” means the entangle-
ment between two subsystems. Denote the Hilbert space of
ρnA,nB as HnA,nB , and denote system A and B in HnA,nB as HA,nA

and HB,nB . In each ρnA,nB the Hilbert space has tensor product
structure, i.e., HnA,nB = HA,nA ⊗ HB,nB .

Before going into Theorem 1, we omit the non-block-
diagonal elements and rearrange the order of the sectors in
Eq. (5). The rearranged sectors are

ρAB = ⊕NAB
k=0ρk, (7)

such that the dimension of A of each ρk is in decreasing order,
i.e., dA,k � dA,k+1. For each ρk , the dimension of AB is dk .

Theorem 1. Suppose the eigendecomposition of the bi-
partite particle number conservation state ρ0

AB is ρ0
AB =∑dAB

j=1 p j |ψ j〉〈ψ j |. We assume these eigenvalues are in de-
creasing order, i.e., p j � p j+1. Divide all eigenvalues p j into
NAB groups �k , k = 1, 2, . . . , NAB. The number of eigenvalues
in group �k is dk . Denote the lth eigenvalue in the kth sector
as pk,l . The division satisfies (i) inside the kth group pk,l �
pk,l+1 and (ii) for all l and l ′ in kth and (k + 1)th groups
pk,l � pk+1,l ′ .

Let

qk,b =
dA,k∑
a=1

pk,(b−1)dA,k+a. (8)

By performing a unitary operation U on AB, the minimal
entropy of the subsystem B is

min
U

S[ρB(U )] = −
∑

k

∑
b

qk,b log2 qk,b. (9)

In particular, if A only has one site, then the dimension of
ρB equals to the dimension of ρ0

AB, dB = dAB. In this case the
optimal U satisfies ρAB(U ) = ρB(U ), and the condition (i) and
(ii) can be ignored. Thus minU S[ρB(U )] = S(ρ0

AB).
Proof. The lemma we mainly use is for the majorization

and von Neumann entropy [33]: Suppose ρ and σ are den-
sity operators such that ρ ≺ σ , then S(ρ) � S(σ ). For two
quantum state density operators ρ and σ , ρ ≺ σ if and only
if λρ ≺ λσ , where λρ(σ ) is the list of eigenvalues for operator
ρ(σ ). The majorization between two real vectors �a ≺ �b with
dimension D is defined as (i)

∑d
i=1 ai �

∑d
i=1 bi, 1 � d � D,

and (ii)
∑D

i=1 ai = ∑D
i=1 bi = 1.

For the case that A only has one site, lA = 1, and
dB = dAB. The trace operation actually drops out those
non-block-diagonal elements in ρAB, i.e., ρB = ρAB −
{non-block-diagonal elements}. When U satisfies ρAB =
ρB, non-block-diagonal elements are zeros. If ρB 	= ρAB,

ρAB has nonzero non-block-diagonal elements. There ex-
ists a block-diagonal unitary matrix UD that can diag-
onalize ρB, UDρBU †

D = diag{λB}, where diag{λB} repre-
sents a diagonal matrix with diagonal elements being
the eigenvalues of B. Note that UDρABU †

D = diag{λB} +
{non-block-diagonal elements}. By the Schur-Horn theorem,
λAB 
 λB, therefore S(B) � S(AB).

For general cases that the site number of subsystem A is
larger than 1, lA > 1, and dB < dAB. We aim to show ρB ≺ ρ∗

B,
where ρ∗

B is the optimal state of B in Theorem 1, and ρB is
any other state different from ρ∗

B. From the above situation we
learn that the non-block-diagonal elements will increase the
entropy of one subsystem, so in the following we will only
consider the density operator being block diagonal, and only
focus on any one of the sectors. We first note that if the sector
in ρAB is not diagonal, there exists a doubly stochastic matrix
D, such that λρB = D × λρ∗

B
. And this will make λρB ≺ λρ∗

B
and

leads to a greater entropy of B. We next note that inside one
diagonal sector, each eigenvalue of ρB in sector ρk is obtained
from sum of dA,k eigenvalues in ρk . So we want to arrange
the largest dA,k eigenvalues of ρAB into the sector with largest
dA,k , and so on, until the smallest dA,k eigenvalues of ρAB for
the sector with smallest dA,k . Any other order of the λρAB in
ρAB leads to λρB ≺ λρ∗

B
.

