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This paper discusses the possibility of using two-mode squeezed light to improve the performance of existing
sensor technology with the focus on its miniaturization under realistic losses. Therefore, we analyze a system
consisting of a part for two-mode squeezed light generation, a sensor region, and a detection stage. Based on
a general four-wave mixing (FWM) Hamiltonian caused by third-order susceptibility, we formulate linearized
equations that describe the FWM process below the threshold and are used to analyze the squeezing quality of the
generated optical signal and idler modes. For a possible realization, the focus is set on chip-integrated generation
using microring resonators. To do so, the impacts of the design and the pump light are considered in the derived
equations. These equations are used to analyze the usage of two-mode squeezed light in quantum metrology and
the application in a Mach-Zehnder interferometer. Due to the impact of losses in realistic use cases, we show that
the main usage is for small and compact devices, which can lead to a quantum improvement of up to a factor of
10 in comparison with using coherent light only. This enables the use of small squeezing-enhanced sensors with
a performance comparable to larger classical sensors.
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I. INTRODUCTION

Quantum metrology has the potential to use completely
new sensing principles, to enable new use cases, and to in-
crease the sensitivity of existing measurement technology [1].
The main motivation for quantum metrology in comparison
to its classical counterpart is that quantum sensors can the-
oretically overcome the shot-noise limit (SNL) with 1/

√
N

and achieve the Heisenberg limit with 1/N where N denotes
the number of probes, which can be for example the num-
ber of photons or the number of measurement repetitions
[2,3]. However, in reality this is very challenging to achieve.
The reason is that quantum states like single photons are
heavily affected by losses and decoherence effects, which
makes it difficult to build a Heisenberg-limited quantum sen-
sor [4,5]. Despite this, there are applications which make
use of quantum enhancement, like the famous example of
gravitational-wave detection. Thereby, single-mode squeezed
light is used to increase the phase sensitivity of a huge
interferometer to detect extremely small signals caused by
gravitational waves [6,7].

In this paper, we show the potential of using two-mode
squeezed light generated by four-wave mixing (FWM) for
enhanced optical interferometry. The FWM process is utilized
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in many applications like the creation of frequency combs for
sensing and communication [8,9] or squeezed state generation
for optical quantum computing [10]. We want to use it to gen-
erate two-mode squeezed light for sensing applications. The
main focus is on a realistic quantum metrology platform that
is realizable with existing technology in photonic integrated
circuits.

We see a big potential of quantum metrology for the minia-
turization of existing sensor concepts and to realize them in
chip-integrated applications. Therefore, we show theoretical
derivations of realistic sensor performance, which include the
equations required to perform a proper design with typical
losses and manufacturing technologies.

The paper is structured as follows. First, the system of
interest is discussed in Sec. II, which consists of the state
preparation for generating a signal and an idler mode via
FWM, a Mach-Zehnder interferometer (MZI) as a sensor
region, and a detection stage. Afterwards, each part of the
system is discussed in detail. In Sec. III, we start with the dis-
cussion of the FWM process in a ring resonator and proceed
with the interaction of the environment in Sec. IV to deter-
mine the output modes in Sec. V using input-output theory.
Subsequently, Sec. VI discusses how the generated modes are
used to detect a phase shift (PS) in a lossy MZI. The main
results are shown in Sec. VII, in which it is discussed that
the combination of squeezed and coherent light can lead to
quantum enhancement and that the sensor performance can be
improved by an order of magnitude. However, due to optical
losses, squeezed light is only useful for a compact or low-loss
sensor concept, which leads to an advantage as a two-mode
squeezed chip-integrated optical MZI.
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FIG. 1. Schematic of a MZI which consists of a state preparation (on the left, orange), sensor region (in the middle, green), and detection
stage (on the right, blue).

II. SYSTEM OVERVIEW

The system of interest is shown in Fig. 1 and corresponds
to an MZI that is pumped by two-mode squeezed and coherent
light. It consists overall of three stages with the state prepara-
tion, the sensor region, and the detection stage. In the state
preparation stage, the system has two inputs in which two
coherent light sources can be inserted which are denoted by
their power Pl and Pc. While Pc is sent directly to the MZI
and corresponds to the input mode a0, Pl is used to pump
a resonator to generate squeezed signal and idle pairs with
powers Ps and Pi corresponding to the other input mode of
the MZI a1. Thereby, Pl consists of light with the frequency
ωl and the generated signal and idler light of ωs and ωi with
ωs + ωi = 2ωl .

The resonator is a ring-shaped waveguide that is connected
to the straight waveguide and forms a cavity. The light can
couple from the straight waveguide into the ring and the other
way around by evanescent coupling which can be described
by the coupling rate κ . Losses appear inside of the resonator
which are described by the loss rate γ . The physical relations
to the parameters κ and γ as a function of the design variations
of the ring are explained in more detail in Appendix B. Both
input modes a0 and a1 are mixed at a multimode interferom-
eter which acts as a beam splitter (BS) and are sent into the
sensor region of the MZI. For a useful interaction between Ps,
Pi, and Pc, it is required that Pc consists of the same frequency
components as Ps and Pi with ωs and ωi. This is denoted by the
colors (gray scales) of each in Fig. 1. Thus, the transmitted
power Pl is not required anymore and is filtered out in the
following. In this second stage, the light is affected by losses
η as well as a phase shift � which should be detected and
is assumed to be equally distributed between the two light
paths. At the end of the sensor region, c0 and c1 are mixed at
a BS and finally detected at the detection stage using intensity
difference detection.

In the following, we first describe the FWM process inside
of the resonator and determine the expectation values of the
signal and idler modes that form the mode a1. Afterwards,

we use these results to determine the minimum detectable
phase change of the system.

III. FOUR-WAVE MIXING

FWM is a well-known nonlinear optical process which
describes the effect of two pump modes ap(t ) being absorbed
by a material with a significant third-order susceptibility coef-
ficient χ (3) while emitting two new modes which are called
signal as(t ) and idler ai(t ) with energy conservation ωi +
ωs = 2ωp. For simplicity we write ai for the time dependent
operator. Following [11], the Hamiltonian describing FWM
inside a cavity is given in the rotating-wave approximation by

HFWM = h̄ωpa†
pap + h̄ωsa

†
s as + h̄ωia

†
i ai

+ ih̄g(apapa†
s a†

i − a†
pa†

pasai ) (1)

with the nonlinear gain g, which is directly proportional to
χ (3) and is discussed further in Appendix A. The first line
of Eq. (1) corresponds to the relevant resonance frequencies
in the resonator ωp, ωs, and ωi. The desired FWM process
is represented in the second line and denotes the nonlinear
interaction in which two pump modes are either absorbed or
generated in exchange with one signal and idler mode. In prac-
tice, effects such as self-phase modulation and cross-phase
modulation also occur, where a mode influences its own and
the resonant frequencies of other modes. However, both are
neglected in this paper.

