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Discrete-outcome sensor networks. II. Multiple detection events and grouping detectors
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Quantum sensor networks have often been studied in order to determine how accurately they can determine
a parameter, such as the strength of a magnetic field, at one of the detectors. A more coarse-grained approach
is to try to simply determine whether a detector has interacted with a signal or not, and which detector it was.
Such discrete-outcome quantum sensor networks, discrete in the sense that we are seeking answers to yes-no
questions, are what we study here. One issue is what is a good initial state for the network, and, in particular,
should it be entangled or not. Earlier we looked at the case when only one detector interacted, and here we
extend that study in two ways. First, we allow more than one detector to interact, and second, we examine the
effect of grouping the detectors. When the detectors are grouped we are only interested in which group contained
interacting detectors and not in which individual detectors within a group interacted. We find that in the case of
grouping detectors, entangled initial states can be helpful.
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I. INTRODUCTION

Can quantum mechanics—in particular, entanglement—be
used to improve the behavior of sensor networks? Quantum
effects, and nonclassical states of light in particular, can be
used to improve the performance of individual detectors, with
the most spectacular example being the use of squeezed states
to improve the sensitivity of the LIGO gravitational wave
detector. In a network of detectors there are additional pos-
sibilities resulting from entanglement and the possibility of
global measurements. So far it is not clear when, and if, these
can lead to improved sensitivity.

For the most part, previous work on quantum sensor net-
works has studied the following problem. The detectors,
which are quantum systems, have interacted with the environ-
ment, and as a result, parameters due to this interaction are
encoded in their state. In almost all cases, these parameters
have been taken to be continuous variables. For example,
these parameters could be the strength of a magnetic field
at different locations. The object is to estimate these pa-
rameters or some function of them. The detectors can be
of various types—qubits [1,2], continuous variable systems
[3], or general quantum systems [4]. It has been found that
for finite-dimensional systems, entanglement of the quantum
systems does not provide an advantage in estimating the
individual parameters, but does provide an advantage in es-
timating a function of them [1,2,4,5]. It has been shown that
entangled states in optical networks can provide an advantage
for distributed sensing [3,6]. Further studies have investigated
whether linear optical networks with unentangled inputs can
give a quantum advantage in distributed metrology [7], and
whether continuous-variable error correction can be useful in
protecting a network of continuous-variable sensors from the
effects of noise [8].

In previous papers we looked at a different problem [9,10].
Suppose that instead of determining a parameter, one is

interested in whether a detector has detected something or
which detector has detected something. This kind of problem
is described by discrete rather than continuous variables, and
is a problem in channel discrimination [11–17]. Each detector
in a network can receive an input or no input. Suppose the
unitary operator U describes the interaction between an input
and a detector, and that only one detector in the network has
received an input, but we do not know which one. This is
the problem we studied in Ref. [9]. The operator U could
describe, for example, the rotation of a spin caused by a
magnetic field, or a phase shift induced in a state of light
by a transparent object. The different output states of the
detectors will be produced by starting with the initial state
of the detectors and applying to it the operator consisting of
U acting on one of the detectors and the identity acting on
the rest. We then want to measure the output state in order to
determine which detector received an input. This means that
we have to optimize over both the initial state of the detectors
and the final measurement. What we found was that for a
small number of detectors, starting from an initially entangled
state helps, but the advantage decreases with the number of
detectors. A related problem of picking out a target quantum
channel from a background of identical channels has been
analyzed by Zhuang and Pirandola, and useful bounds on
channel discrimination have been derived [18–20].

Here, we would like to remove the restriction that only one
of the detectors interacted with the environment and allow an
arbitrary number of detectors to interact. We will begin by
analyzing a two-detector network. We will look at two mea-
surement schemes for the final state of the detectors, minimum
error and unambiguous [21,22]. In minimum-error detection
there is a probability of making a mistake, but this probabil-
ity is minimized. In unambiguous discrimination, one never
makes a mistake, but the measurement can sometimes fail.
Which strategy to use depends on the relative cost assigned
to making a mistake versus not getting an answer.
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Next, we will look at the situation where detectors are
grouped, and all we are interested in is in which group de-
tectors fired and not which individual detectors fired. For
example, if the detectors are in two groups, group 1 and group
2, all we wish to know is whether some detectors in group 1
fired or some detectors in group 2 fired. This type of situation
could arise if the group 1 detectors are localized in one region
and the group 2 detectors are in another, and we are just trying
to detect in which region an event occurs. Here, there are two
issues. The first is whether an entangled initial state helps.
In this case we will find that it does. A second question is
whether collective measurements, in which several detectors
are measured together instead of individually, helps. We pro-
vide an example for the case of unambiguous discrimination
in which it does. Grouping detectors was studied in Ref. [23],
where it was employed as part of a two-part method to localize
a single detection event; first find the group in which the de-
tection occurred, and then find the individual detector within
the group at which the event occurred.