The full proof in detail is given in Appendix A. �

IV. NUMERICAL RESULTS

The total evolution time t f is divided into N identical
time steps δt = t f /N . In the jth time step, ( j − 1) × δt < t <

j × δt , the control parameter γ
(k)
j (k = 1, . . . , d ) is selected

from C(γ ), which is a set of d possible choices. Thus H (k)
j =

H0 + Hc(γ (k)
j ) and U (k)

j = e−iH (k)
j δt . The selected N control

parameters construct a path 
 = {γ (k1 )
1 , γ

(k2 )
2 , . . . , γ

(kN )
N }. The

total unitary transformation is U = ∏N
j=0 Uj .

We use a greedy algorithm to find the control parameters
path. For an initial state ρ0, at the beginning of time step
t j , the state is ρ j−1 = ∏ j−1

i=0 Ui × ρ0. We choose the control
parameter in t j to be

γ (t j ) = argmin
γ

(k)
j

S
(
ρ

(k)
B, j

)
, (10)

where ρ
(k)
j = U (k)

j × ρ j−1, and ρ
(k)
B, j = trAρ

(k)
j . If S(ρ (1)

B, j ) =
S(ρ (2)

B, j ) = · · · = S(ρ (d )
B, j ), then we choose

γ (t j ) = argmax
γ k

j

γ k
j . (11)

In the following numerical simulations, we choose C(γ ) =
{1, 0.9, 0.8, . . . , 0.1, 0}. In actual numerical simulation we
first choose the value of δt , and the value of t f is chosen to
make S(ρB) converge to its minimum.

In the case where A only has one site, we show that
our active quantum distillation groups particles together and
decreases the entropy of ρB to the entropy of ρAB, which
is the lower bound of the entropy of ρB under arbitrary
unitary transformation. From Theorem 1, if A only has
one site, the optimal U satisfies ρAB = Uρ0

ABU † = ρB, and
minU S[ρB(U )] = S(ρAB).
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FIG. 2. The numerical results on the Bose-Hubbard model: L = 4, lA = 1, N = 2, J = U = 1. (a) The entropy of subsystem B as the
function of time t . β = 1, δt = 0.1. (b) The final entropy of subsystem B as a function of β, with other parameters fixed. Si is the entropy of
initial state ρB, and St is the entropy theoretical lower bound of ρB. (c) The entropy of subsystem B as the function of time t for β = 1 and
5; the control parameters are identified on the model with β = 1 and are tested on the model with β = 5. (d) The number of bosons 〈n̂B〉 in
subsystem B as the function of time t for different β. (e) The choice of γ as the function of t . The path of the γ (t ) tends to be an adiabatic
evolution. The units on the y axis of (a)–(c) are bits; the unit of t and β is J−1.

The entropy of subsystem B as the functions of t is pre-
sented in Fig. 2(a). The entropy of B decreases to nearly
exactly the theoretical lower bound in t f = 30. The entropy
of A and mutual information IAB also decrease under the
evolution. The purity of B, which is defined as PB = trρ2

B,
increases under the evolution. In Table I, we list the difference
between the final entropy of ρB and theoretical lower bound,
as well as total evolution time for different size of system. The
total evolution time t f for SB to converge to the minimum is
not scaling with the system size. Actually, the total time t f

depends on the δt . Also the entropy of ρB does not converge
to the lower bound with any δt . Thus finding the best δt needs
a fine-tuning process.