A linearization of the FWM part in the Hamiltonian is then
performed, assuming the pump mode inside of the resonator to
be in a coherent state with the complex amplitude 〈ap〉 = αp,
which leads to the following Hamiltonian:

HFWM,lin = h̄(ωpα
∗
pαp + ωsa

†
s as + ωia

†
i ai )

+ ih̄

2
(σa†

s a†
i − σ ∗asai ) (2)

where σ = 2gα2
p is the injection parameter. Note that the con-

servation of energy must be fulfilled in the FWM process, but
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FIG. 2. Left: Ring resonator which is used to generate squeezed light via FWM. A pump mode with the power Pp is coupled via the
parameter κ into the cavity, in which a strong pump field generates a signal and idler mode, which couple out of the cavity. Occurring losses
inside of the resonator are considered with γ . Right: Joint spectral intensity between the signal and idler mode calculated using Eq. (26) with
X = 0.01, neff = 1.801, ng = 2.100 87, αloss = 0.23 m−1, L = 2π × 220 × 10−6 m, ωp = 1550 × 10−6 m, n2 = 2.4 × 10−19 m2/W, Aeff =
1.055 64 × 10−12 m2, and σ = 0.995σth and normalized by the maximum value of 2.98 × 109.

this is not always the case due to dispersion. To include this
effect similarly to [11], the injection parameter can include a
FWM detuning �σ = ωs + ωi − 2ωp and a certain phase with

σ = |σ |e−i(�σ t−φσ ). (3)

This detuning should be zero for the best performance and
can be achieved by dispersion engineering of the waveguide
geometry [12].

IV. DISSIPATION

To analyze the behavior of FWM inside of a realistic sys-
tem, it is important to determine the equations of motion of the
modes inside of the resonator under the influence of losses and
a drive. Therefore, we focus on the desired resonator structure
that is shown in Fig. 2. A laser pump mode with the amplitude
αl = |αl | exp(iφl ) = √

Pl/h̄ωl exp(iφl ) and the laser power Pl

and phase φl is coupled from the straight waveguide to the res-
onator over κ . An enhanced cavity pump field αp is achieved
if the resonance condition is fulfilled with ωr = 2πmc/neff L
and the mode index m = 1, 2, . . . , the effective index neff , and
the resonator length L [13]. In the following we assume that
this is fulfilled with ωl = ωp. Since we focus on a microscopic
device, the integrated resonator is the preferred structure. The
advantage is that, due to the field enhancement and the small
mode volume, less laser power Pl is required to achieve FWM
and to generate squeezed signal and idler modes.

Due to imperfections of the waveguide and mostly caused
by scattering, cavity energy is lost which is described by the
loss rate γ . Both rates κ and γ describe the photons leaving
or entering the cavity due to the respective effect. To include
the losses in the equations, it is important to describe the
interaction of the ring resonator system with the environment
which consists of the straight waveguide and the bath around
the ring resonator. From the straight waveguide, the input
modes bin,s, bin,i and bin,p couple from the waveguide in the
ring, while the resonator modes couple from the ring into
the waveguide. The bath modes bγ ,s, bγ ,i, and bγ ,p interact
through the losses γ with the resonator modes. Thereby, we

assume the waveguide modes bin,s and bin,i and the bath modes
to be in the vacuum state, while bin,p represents the coherent
pump αp. In Appendix D, we also discuss the case of a coher-
ent part in bin,s and bin,i.

It is well known that the interaction between the system and
the environment can be described in dependency of the decay
rates with

√
κbin,μ and

√
γ bγ ,μ and the modes μ = p, s, i

[14–16]. This leads to the following interaction Hamiltonian
in the rotating-wave approximation:

Hint ≈ ih̄

(√
κ

2π

∫ ∞

−∞
dω

∑
μ=i,s,p

[aμb†
in,μ(ω) − a†

μbin,μ(ω)]

+
√

γ

2π

∫ ∞

−∞
dω

∑
μ=i,s,p

[aμb†
γ ,μ(ω) − a†

μbγ ,μ(ω)]

)
.

(4)

Note that if the wavelength difference for the signal, idler, and
pump is significant it is important to distinguish between the
coupling and loss rates of each. Both rates would then require
the corresponding indices.

With Eqs. (2) and (4), it is possible to derive the quantum
Langevin equation of motion in the Heisenberg picture de-
scribing the intracavity modes in dependency of the bath and
waveguide modes which can be derived for our system using
[15,17]

daμ(t )

dt
= − i

h̄
[aμ(t ), HFWM,lin]

− γ + κ

2
aμ(t ) + √

κbin,μ(t ) + √
γ bγ ,μ(t ).

(5)

Thereby, the modes bin,μ(t ) and bγ ,μ(t ) of Eq. (5) are in units
of

√
Hz and are connected by a Fourier transformation with

the corresponding modes of Eq. (4). This is explicitly denoted
by the dependency of either t or ω. First, we solve Eq. (5) for
the pump mode. The fluctuations in the pump mode can be
neglected in this case due to the strong coherent background.
Setting 〈ap〉 = αp, this leads to the following equation of

012621-3



PATRICK TRITSCHLER et al. PHYSICAL REVIEW A 110, 012621 (2024)

motion:

d

dt
αp(t ) = −iωpαp(t ) − γ + κ

2
αp(t ) + √

καl (t ). (6)

This equation is solved by performing a Fourier transforma-
tion, which leads to

αp(ω) =
√

καl (ω)

(γ + κ )/2 − i(ω − ωp)
(7)

with the detuning from the resonance wavelength �p = ω −
ωp, which is an important part if effects like self-phase modu-
lation or optical bistability are considered. Note that while αl

has the units of
√

Hz, the intracavity mode αp is unitless. The
reason is that while the modes outside of the resonator corre-
spond to a photon flux in units of

√
Hz the mode αp describes

the field of the resonator over the whole mode volume. It is
described in Appendix B how to transfer αp back to a physical
unit which corresponds to a photon flux. For the intracavity
signal and idler modes, the fluctuations are relevant and the
equation of motion can be given as

das/i(t )

dt
= − iωs/ias/i(t ) + σ

2
a†

i/s(t ) − γ

2
as/i(t ) − κ

2
as/i(t )

+ √
κbin,s/i(t ) + √

γ bγ ,s/i(t ). (8)

V. INPUT-OUTPUT THEORY

To be able to determine the performance of sensor systems
using the generated two-mode squeezed states, it is required
to solve the equations of motions (8) and to determine
the expectation values of the output modes that depend on
the geometrical and pump parameters. In the following, we
derive and validate the equations and analyze the squeezing
of the output modes.

A. Linearized outracavity equations

To derive the output modes bout of Fig. 2, we use the
boundary condition that has already been derived in [14,15]
and that has been proven to be valid for vacuum and coherent
input modes with

bin,s/i(t ) = √
κas/i(t ) − bout,s/i(t ). (9)

Thereby, bout,s/i correspond to the signal and idler output
modes, which couple from the ring to the straight waveguide
and have the same units as bin,s/i with

√
Hz. This leads to the

following equations of motion describing the intracavity field
using the output operator:

das/i(t )

dt
= − iωs/ias/i(t ) + σ

2
a†

i/s(t ) − γ

2
as/i(t ) + κ

2
as/i(t )

− √
κbout,s/i(t ) + √

γ bγ ,s/i(t ). (10)

For a more compact description, Eqs. (8) and (10) can be
given in matrix notation as follows for the input and output
operators:

d

dt
A(t ) = (K + κ

2
1)A(t ) + √

κBin(t ) + √
γ Bγ (t ), (11)

d

dt
A(t ) = (K − κ

2
1)A(t ) − √

κBout (t ) + √
γ Bγ (t ). (12)

Thereby, 1 is the 4 × 4 identity matrix and we use the follow-
ing notations for the other matrices:

Bin =

⎛
⎜⎜⎜⎜⎝

bin,s

b†
in,s

bin,i

b†
in,i

⎞
⎟⎟⎟⎟⎠, Bγ =

⎛
⎜⎜⎜⎜⎝

bγ ,s,

b†
γ ,s

bγ ,i

b†
γ ,i

⎞
⎟⎟⎟⎟⎠, (13)

A =

⎛
⎜⎜⎜⎜⎝

as

a†
s

ai

a†
i

⎞
⎟⎟⎟⎟⎠, Bout =

⎛
⎜⎜⎜⎜⎝

bout,s

b†
out,s

bout,i

b†
out,i

⎞
⎟⎟⎟⎟⎠, (14)

K =

⎛
⎜⎜⎜⎜⎝

−iωs − γ

2 0 0 σ
2

0 iωs − γ

2
σ ∗
2 0

0 σ
2 −iωi − γ

2 0
σ ∗
2 0 0 iωi − γ

2

⎞
⎟⎟⎟⎟⎠. (15)

Performing a Fourier transformation on Eqs. (11) and (12)
leads to the following matrix notations of the equation of
motion in the frequency domain:[

� − K + κ

2
I4

]
A(ω) = √

κBin(ω) + √
γ Bγ (ω), (16)

[
� − K − κ

2
I4

]
A(ω) = −√

κBout (ω) + √
γ Bγ (ω), (17)

where � is the frequency matrix with

� =

⎛
⎜⎜⎝

−iω 0 0 0
0 iω 0 0
0 0 −iω 0
0 0 0 iω

⎞
⎟⎟⎠. (18)

This is now a linear equation system which can be re-arranged
to eliminate the intracavity modes and to determine the output
modes of the system using only the bath modes, waveguide
modes, and system operators with

Bout (ω) = − 1√
κ

[[
� − K − κ

2
I4

][
� − K + κ

2
I4

]−1

[
√

κBin(ω) + √
γ Bγ (ω)] − √

γ Bγ (ω)

]
. (19)

Note that by subtracting � from K we introduce the detunings
of the signal and idler mode with �i = ω − ωi and �s = ω −
ωs, which are zero for a perfect cavity design and FWM phase
matching.

By using Eq. (19), it is possible to determine the expecta-
tion values of the output modes. To achieve this, we make use
of the canonical commutation relations of the vacuum modes
bv , which leads to the following expectation values [18,19]:

〈bv (t )〉 = 〈b†
v (t )〉 = 〈bv (t )bv (t ′)〉 = 〈b†

v (t )bv (t ′)〉 = 0

〈bv (t )b†
v (t ′)〉 = δ(t − t ′). (20)

While the results for all expectation values are given in
Appendix D, we want to give particular emphasis to the
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FIG. 3. Left: Signal photon number 〈a†
pap〉 for the linearized approach (solid blue) and MF (dashed dotted orange). Right: Pump photon

number 〈a†
pap〉 for the linearized approach (solid blue), the solution of the linearized approach at the threshold (dashed blue), and MF

(dashed dotted orange). For both the following values are used: �i = �s = �p = 0, X = 0.01, neff = 1.801, ng = 2.100 87, αloss = 0.23 m−1,
L = 2π × 220 × 10−6 m, λp = 1550 × 10−6 m, n2 = 2.4 × 10−19 m2/W, Aeff = 1.055 64 × 10−12 m2.

expectation value of the output signal photon number, which
is

〈b†
out,s(ω)bout,s(ω

′)〉 = 4σ 2κ�

� − 2σ 2�2
δ(ω − ω′)

�i=�s=0= 4σ 2κ�

(�2 − σ 2)2
δ(ω − ω′) (21)

with

� = (4�i�s − σ 2)2 + 4�2(�2
i + �2

s

) + �4 (22)

and the total losses of the cavity modes � = γ + κ . It is
important to note that Eq. (21) diverges for σ = � := σth,
which corresponds to the threshold of the FWM process and
is discussed in more detail in Appendix B.

B. Mean-field theory

The divergence in Eq. (21) is not physical and, thus, it is
necessary to know the range of σ in which the derived equa-
tions are valid as well as to validate the linearized Hamiltonian
approach. For this, the results of the expectation values are
determined using the mean-field (MF) theory. Therefore, we
use the drive term

Hd = ih̄(
√

καl a
†
p − √

κα∗
l ap) (23)

as well as the FWM Hamiltonian from Eq. (1) and the lin-
earized one in Eq. (2) to derive a master equation describing
the intracavity modes for the MF as well as the linearized
approach with

dρMF

dt
= − i

h̄
[HFWM + Hd, ρMF]

+
∑

j=i,s,p

�

[
a jρMFa†

j − 1

2
(a†

j a jρMF + ρMFa†
j a j )

]
(24)

dρlin

dt
= − i

h̄
[HFWM,lin, ρlin]

+
∑
j=i,s

�

[
a jρlina†

j − 1

2
(a†

j a jρlin + ρlina†
j a j )

]
. (25)

In comparison to the MF master equation, the pump mode
does not appear in the linearized equation. Each of the master
equations leads to a coupled equation system which can be
solved to determine the expectation values using a numerical
approach. However, for the MF approach, nonlinear terms
arise which are solved by decoupling the expectation values of
the pump mode from the signal and idler modes with for ex-
ample 〈a†

papasai〉 = 〈a†
pap〉〈asai〉. Thus, MF is a more realistic

view since the pump mode still appears in the Hamiltonian
as an operator. Knowing that MF is not perfect as well, it
has been shown that it is very accurate below the threshold
[20–22]. Thus, we can use it to validate the range of σ .