In Fig. 2(b) we plot the final entropy of subsystem B,
S[ρB(t f )], as the function of temperature β, with other pa-
rameters fixed. The distillation protocol performs well at all
temperatures. When the temperature is high, the theoretical
lower bound is very close to the initial entropy of ρB. How-
ever, at low temperature the initial state is more like a pure
state, thus subsystem B can be distilled to nearly zero entropy.

The control parameters path we found based on one state
with reverse temperature β also works well for other state
with β ′, while other parameters J and U are fixed. The test
of the path for the state with β = 1 on the state with β = 5
is plotted in Fig. 2(c). We find the control parameters path 


using the initial thermal state with β = 1 and use the same
path 
 to test the distillation on a thermal state with β = 5.
Under the control parameters path for the state with β = 1,
the entropy of ρB with β = 5 also converges to its lower bound
with only a little fluctuation. Other stability tests are shown in
Appendix B.

TABLE I. The difference between final entropy and theoretical
lower bound, and total evolution time t f for different size of Bose-
Hubbard models with lA = 1. From the table we can see that the
total time and errors are parameter dependent. The total time t f is
relatively scaling with O(1) but not scaling exponentially.

Parameter Value

(NAB, L) (1,3) (2,3) (3,3) (2,4) (3,4) (4,4)
Difference 0.016 0.055 0.039 0.022 0.034 0.069
t f 20 100 30 30 50 40

A key hallmark of quantum distillation is the final
state with lower entropy and a greater number of bosons.
Figure 2(d) shows the number of particles in subsystem B as
a function of t for different β. The final state ρB groups more
bosons with low entropy. When the initial state tends to be
a pure state, the final state ρB tends to group all the bosons
in the initial state ρAB. In the case that the subsystem A has
only one site, the distillation process mainly eliminates the
non-block-diagonal elements in the density matrix of ρAB such
that ρAB = ρB. Note that

n̂B =
L∑

i=lA+1

n̂i = ⊕NAB
k=0kIdB,k×dB,k , (12)

where kIdB,k×dB,k is an identity matrix with dimension dB,k ×
dB,k . The largest eigenvalues of ρB are mainly distributed on
the bases with largest occupation number nB. The presence
of non-block-diagonal elements will diminish the degree of
majorization of the diagonal elements of ρB, thus causing
〈n̂B〉 to be smaller. So we get the conclusion that the distil-
lation process will increase the particle number of subsystem
B, which is consistent with numerical simulation plotted in
Fig. 2(d).

The control parameters path in our protocol is actually an
approximately adiabatic evolution. Figure 2(e) shows γ (t ) as
the function of t . If we add the number of choices d in 
,
the parameter γ (t ) tends to change continuously. The strength
of interaction terms in the Hamiltonian can be tuned adiabati-
cally instead of discretely choosing from 
.

From Theorem 1, we can decrease the entropy of ρB lower
than that of ρAB only when A has more than one site. It is
important that in this case we can also group bosons together
with S[ρB(U )] = S(ρAB) by using some control parameters.
However, by fine tuning the control parameters, we can ac-
tually find a control path such that S[ρB(U )] < S(ρ0

AB) with
increasing the number of bosons or only distilling out very
few bosons. Combining Theorem 1 and Eq. (12), we get a
corollary that when subsystem ρB has lowest entropy, the
smallest particle number of ρB is 〈n̂B〉 = ∑

k k
∑

b qk,b, which
is very close to zero. However, we do not want to get a low
entropy state with nearly no bosons. It is important to find
a balance between the lower entropy and larger number of
particles. Fortunately, the unitary transformation constructed
by our protocol does not possess strong abilities to completely

012622-4



ACTIVE QUANTUM DISTILLATION PHYSICAL REVIEW A 110, 012622 (2024)

0 100200300400500600
0.6

0.8

1

1.2

1.4

1.6

1.8

t

SB
nB
S0

(a)

0 100 200 300 400 500

1.6
1.8

2
2.2
2.4
2.6

t

SB
nB
S0

(b)