Values of a real system are used to perform a simulation of
an optical silicon nitride (Si3N4) waveguide with the height of
800 nm, a width of 1.2 µm, and a bend radius of 220 µm using
a mode solver at a pump wavelength of λp = 1.55 µm. This
dimension is in the range where squeezing generation with a
ring resonator has already been demonstrated [23]. The non-
linear index is approximated to be 2.4 × 10−19 m2/W based
on [24] which leads to g = 1.5 Hz. Losses of αloss = 1dB/m
and a ring transmission of 0.01 are assumed. This leads to
γ = 38.3 MHz and κ = 1208 MHz.

The results for the signal photon number 〈a†
s as〉 and the

pump photon number 〈a†
pap〉 are shown in Fig. 3 as a function

of the normalized injection parameter σn = σ/σth which is
exactly 1 at the threshold. While for MF 〈a†

pap〉 is determined
using the master equation, the linearized approach is solved
using Eq. (7). It can be seen that pump depletion appears at
σc = 1 for MF while 〈a†

pap〉 rises for the linearized approach.
For 〈a†

s as〉 it can be seen that the linearized approach diverges
at σn = 1, while the MF solution is still rising reasonably. The
MF and the linearized solution split just before the threshold,
which shows that the linearized approach can be used close
to the threshold. Tolerating an error of 5%, σ is valid from a
value of zero up to 0.998 95σth.

C. Outracavity squeezing

The squeezing of the outracavity modes can be analyzed by
using the expectation results determined with the linearized
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theory of Eq. (19). It is of special interest for this paper how
the two-mode squeezing of the outracavity signal and idler
modes behaves depending on the system parameters. One way
to analyze the squeezed light is the joint spectral intensity �,
which depends on the wavelength of the generated signal and
idler. It is known from energy conservation of FWM with
2ωp = ωs + ωi that if the signal has the detuning δω from
ωp the idler has the distance −δω. Consequently, this leads
to the definitions of the FWM detuning �s = �ωs as well as
�i = −�ωi. Thereby, �ωs is the distance from ωs and �ωi is
the distance from ωi. The joint spectral intensity between the
signal and idler results then in the following equation:

�(ω,ω′) = 〈b†
out,s(ω)b†

out,i(ω
′)bout,s(ω)bout,i(ω

′)〉

= 16κ2σ 4�2 + 4κ2σ 2[� + (�2 + σ 2)2]

[� + (�2 − σ 2)2]2
δ(ω − ω′),

(26)

with � = 16�ω2
s �ω2

i + 8�ωs�ωiσ
2 + 4�2(�ω2

s + �ω2
i ).

It can be interpreted as the joint signature probability distribu-
tion that indicates the probability to detect a signal photon at a
certain frequency if an idler is detected at another frequency.
Thus, it is an indication for the correlation between the two
modes as a function of the frequency [25]. The result of �

is shown in Fig. 2 over the signal and idler frequency with
the same values for the geometry as above and σn = 0.995.
It is interesting that the spectrum is squeezed with a high
correlation and broadband in the case of an asymmetric de-
tuning between the signal and the idler. This behavior can be
explained by the energy conservation, which must be fulfilled
and means that if the signal is generated at a higher frequency
compared to the pump frequency the idler must be generated
at a lower frequency.

Another important feature of squeezed light is the quadra-
ture operator which allows the analysis of the noise behavior
with [26]

XQ(ω) = 1√
2

[(bout,s(ω) + bout,i(ω))eiφLO + H.c.] (27)

with the local oscillator (LO) phase φLO. In experiments this
phase can be used to change the measured signal from low
noise or squeezing at φLO = π/2 to high noise or antisqueez-
ing at φLO = 0. Thereby, the outracavity light is mixed with a
coherent local oscillator laser with a certain phase to realize
the desired quadrature operator as shown in Fig. 4 and exper-
imentally demonstrated in [23]. This setup is also discussed
in detail in Appendix C. Of special interest is the variance of
the quadrature to identify the noise of the two-mode squeezed
light which is defined as [26]

V (ω,ω′) = �XQ(ω,ω′)

= 〈XQ(ω)XQ(ω′)〉 − 〈XQ(ω)〉〈XQ(ω′)〉
bin,s/i=bv−−−−→ 〈XQ(ω)XQ(ω′)〉. (28)

For the case of zero detuning, the following equations are
determined for the variance in the squeezed and antisqueezed

FIG. 4. Homodyne measurement to realize the measurement of
the quadrature operator with the local oscillator consisting of a strong
coherent background and a certain phase φLO with the same frequen-
cies as Ps and Pi.

case with integrating over ω to remove the δ function, which
leads to

VφLO=π/2 = �2 + σ 2

(� − σ )2
− 2σ (κ − γ )

(� − σ )2
, (29)

VφLO=0 = �2 + σ 2

(� + σ )2
+ 2σ (κ − γ )

(� + σ )2
. (30)

The results of Eq. (28) over the phase φLO are shown in Fig. 5
with the same geometry values as above. The different colors
and line styles represent various values of the pump power
σn and it can be seen that with rising power the squeezing
improves while the antisqueezing increases. A squeezing of
approximately −15.02 dB can be achieved for the defined
limit σn = 0.998 95. This is close to the value with less pump
σn = 0.95 with −15.01 dB which is about −12 dB lower
than vacuum, and thus good noise reduction can be already
achieved with a power close to the threshold. However, the
difference for the antisqueezing is significantly larger with
65.46 dB for σn = 0.998 95 and 31.68 dB for σn = 0.95.

For the design it is important to know how the ring ge-
ometries affect the squeezing. In this case, the two main

FIG. 5. Variance of the two-mode squeezed light calculated us-
ing Eq. (28) over the LO phase with a variation of σn.
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FIG. 6. Variance of the two-mode squeezed light calculated us-
ing Eq. (28) over the LO phase with a variation of κ and γ .
The variations are achieved with αloss = 0.23 m−1 for overcoupling,
αloss = 7.28 m−1 for critical coupling, and αloss = 23.04 m−1 for un-
dercoupling while σn is constant at 0.95.

parameters are the decay rates κ and γ which can be tuned by
the ring design. The influences for different ratios between κ

and γ are shown in Fig. 6. The best squeezing can be achieved
for the case κ > γ which is also known as overcoupling, since
more light couples in and out of the ring than is lost due to
losses. For the so-called critical coupling case in which both
coupling rates are equal with κ = γ , the squeezing decreases
and for the undercoupling case with κ < γ the variance is
larger compared to the vacuum noise. It is reasonable that
κ > γ is required for a good squeezing, since only if the
squeezed signal and idler pairs couple out of the resonator
they contribute to a squeezing. This matches the results of
other works and shows the importance of a proper cavity
design [27].

Another feature that is often given in the literature to
describe squeezed light is the squeezing parameter r. By
comparison with results for two-mode squeezed light in the
literature [28], we can derive it to

r = sinh−1

(√
〈b†

out,sbout,s〉
)

= sinh−1

⎛
⎝

√
4σ 2κ�

� − 2σ 2�2

⎞
⎠. (31)

Using the same values as for Fig. 5 with σn = 0.998 95, a
squeezing parameter of r = 7.54 can be achieved.

VI. MACH-ZEHNDER INTERFEROMETER

The main goal of this paper is to show the potential of
two-mode squeezed states generated by FWM in a sensor
application that is built in the form of an MZI and to determine
the sensing limit. The considered system from Fig. 1 is split
into a part for the state preparation, the sensor region, and the
detection.

At the state preparation, pump light Pl is sent into the ring
resonator for the signal and idler generation, while additional

coherent light Pc is coupled in the other input of the MZI. The
generated outracavity signal and idler mode correspond to the
state a1 and Pc corresponds to a0. They are sent into the MZI
via the BS. The states then enter the sensor area, which applies
a symmetrical PS to them that is to be measured. The BS and
PS can be defined as follows:

BS = 1√
2

(
1 1
1 −1

)
, PS =

(
ei φ

2 0
0 e−i φ

2

)
. (32)

The sensor region is typically the largest area of the system
and thus it is important to consider losses to model a realistic
application. Therefore, the efficiency η is introduced, which
is related to the mode power and is 1 for the lossless case.
In chip-integrated applications η depends on the waveguide
losses αloss and the length of the sensor region L with

η = e−αlossL. (33)

The derivation of Eq. (33) is discussed in more detail in
Appendix B. To consider the effect of losses, we use a BS
that couples with η a vacuum mode bv into the system while
coupling out the system mode [5]. This is discussed in Ap-
pendix E. The loss must be applied to each path of the MZI
with two uncorrelated vacuum modes B = (bv,0 bv,1)
. After
the sensor region, another BS follows and the modes at the de-
tection stage D = (d0 d1)
 can be determined in dependency
of the input modes A = (a0 a1)
 with

D = BS · [
√

η · PS · BS · A +
√

1 − η · B]. (34)

Afterwards, the output modes are detected and further pro-
cessed with some electronic circuits. For the detection
scheme, we use the commonly used intensity difference de-
tection which is defined as

ID = d†
0 d0 − d†

1 d1. (35)

It is obvious that in reality losses appear at each stage like
at the detector and the electronic processing, which should be
modeled using a loss BS [29]. As shown in [5] it is sufficient to
focus on the losses within the optical system because these are
the most significant ones and the other losses can be merged
to this loss.

VII. QUANTUM-SENSING LIMIT

To derive the performance and the quantum enhancement
of the system, it is necessary to determine the noise of the
measurement operator. In general the minimum detectable
phase change inside of the MZI �φ can be evaluated using
error propagation [5,30]:

�φ =
√

�ID

|δ〈ID〉/δφ| (36)

with �ID = 〈ID2〉 − 〈ID〉2. Therefore, the previously de-
rived expectation values are required. Since higher-order
expectation values appear in Eq. (36), we use the helpful
cumulant expansion which decreases the order of an operator
X = 〈X1X2 . . . Xn〉 [31]:

〈X1X2 . . . Xn〉 =
∑

p∈P(I )/I

(|p| − 1)!(−1)|p|
∏
B∈p

〈 ∏
i∈B

Xi

〉
(37)
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with I = {1, 2, . . . , n}, P(I )/I being the set of all operators
excluding I , |p| the length of the partition p, and B the block
of each partition. An example for n = 3 is

〈X1X2X3〉 = 〈X1X2〉〈X3〉 + 〈X1X3〉〈X2〉
+ 〈X1〉〈X2X3〉 − 2〈X1〉〈X2〉〈X3〉. (38)

Using this, it is possible to determine the noise of the mea-
sured signal and thus to find out the minimal detectable phase
change of the system.

In Appendix F, it is shown that the optimal phase sensi-
tivity in our setting can be achieved for a phase difference
of φopt = π/2 between the two paths of the MZI. Thus, the
results in the following are evaluated at this operation point.

If the MZI is operated using only Pc with the mode amplitude
αc and without using Pl for the squeezed light generation, the
phase sensitivity using only coherent light in the sensor region
�φc is given by the following expression:

�φc = 1√
ηαc

. (39)

Equation (39) scales as well as the SNL with 1/αc for the loss-
less case and with losses it is slightly worse. For the case of
using Pl to pump the ring resonator to generate squeezed light
and mixing this with coherent light Pc, the phase sensitivity
using squeezed light �φs at φopt can be expressed as

�φs =
√

ηα2
c (� − σ )2(�2 + σ (2γ − 6κ ) + σ 2) + α2

c (�2 − σ 2)2 + 8κσ 2�
√

η(�2 − σ 2)
∣∣α2

c − 8σ 2κ�
(�2−σ 2 )2

∣∣ . (40)

Two poles can appear. One at σ = �, which is however not
in the valid range of σ , and the second one if the num-
ber of squeezed photons 〈b†

out,sbout,s〉 + 〈b†
out,ibout,i〉, given by

Eq. (21), matches the number of coherent photons α2
c . This

can be seen in the denominator of Eq. (40). However, this
only appears for rather small values of αc, since the number
of squeezed photons is limited in practice. Thus, αc should
be chosen large enough, which in most applications is easy
reachable since the number of squeezed photons is small. This
behavior is analyzed in more detail in Appendix F.

For the optimal conditions, with no losses and thus with
η = 1, γ = 0, and a large amount of coherent photons with
αc > 104, the phase sensitivity of Eq. (40) can be approxi-
mated by the following expression:

�φs,opt ≈
√

2

αc

κ − σ

κ + σ
. (41)

Depending on the degree of squeezing described by the values
for κ and σ , an improvement in scaling over Eq. (39) and
the SNL can be achieved by up to three orders of magnitude
within the valid range of σ . However, Eq. (41) is challenging
to achieve in a real world application, since losses will appear.