0 100200300400500600

1

1.5

2

2.5

t

SB
nB
S0

(c)

0 100 200 300 400 500
2

2.5

3

3.5

t

SB
nB
S0

(d)

FIG. 3. (a), (b) The entropy and bosons number of system B as the function of t . (a) L=5, lA =2, N =2, δt = 0.6. (b) L = 6, lA = 2, N = 3,
δt = 0.5. The parameters in the Bose-Hubbard model are J = U = 1, β = 2. (c), (d) Test of the control parameters path identified in (a) and
(b) on the states with β = 1. S0 is the entropy of the total state ρAB. Smin is the theoretical lower bound of S[ρB(t f )]. Smin is (a) 0.219, (b) 1.067,
(c) 0.347, and (d) 1.738. The unit of entropy on the y axis is bits; the unit of t is J−1.

rearrange all the eigenvalues of ρAB to get the lowest entropy
state. In Figs. 3(a) and 3(b), we plot the entropy of ρB as
the function of t , for states with two sites in A. The control
parameters path is searched using Eqs. (10) and (11). For
the Bose-Hubbard model with L = 5, lA = 2, and N = 2, the
entropy of ρB decreases to half of ρAB and the bosons number
of ρB slightly decreases to to around N/2. For the Bose-
Hubbard model with L = 6, lA = 2, and N = 3, the entropy
of ρB decreases to slightly lower than that of ρAB and the
bosons number of ρB increases to around 5N/6. The test of
the control parameters path identified in the states with β = 2
on the states with β = 1 is plotted in Figs. 3(c) and 3(d).

It is worth noting that we can also use purity as the target
function in Eq. (10), where the purity is defined as P(ρ) =
tr(ρ2). The active quantum distillation protocol based on opti-
mization of purity can also decrease the von Neumann entropy
to its minimum. The performance is basically the same as the
protocol based on von Neumann entropy. In Appendix C, we
give numerical results about the protocol based on optimiza-
tion of purity.

V. SUMMARY AND OUTLOOK

We introduce the active quantum distillation protocol to de-
crease the von Neumann entropy without losing many bosons
of the target system by a controlled unitary evolution in a
Bose-Hubbard model. Our protocol only needs to control the
interaction terms in the Hamiltonian between the two subsys-
tem. We derive the analytical lower bound of the target system
entropy, which can be naturally generalized to other bosonic
or fermionic models. When one subsystem A only has one site,
our protocol can decrease the entropy of the other subsystem
B to the entropy of the total state and group particles together
at the end of the evolution, where the entropy of the total state
is the lower bound of the subsystem entropy. When one sub-
system A has more than one site, our protocol can decrease the
entropy of the other subsystem B lower than the total system
with increasing the number of bosons or only distilling out
very few bosons in B. We also find that one control parameter
path identified for one set of model parameters can be used
in all models with different parameters. The active quantum
distillation protocol is actually universal in the whole model
parameter space.

In our previous paper [34] about the disentanglement us-
ing a quantum circuit, the theoretical lower bound of one
subsystem entropy in a spin (qubit) system was given. We
show in Appendix D that our entropy minimization protocol
is also feasible in qubit systems. Actually, we believe that our
minimization protocol is universal for a wide range of states
of local Hamiltonians, and will have wide applications in
quantum distillation, cooling [35–43], and metrology [44–48]
technologies.
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APPENDIX A: PROOF OF THEOREM 1

In this section we prove Theorem 1 in the main text. We
will first give one definition and three lemmas in matrix the-
ory [49] for the proof of Theorem 1.

Definition 1. A n × n matrix A = (ai j ) is called doubly
stochastic if

ai j � 0, for all i, j, (A1)

n∑
i=1

ai j = 1, for all j, (A2)

n∑
j=1

ai j = 1, for all i. (A3)

Lemma 1 (Schur’s theorem). Let A be a Hermitian matrix,
let diag{A} denote the vector whose coordinates are the di-
agonal entries of A, and let λ{A} denote the vector whose
coordinates are the eigenvalues of A, then diag{A} ≺ λ{A}.