To identify how well both systems perform in a more real-
istic and lossy setting, it is necessary to also analyze the SNL
of the system. This SNL is calculated with the total number of
photons inside of the MZI. However, as indicated in the state
preparation stage in Fig. 1, the pump power that is required to
generate the two-mode squeezed light is included as well in
the SNL. This results in the following equation for the SNL:

�φSNL = 1√
N

= 1√
〈d†

0 d0〉 + 〈d†
1 d1〉 + |αl |2

, (42)

with the number of photons in the system N . The addition
of αl is required since the pump is not modeled in the out-
racavity expectation values. In our opinion, it is important to
include αl in Eq. (42). The reason is that αl is used inside
the sensor system to pump the ring resonator and to generate
the squeezed light and thus it already takes part in the whole
sensor performance. Pumping the ring resonator only makes

sense if the generation of squeezed light is more advantageous
than using the pump power directly for the phase detection in
the sensor region. This fact can be made more comparable if
αl is included in Eq. (42).

To analyze this behavior in more detail, the phase sensi-
tivity is shown as a function of the input power in Fig. 7 with
coherent input of Eq. (39), squeezed light mixed with coherent
light of Eq. (40), and the SNL of Eq. (42) for comparison.
As expected, it can be seen that the phase sensitivity for a
coherent input improves with increasing power by the same
scaling as the SNL. Even with a higher loss and thus a lower
η, the scaling is similar and just the performance decreases
slightly by a factor of 1/

√
η. In case of using squeezed light,

FIG. 7. Phase sensitivity over the input power for squeezed light
mixed with coherent light [blue (solid dark) lossless and orange
(dash-dotted light gray) with losses], coherent light [green (solid
behind black dots) lossless and red (dash-dotted dark gray) with
losses], and the SNL (black dotted). The FWM threshold is shown
in black dashed line. For the calculation, the following values are
used: �i = �s = �p = 0, X = 0.01, neff = 1.801, ng = 2.100 87,
αloss = 0.23 m−1, L = 2π × 220 × 10−6 m, λp = 1550 × 10−6 m,
n2 = 2.4 × 10−19 m2/W, Aeff = 1.055 64 × 10−12 m2.
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Pl is increased close to threshold with σn = 0.998 95 which
corresponds to a power of Pl = 14.12 mW, while Pc = 0. Note
that Pl does not contribute to the sensor performance but to
the SNL as indicated by Eq. (42). Instead, Pl is required to
pump the ring resonator and generates only a weak two-mode
squeezed light that is available for sensing. The generated
signal and idler power at σn = 0.998 95 is Ps = Pi ≈ 1.13 ×
10−10 mW, which is very low compared to the input power.
With increasing power and thus a larger σn, the sensitivity
�φs increases. However, the performance by using coherent
light is still much better than using squeezed light, which
can achieve a phase sensitivity of about 0.008. By keeping
Pl constant at 14.12 mW close to the threshold and increasing
Pc, the performance is improved significantly and the phase
sensitivity of the squeezed light mixed with coherent light
surpasses the coherent as well as the SNL performance. This
is possible just due to the small amount of squeezed light.

However, the impact of losses on squeezed light is much
larger than on coherent light, which is in agreement with [32].
Despite this fact, the scaling over input power is still better
for the lossy case of the squeezed light mixed with coherent
light and thus it surpasses the lossy coherent performance
and would also improve further compared to the SNL. This
is shown in the zoomed part of Fig. 7.

In order to achieve useful quantum enhancement and an ad-
vantage over the exclusive use of classical light, two essential
requirements must be met. The first one is that a low thresh-
old power needs to be achieved, because the scaling of the
squeezed light mixed with coherent light is superior to using
only coherent light. However, this advantage only applies if
the threshold allows the squeezed light sensitivity to surpass
the coherent sensitivity at a reasonable power. The threshold
can be changed by adapting the design, as shown in Eq. (21),
or by using a material with a high-nonlinear susceptibility.
The second requirement is that the losses inside of the sensor
region need to be below a critical value. In chip-integrated
optical sensors, these losses depend mostly on the scale of
the sensor region with Eq. (B4). A smaller sensor region may
correspond to lower losses, but also a weaker signal since the
light requires a certain interaction length with the stimulus.
Examples for this are Sagnac interferometers in which a larger
sensing area leads to a stronger phase shift or Raman mea-
surements, in which the interaction length between the light
and the molecules enhances the signal. To analyze the perfor-
mance improvement of squeezed light compared to coherent
light, we define the improvement factor I which is the ratio
between �φc and �φs with

I = �φc

�φs
. (43)

Since the squeezing depends on the decay rates κ and γ as it
is shown in Fig. 6, Eq. (43) is analyzed for a variation of the
ratio of both which we define as the decay ratio with

DR = κ

γ
. (44)

The results of Eq. (43) are shown in Fig. 8 over the length of
the sensor region L as well as the efficiency η. It can be seen
that for short lengths and rising decay ratios the improvement
factor rises as well, which proves the quantum advantage. The

FIG. 8. Improvement factor evaluated with Eq. (43) over the
waveguide length of the sensor region for different decay ratios from
dark to light for a rising decay ratio. For the calculation, the following
values are used: �i = �s = �p = 0, X = 0.01, neff = 1.801, ng =
2.100 87, αloss = 0.23 m−1, L = 2π × 220 × 10−6 m, λp = 1550 ×
10−6 m, n2 = 2.4 × 10−19 m2/W, Aeff = 1.055 64 × 10−12 m2.

improvement factor for a short length and a high η can be
approximated with

ILength→0 = 10.218 ln(DR + 143.47) − 49.816. (45)

In contrast to this is the behavior with long lengths where
I reaches 1. This can be explained by the fact that losses
increase with length and the squeezed state is highly suscep-
tible to them. After a certain length most of the squeezing is
lost and no advantage can be achieved. We call this length
the critical length which depends on the losses and can be
approximated as

Lcrit = 2

αloss
(46)

which corresponds to an efficiency η ≈ 13.5%. For a useful
improvement factor of more than 1.5, the efficiency needs to
be above 60%. This behavior confirms our starting motivation,
that the quantum enhancement shows its strength for chip-
integrated applications which mostly consist of short lengths
and low-loss applications. Dependent on the use case, it can
be useful to decrease the size of a sensor and to increase the
sensitivity using two-mode squeezed light.

VIII. CONCLUSION

In this paper we analyzed the generation of two-mode
squeezed light in a ring-resonator cavity and its application
for sensing a phase shift in an MZI. The results show that
the combination of squeezed and coherent light in a low-
loss sensor region can improve the sensitivity compared to
the SNL and a classical sensing system. We started with a
linearized Hamiltonian for the FWM process and derived the
expectation values of the outracavity signal and idler modes
via the input-output theory. They are used to determine the
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squeezing behavior of the two-mode squeezed light and to
give a support to design a cavity for the desired squeezing
behavior. Additionally, the derived equations are used to cal-
culate the minimum detectable phase change inside of an
MZI and it has been shown that squeezed light mixed with
coherent light can surpass the phase sensitivity of the SNL.
Thus, equations are derived which describe the performance
of the whole system consisting of a ring resonator for the
squeezed light generation in addition with the MZI and ID
detection.