Lemma 2. Let x and y be n-dimensional vectors, then the
following two conditions are equivalent:

(i) x ≺ y. (A4)

(ii) Trϕ(x) � Trϕ(y) for all convex functions ϕ fromR toR.

(A5)
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Lemma 3. A matrix A is doubly stochastic if and only if
Ax ≺ x for all vectors x.

Proof. We begin the proof from the case that A only
has one site. In this case dB = dAB, and the trace process
actually drop out those non-block-diagonal elements, i.e.,
ρB = ρAB − {non-block-diagonal elements}. When U satis-
fies ρAB = ρB, non-block-diagonal elements are zeros, and
ρB = ρAB. If ρB 	= ρAB, ρAB has nonzero non-block-diagonal
elements. There exists a block-diagonal unitary matrix UD that
can diagonalize ρB, UDρBU †

D = diag{λ(B)}, where diag{λ(B)}
represents a diagonal matrix with diagonal elements being
the eigenvalues of B. Note that UDρABU †

D = diag{λ(B)} +
{non-block-diagonal elements}. By Lemma 1, λ(AB) 
 λ(B).
And according to Lemma 2, S(B) � S(AB).

We next prove general cases. Denote the optimal unitary
transformation as V = V1VD, where VD is a unitary transfor-
mation that block diagonalizes ρ0

AB, and V1 = ⊕kV1,k is a uni-
tary transformation that diagonalizes ρD

AB = VDρ0
ABV †

D . Take
the bases of HA,k as {|ak〉, 1 � ak � dA,k}, and the bases of
HB,k as {|bk〉, 1 � bk � dB,k}. Let the block-diagonal density
matrix be ρBD

AB = ⊕kρk , and ρk = ∑dA,kdB,k

l=1 pk,l |ψk,l〉〈ψk,l |. So
V1,k|ψk,(b−1)dA

k +a〉 = |a, b〉k . Then

ρB,k =
∑
a,b

pk,(b−1)dA,k+aTrA(|ψk,(b−1)dA,k+a〉〈ψk,(b−1)dA,k+a|)

=
∑

b

qk,b|b〉〈b|k, (A6)

where

qk,b =
dA,k∑
a=1

pk,(b−1)dA,k+a (A7)

which implies S(ρB(V )) = −∑
k

∑
b qk,b log2 qk,b.

(1) If ρAB = Uρ0
ABU † is not diagonal but block diagonal,

U = UDV1VD, where UD is a block-diagonal unitary matrix.
And UD = ⊕kUD,k , where UD,k is a unitary matrix in kth
subspace. The eigendecomposition of ρB,k (U ) is

ρB,k (U ) =
∑

b

qk,b(U )|b(U )〉〈b(U )|k, (A8)

and

ρB,k (U ) = ρB,k (UD,kV1,k )

=
∑
a,b

pk,(b−1)dA
k +aTrA(UD,k|a, b〉〈a, b|kUD,k

†)

=
∑
m,n

∑
a,b

pk,(b−1)dA
k +a〈m, n(U )|kUD,k|a, b〉〈a, b|k

× UD,k
†|m, n(U )〉|n(U )〉〈n(U )|k

=
∑
m,n

p(U )
(k),m,n|n(U )〉〈n(U )|k, (A9)

where

p(U )
(k),m,n =

∑
a,b

B(k)
m,n;a,b p(k),(b−1)dA,k+a (A10)

with

B(k)
m,n;a,b = 〈m, n(U )|kUD,k|a, b〉k〈a, b|kUD,k

†|m, n(U )〉k .