However, it is important for a real use case to tune the
threshold by design and material choice in a reasonable re-
gion, where the improved slope of the squeezed light can show
its full potential. Furthermore, we showed that the losses of a
system limit the usability of two-mode squeezed light. The
reason is that squeezed light is very loss sensitive and after
a certain length of the sensor region most of the squeezing
is lost and no improvement can be achieved compared to a
classical sensor. However, if the sensor region is small and has
low losses, two-mode squeezed light can significantly increase
the performance by more than a factor of 10. It was shown
that this improvement factor depends on the decay ratio and
thus on the design of the cavity. This leads to an optimization
problem between a desired decay ratio and a low threshold. If
both are reasonably chosen, the quantum enhancement can be
beneficial.

In summary we think that this can lead to more compact
sized optical sensors which can have the same sensitivity at a
small size as with a larger sensor region due to the quantum
enhancement. It is important to note that squeezed light can
improve the performance of many various optical sensor con-
cepts and, as shown in this paper, especially for interferometer
based sensor principles that are nowadays already available to
manufacture and to use.
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APPENDIX A: GAIN OF THE FOUR-WAVE
MIXING PROCESS

Based on the derivation in [11] the gain of the FWM
process inside of a ring resonator can be given in the following
expression:

g = h̄
(
ω2

pωsωi
)1/4

v2
gγNL

L
(A1)

with the group velocity vg, the length of the resonator L, and
the nonlinear waveguide parameter γNL which is given by [33]

γNL = ωpn2

cAeff
(A2)

with the effective mode area of the optical waveguide mode
Aeff and the nonlinear refractive index n2 which can be de-
scribed as

n2 = 3χ (3)

4ε0cn2
eff

(A3)

and the effective refractive index neff . Since n2 is mostly used
in the literature we give our final gain as follows:

g = h̄ωp
(
ω2

pωsωi
)1/4

v2
gn2

cAeff L
≈ h̄ω2

pv
2
gn2

cAeff L
. (A4)

Note that the derivations slightly differ from each other as in
[34]. Since it is derived with some approximations, the gain
can only be confirmed by experiments.

APPENDIX B: PHYSICAL RELATION
TO THE PARAMETERS

For a practical realization of a system it is very important
to know the physical relation of the operators and how they
depend on the structure dimensions. The parameters for the
design of the ring resonator are the decay rate γ and the
coupling rate κ . They describe how much light decays via the
respective effect at each round-trip time which is described as
follows for a laser pulse:

tround = neff L

c
(B1)

with the effective refractive index of the waveguide neff , the
length of the ring L, and the speed of light c. At each round
trip a certain part of the light couples out of the ring resonator
into the connected waveguide by a certain fraction and this
is described by the cross coupling X which takes the values
0 � X � 1. All the light is coupled to the waveguide at a value
of 1 and no light at a value of zero. Thus, the coupling rate can
be defined as the light that is coupled out per round trip:

κ = X

tround
= Xc

neffL
. (B2)

Additionally, at each round trip a certain part of the light is
scattered away caused by for example scattering on rough
waveguide walls. In general, the optical power P in lossy
photonic chip-integrated waveguides over a length L can be
described by the following equation [35]:

P(L) = P0e−αlossL (B3)

with the optical waveguide losses αloss in the units of m−1. To
model the losses now in dependency of the waveguide losses
and together with the knowledge that P(L) � P0, we simply
define it as the relative power change with a value of 1 for no
losses and a value of zero for maximum losses:

η = 1 − P0 − P(L)

P0
= e−αlossL. (B4)
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Based on this we can define the decay rate per round trip time
as follows:

γ = 1 − η

tround
= (1 − e−αlossL )c

neff L
. (B5)

Another important physical parameter is the complex am-
plitude of a coherent pump. It is known that this can be
described as

αl =
√

P

h̄ωp
exp(iφl ) (B6)

with the pump power P and the frequency of the light ωp

and is proportional to a photon flux. Note that αl has the unit
of

√
Hz. However, the intracavity amplitude of Eq. (7) αp in

the main text is unitless and cannot be converted back to the
optical power using Eq. (B6). To achieve this, it is necessary
to transfer the units to hertz which is done with defining the
transmission rate with

t = (1 − X )c

neffL
. (B7)

This is just the counterpart of the coupling rate and defines
the rate of photons staying either in the resonator or in the
straight waveguide. The intracavity amplitude in units of hertz
can then be derived as ap,

√
Hz = √

tap.
Another important parameter for the FWM process is the

injection parameter σ and its relation to the FWM threshold.
The physical dependency for the injection parameter can be
given as

σ = 2gκ

(�/2 − i�)2

Pl

h̄ωp
. (B8)

It is possible to derive the FWM threshold power that is
required in the waveguide Pl in Fig. 2 by using the relation
σth = � and Eq. (B6). This leads to

Pth = �h̄ωp(�/2 − i�p)2

2gκ
�=0= �3h̄ωp

8gκ
. (B9)

Note that effects like self-phase and cross-phase modulation
are neglected in Eq. (B9) and thus the real Pth might be higher.

APPENDIX C: QUADRATURE MEASUREMENT

In the following, the determination of the quadrature
measurement shown in Fig. 4 is explained in more de-
tail. One input of the BS consists of the generated sig-
nal and idler aBS,1 = as exp(−i[ωst + φs]) + ai exp(−i[ωit +
φi]) with a certain phase φs and φi for the signal and
idler. The other input consists of a local oscillator with
a strong coherent background that includes waves of the
signal and idler frequency with aBS,2 = |αLO|{exp(−i[ωst +
φLO]) + exp(−i[ωit + φLO])} and the phase φLO. In the fol-
lowing, we assume that the signal and idler phases match with
φi = φs. Both inputs are mixed at the beam splitter with the
matrix from Eq. (32), detected, and the measured signal is
subtracted which leads to

XQ = d†
1 d1 − d†

2 d2

= |αLO|(ase
−i(δLO+t[ωs−ωi]) + a†

s ei(δLO+t[ωs−ωi]) )

+ |αLO|(aie
i(−δLO+t[ωs−ωi]) + a†

i e−i(−δLO+t[ωs−ωi]) )

+ |αLO|([ai + as]e
−iδLO + [a†

i + a†
s ]eiδLO ) (C1)

with the difference between the signal, idler, and the LO phase
δLO = φi − φLO. Equation (C1) includes one fast oscillating
and one static term. Since the fast oscillating one cannot
be measured by a physical detector, the static one is mea-
sured which corresponds to the quadrature signal of Eq. (27).
Note that the local oscillator is required in this measurement
scheme. The reason is that squeezed light consists generally
only of a low amount of photons. Using a local oscillator
with a strong coherent background amplifies the quadrature
information of the squeezed light to make it measurable.