(A11)

Combining Eqs. (A8) and (A9), we arrive at

qk,b(U ) =
∑

n

p(U )
k,b,n. (A12)

Note that B(k)
m,n;a,b � 0, and

∑
a,b B(k)

m,n;a,b = ∑
m,n B(k)

m,n;a,b =
1, namely, B is a doubly stochastic matrix. According to
Lemma 3, we obtain

p(U )
k ≺ pk . (A13)

Now we denote p(U )
k,↓ as p(U )

k in decreasing order. Similarly, we

introduce q(U )
k,↓,b = ∑

a p(U )
↓,k,(b−1)dA

k +a
. According to the defini-

tion of majorization,

q(U )
↓ ≺ qk, (A14)

q(U )
k ≺ q(U )

k,↓ , (A15)

which implies that q(U )
k ≺ qk . According to Lemma 2,

S[ρA(V )] � S[ρA(U )]. (A16)

This completes the first part of the proof.
(2) If ρAB is not block diagonal, let ρD

AB be the
block-diagonal part of ρAB. There exists a U D, such
that U DρD

ABU D† = diag{λ(ρD
AB)}. Note that U DρABU D† =

diag{λ(ρD
AB)} + {non-block-diagonalelements}. By the Schur-

Horn theorem, λ(ρAB) 
 λ(ρD
AB). Then we repeat the proof in

step 1, and we finish our proof of step 2.
(3) Our protocol in Theorem 1 is actually as follows: divide

the eigenvalues of ρ0
AB into each subspace, and the larger

eigenvalues are in the subspace with larger dA. When ρAB is
diagonal, each qk,b is the sum of dA,k eigenvalues of ρk . So
we want the situation in which the larger dA,k the larger pk,l .
Then by definition of majorization, when ρAB is diagonal, any
order that differs from the above protocol will result in a set
{q′}, such that q′ ≺ q, where q is the set in Eq. (A7). This
completes the proof of Theorem 1. �

APPENDIX B: ADDITIONAL NUMERICAL DETAILS

In this section we give additional numerical details about
the active quantum distillation protocol. In Figs. 4(a)–4(d),
we plot the final entropy of subsystem B, S[ρB(t f )], as the
function of J and U on Bose-Hubbard models with differ-
ent parameters. When the hopping strength is large, bosons
move faster than the small hopping amplitude, therefore larger
hopping strength leads to a shorter evolution time. For a
model with N = 2 and L = 4, when the onsite repulsion U
is small, the model is in free bosons limit U → 0, and the
evolution time becomes longer. Strong onsite repulsion makes
the model to be in a hard-core bosons limit U → ∞, and the
evolution time becomes longer. However, for a model with
unit filling (N = 4 and L = 4, N/L = 1), large U implies fast
minimization.

We also numerically show that our protocol is robust under
the impact of imperfect timekeeping. The impact of imperfect
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FIG. 4. (a), (b) The final entropy of subsystem B, S[ρB(t f )] as the function of J and U , on the Bose-Hubbard model with L = 4, lA = 1,
N = 2, and β = 1. Si is the initial entropy of ρB, and St is the theoretical lower bound of S[ρB(t f )]. (a) The final entropy of subsystem B with
different initial-state parameter J , with U = 1. The unit of entropy is bits; the unit of J is U −1. (b) The final entropy of subsystem B with
different initial-state parameter U , with J = 1; the unit of U is J−1. (c), (d) The final entropy of subsystem B, S[ρB(t f )] as the function of J
and U , on the Bose-Hubbard model with L = 4, lA = 1, N = 4, and β = 1. (c) The final entropy of subsystem B with different initial-state
parameter J , with U = 1. (d) The final entropy of subsystem B with different initial-state parameter U , with J = 1. (e) The relative error of the
final entropy with imperfect timekeeping evolution as functions of standard deviation of the timekeeping tick σ for states with L = 4, N = 2,
dt = 0.1. The error is defined as the difference between Sf and St . (f) The comparison between method with and without random dt . The
entropy of subsystem B as the functions of t for the method with the randomness (σ = 0.2) and without the randomness (σ = 0) is plotted.
The method with randomness converges to the minimum with less steps.

timekeeping on quantum control was shown in [50]: for cool-
ing a qubit with protocol based on a SWAP gate, timekeeping
error only impacts the rate of cooling but not the achievable
temperature. In a time duration τ , the imperfect timekeeping
means the evolution of an initial state ρ is given as

ρ ′ =
∫ ∞

−∞
dt

e
(t−τ )2

−2σ2

√
2πσ

e−iHtρeiHt , (B1)

where σ is the standard deviation of the timekeeping tick dis-
tribution. Here we numerically show that our protocol is stable
against the imperfect timekeeping from the aspects of entropy
minimization. Specifically, we first find the optimal control
sequence with perfect timekeeping, then we numerically test
our optimal control sequence with a Gaussian-error imperfect
timekeeping.

In Fig. 4(e) we show the relative error of the final entropy
with imperfect timekeeping evolution as functions of standard
deviation of the timekeeping tick σ with dt is 0.1. Our pro-
tocol remains valid even when the standard deviation of the
timekeeping tick distribution σ equals to dt .

To furthermore shorten the total evolution time, the ran-
domness can be used in this protocol. The time step dt can be
chosen as a random Gaussian variable with mean 〈dt〉 = dt0

and standard deviation σ . And we use the above method to
find control parameters in each random time step dt j . This
random time step method does not promise that every path
we searched will have a shorter evolution time; however, we
find that there is a very high probability that we will search
out a better path than the method without randomness. The
landscape of the entropy is very complex, taking dt as a
random variable to some extent increasing the probability to
find a better path with shorter total evolution time. In Fig. 4(f)
we show the comparison between the method with random
time period and without random time period. The entropy of
subsystem B as a function of t for the method with random-
ness and without randomness is presented.

APPENDIX C: ACTIVE QUANTUM DISTILLATION
BASED ON OPTIMIZATION OF PURITY

In this section we give the numerical results of the active
quantum distillation protocol based on optimization of purity.
We change the target function in the main text,

γ (t j ) = argmin
γ

(k)
j

S
(
ρ

(k)
B, j

)
, (C1)
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FIG. 5. The numerical results using the purity as the target function. (a) The entropy of subsystem B as the function of time t . β = 1,
δt = 0.1. Inset: The purity of subsystem B as the function of time t . (b) The entropy of subsystem B as the function of time t for β = 1 and
5; the control parameters are identified on the model with β = 1 and are tested on the model with β = 5. (c) The number of bosons 〈n̂B〉 in
subsystem B as the function of time t for different β. (d) The choice of γ as the function of t . The path of the γ (t ) tends to be an adiabatic
evolution. (e), (f) The entropy and bosons number of system B as the function of t . (e) L = 5, lA = 2, N = 2, δt = 0.8. (f) L = 6, lA = 2, N = 3,
δt = 0.5, where β = 2. The parameters in the Bose-Hubbard model are J = U = 1, β = 1. Inset: The purity of subsystem B as the function
of time t . (g), (h) Test of the control parameters path identified in (e) and (f) on the states with β = 2. The unit on the y axis of entropy is bits;
the unit of t is J−1.

to the purity of the subsystem B,

γ (t j ) = argmax
γ

(k)
j

P
(
ρ

(k)
B, j

)
, (C2)

where the purity of the subsystem B is defined as

P(ρB) = tr
(
ρ2

B

)
. (C3)

The numerical results based on optimization of purity are
given in Fig. 5. In the case where A has one site, using the
purity as the target function is almost the same as using the
von Neumann entropy. In the case where A has more than one

site, a slightly different time step δt will be used when using
the purity as the target function.