APPENDIX D: OUTRACAVITY EXPECTATION VALUES

In the following, the results of the calculated outracav-
ity expectation values are given and determined based on
Eq. (19). To keep the results general, we determine the ex-
pectation values for the case that the signal and idler inputs
are in the vacuum state and for the other case that they
are in a coherent state with bin,s = αs and bin,i = αi. There-
fore, the expectation values are split into a static 〈bst〉 and
a fluctuating part 〈b f 〉 with the total expectation value being
〈bout〉 = 〈b f 〉 + 〈bst〉. If a vacuum input is assumed then only
the fluctuation results are of interest as it is done in the main
text. Otherwise, for a coherent input, 〈b f 〉 and 〈bst〉 need to
be added. However, only the signal modes and some cross
products between the signal and idler modes are given. The
reason is that due to the symmetry in FWM the idler results
can be simply achieved by a replacement of the index in the
equations. Based on them, all desired expectation values can
be determined.

1. Fluctuating results

For the fluctuating results with αi/s = 0, all first-order ex-
pectation values are zero, 〈bs, f (ω)〉 = 〈b†

s, f (ω)〉 = 0, and we
have the following second-order values: 〈bs, f (ω)bs, f (ω′)〉 =
〈b†

s, f (ω)b†
s, f (ω′)〉 = 〈bi, f (ω)b†

s, f (ω′)〉 = 〈bs, f (ω)b†
i, f (ω′)〉 =

〈b†
s, f (ω)bi, f (ω′)〉 = 〈b†

i, f (ω)bs, f (ω′)〉 = 0. The relevant

FIG. 9. Schematic of a BS that models the losses.
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results are given in the following:

〈bi, f (ω)bs, f (ω′)〉 = −2κσ [4�i�s − 2i�(�i + �s) − �2 − σ 2]

� − 2σ 2�2
δ(ω − ω′), (D1)

〈b†
i, f (ω)b†

s, f (ω′)〉 = −2κσ [4�i�s + 2i�(�i + �s) − �2 − σ 2]

� − 2σ 2�2
δ(ω − ω′). (D2)

The equation for the photon number 〈b†
s, f (ω)bs, f (ω′)〉 is already given in Eq. (21). Note that the other expectation values can

be determined either due to the relation 〈bs, f (ω)b†
s, f (ω′)〉 = 1 + 〈b†

s, f (ω)bs, f (ω′)〉 or due to symmetries like 〈b†
i, f (ω)b†

s, f (ω′)〉 =
〈b†

s, f (ω)b†
i, f (ω′)〉. Thus, all expectation values for the fluctuating results can be determined with the few given equations.

2. Static results

For the static results each expectation value is not equal to zero. However, to determine each expectation value only the
following two equations (D3) and (D4) are required and the rest can be determined using symmetries:

〈bs,st (ω)〉 = αs{κ2 + σ 2 − γ 2 − 4�i�s − 2i[�i(γ − κ ) + �s�]} − 2αiκσ

4�i�s + 2i�(�i − �s) + �2 − σ 2
, (D3)

〈b†
s,st (ω)〉 = αs{κ2 + σ 2 − γ 2 − 4�i�s + 2i[�i(γ − κ ) + �s�]} − 2αiκσ

4�i�s − 2i�(�i − �s) + �2 − σ 2
. (D4)

The other equations can be simply determined by a factoriza-
tion with

〈bs,st (ω)b†
s,st (ω

′)〉 = 〈bs,st (ω)〉〈b†
s,st (ω

′)〉, (D5)

〈b†
s,st (ω)bs,st (ω

′)〉 = 〈b†
s,st (ω)〉〈bs,st (ω

′)〉, (D6)

〈bi,st (ω)bs,st (ω
′)〉 = 〈bi,st (ω)〉〈bs,st (ω

′)〉, (D7)

or by changing the index between the signal and idler modes.
In this way, all static expectation values can be determined.

APPENDIX E: WAVEGUIDE LOSSES IN THE MZI

Losses in quantum systems are mostly modeled
using a BS description with an efficiency η as

FIG. 10. Phase sensitivity over the MZI phase shift φ with a
weak coherent pump αc = 105

√
Hz and for different σn.

follows:

LM =
( √

η
√

1 − η√
1 − η −√

η

)
. (E1)

Thereby, η is in the range 0 � η � 1 with a value of η = 1 for
no losses and is described by Eq. (B4). It is important to note
that while a part of a waveguide mode ain is lost, vacuum is
coupled into the system [29]. This is shown in Fig. 9 and the
resulting mode can be determined by

aout = √
ηain +

√
1 − ηbv (E2)

and the vacuum bath mode bv . The part that couples out of the
waveguide can be described by (E1). The second output of our
virtual BS is ignored.

FIG. 11. Phase sensitivity over the coherent pump αc at MZI
phase shift φ = π/2 for different σn.
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APPENDIX F: MZI PHASE SENSITIVITY

In the following, the phase sensitivity for the MZI in Fig. 1
and Eq. (36) is discussed in more detail. The behavior over the
phase shift inside of the MZI is analyzed first and shown in
Fig. 10 for a weak coherent signal αc = 105 and for different
pump power σn. It can be seen that the sensitivity diverges
for a phase of φ = 0 and π/2 while it reaches the optimum
at φ = π

2 and 3π
2 which should be the preferred working

points for a sensing application that can surpass the SNL.
Additionally, the sensitivity increases together with σn. This
is clear since the squeezing increases as well with σn. In
comparison, also the SNL using Eq. (42) with αp = 0

√
Hz

is shown for the case with the σn = 0.998 95. As expected,
the phase sensitivity for the same pump surpasses the SNL by
more than a magnitude. This shows that two-mode squeezed
light can be used for quantum-enhanced metrology, which
matches other work [36].

Additionally, it is interesting to analyze the pole point
that results out of Eq. (40). Therefore, Eq. (40) is plotted
over the coherent pump αc for two different σn values in
Fig. 11. It can be seen that for both σn values a pole is visible
which is similar to the results of other works [37]. Interest-
ingly, the position of this pole point appears if the number of
photons of the coherent pump |αc|2 matches the number of
photons of the squeezed states 〈a†

s as〉 + 〈a†
i ai〉. The phase

sensitivity of the MZI is constant up to the pole position and
improves afterwards with rising αc. For both σn values, the
improvement is similar after the pole while the curve using
the higher σn surpasses the lower one. However, before the
pole point, the phase sensitivity is the same as the SNL. This
matches the results of [38] and shows that a high coherent
pump is required to achieve an improved scaling compared to
the SNL.
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