APPENDIX D: ENTROPY MINIMIZATION PROTOCOL
FOR THE TRANSVERSE FIELD ISING MODEL

In this section we show some numerical results about
our entropy minimization protocol in the spin (qubit) sys-
tem. In our previous paper [34], the theoretical lower bound
of one subsystem entropy in the spin (qubit) system was
given. For a bipartite state ρ0

AB with the eigendecomposition

FIG. 6. (a) The entropy of system B of the six-qubit Ising model with J = 1 and β = 1 as functions of the evolution time; the time duration
δt = 1. The unit of the entropy is bits; the unit of t is J−1. (b) The final entropy of B as the function of β for the Ising model with fixed
parameter J = 1. Si is the initial entropy of ρB, and St is the theoretical lower bound of S[ρB(t f )]. The unit of β is J−1. (c) The final entropy
of B as the function of J for the Ising model with fixed β = 1. The unit of J is β−1. (d) The relative error of the final entropy with imperfect
timekeeping evolution as a function of standard deviation of the timekeeping tick σ for a six-qubit Ising model with dt = 0.5. The error is
defined as the difference between Sf and St .
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ρ0
AB = ∑dAB

j=1 p j |ψ j〉〈ψ j |, assuming these eigenvalues are in
decreasing order, by performing a unitary operation U on AB,
the minimal entropy of the subsystem B is

min
U

S[ρB(U )] = −
∑

j

p j log2 p j, (D1)

where q j = ∑dA
a=1 p( j−1)dA+a.

Here we show the numerical results of our entropy mini-
mization protocol on the transverse field Ising model, whose
Hamiltonian is

H0 = −
L∑

i=1

Jσ x
i σ x

i+1 − σ z
i , (D2)

and the control Hamiltonian is

Hc(t ) = γ (t )Jσ x
lAσ

x
lA+1. (D3)

In Fig. 6(a) we plot the entropy of ρA, ρB, and the mutual
information between A and B, as the function of t . Here
we choose C(γ ) = {1, 0.5, 0.3, 0.2, 0.1, 0}, and set L = 6,
lA = 1. The mutual information between A and B, IAB, first
fluctuates, and decreases to nearly zero at around t = 50, then
increases at around t = 100, and finally decreases to zero in
the end. We note that the time period of the IAB decreases
exactly corresponding to the decreasing of SA, which indicates
that IAB acts as a kind of “potential” to decrease SB. In the
landscape of SB, IAB decreases to zero corresponding to getting
a local minimum of SB, and the increasing of IAB correspond-
ing to climbing out of the local minimum. The entropy of A
reaches the maximum value 1 for A equal to one qubit.

TABLE II. The difference between the final entropy and the
theoretical lower bound, and total evolution time t f for different size
of Ising models. The total time and difference are model dependent
and parameter dependent. The total time is relatively scaling as O(1)
and is not scaling exponentially with N .

Parameter Value

N 4 5 6 7 8 10
Difference 0.013 0.092 0.019 0.065 0.047 0.044
t f 30 500 300 420 500 220

In Figs. 6(b) and 6(c), we plot S[ρB(t f )] as the function
of β and J . When the parameter J is relatively big, i.e., the
two-body interaction in the Hamiltonian is strong, the evolu-
tion time becomes longer. Strong interaction makes the initial
ground state tend to be a Greenberger-Horne-Zeilinger state
(|+〉⊗L + |−〉⊗L )/

√
2, thus the initial state is strongly entan-

gled and the initial IAB is big, which leads to a longer evolution
time. When the two-body interaction in the Hamiltonian is
very weak, the ground state tends to be a product state |0〉⊗L,
and the entropy minimization nearly fails. Weak interaction
leads to a small IAB of the initial state and a weak ability to
increase the IAB during the evolution, thus leading to no such
kind of “potential” to decrease SB.

In Fig. 6(d) we show the relative error of the final en-
tropy with imperfect timekeeping evolution as a function of
standard deviation of the timekeeping tick σ with dt is 0.5.
Our protocol remains valid when the standard deviation of the
timekeeping tick distribution σ is lower than 10% of dt . In
Table II, we list the difference between the final entropy of
ρB and the theoretical lower bound, as well as total evolution
time for different size of the system.
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