In the case of grouped detectors, we will examine several
different scenarios, but all will take as their object of study two
groups of two detectors each. We will first use minimum-error
discrimination. In the case when only one detector in each
group can fire, we show that an entangled initial state can be
used to reduce this problem to one of only two detectors. Next,
we will allow more than one detector in each group to fire,
and compare the performance of an entangled initial state and
a product initial state. We will then look at this system us-
ing unambiguous discrimination with an initial product state,
and show that a collective measurement performs better than
measuring each detector individually.

II. TWO DETECTORS

In order to begin we will start with a very simple system,
a system consisting of two detectors, and any combination of
them can interact with the environment: neither, both, or just
one of the two. The interaction is described by a unitary op-
erator U , with eigenstates |u±〉, where U |u±〉 = e±iθ |u±〉. The
parameter θ is a product of the interaction strength between
the detector and the environment and the interaction time. If
one is trying to detect weak signals, θ will be small. If |ψin〉
is the initial state of the detectors, the state afterward will be
one of the following states: |ψin〉, (U ⊗ I )|ψin〉, (I ⊗ U )|ψin〉,
or (U ⊗ U )|ψin〉.

We now need to choose an initial state of the detectors, and
we will give a plausibility argument, which is not a proof, for
making a particular choice. First, let us note that what we have
here is a channel discrimination problem. The four channels
are I ⊗ I , I ⊗ U , U ⊗ I , and U ⊗ U . The initial state |�in〉
should be chosen so that the resulting output states are as
distinguishable as possible. That means we want to minimize
the overlaps between different output states. If their overlaps
were zero, the states would be perfectly distinguishable, and
we could determine with certainty which state we had. How-
ever, in general this cannot be arranged, and we will have
to accept some probability of error or some probability of
failure, depending on whether we adopt the minimum-error
or unambiguous strategy. Both the probability of error and
the probability of failure depend on the overlaps of the set

of states we are considering, and, in general, the smaller the
overlaps, the smaller the probabilities of error or failure. Con-
sequently, looking at the overlaps of the states corresponding
to different combinations of detectors firing will give us an
idea of what a good initial state is.

Let us first note that linear combinations of the states
{|u+u+〉, |u−u−〉} cannot distinguish between I ⊗ U and U ⊗
I , while linear combinations of {|u+u−〉, |u−u+〉} cannot
distinguish between I ⊗ I and U ⊗ U . Similarly, linear com-
binations of of the states {|u+u+〉, |u+u−〉} cannot distinguish
between I ⊗ I and U ⊗ I (this is also true if the first state in
each product state is |u−〉 instead of |u+〉), while linear combi-
nations of {|u+u+〉, |u−u+〉} cannot distinguish between I ⊗ I
and I ⊗ U . This suggests that |ψin〉 should be a linear combi-
nation of all four of the states |u±u±〉. We should then find
which choices of the coefficients in the linear combination
minimize the overlaps between different output states.

Starting from the initial state

|ψin〉 =
∑
j=±

∑
k=±

c jk|u juk〉, (1)

and setting

|ψout0〉 = |ψin〉 |ψout1〉 = (I ⊗ U )|ψin〉
|ψout2〉 = (U ⊗ I )|ψin〉 |ψout3〉 = (U ⊗ U )|ψin〉,

(2)

we want to examine the overlaps between these four
output states. We find that |〈ψout1|ψin〉|2, |〈ψout2|ψin〉|2,
|〈ψout1|ψout3〉|2, and |〈ψout2|ψout3〉|2 are all of the form |aeiθ +
be−iθ |2, where 0 � a � 1, 0 � b � 1, and a + b = 1. It is
relatively straightforward to show that this expression is min-
imized when a = b = 1/2. This implies that all of these
overlaps are minimized when |c jk|2 = 1/4, where j = ±
and k = ±. The remaining overlaps, |〈ψout2|ψout1〉|2 and
|〈ψout3|ψin〉|2 are not minimized for the same values of the
c jk , but their average value is minimized when |c jk|2 = 1/4.
Consequently, the suggestion is that the choice c jk = 1/2 will
be a good one for producing four states that are close to
optimally distinguishable. This implies that the choice of |ψin〉
as a product state is a good one. Note that what we have is not
a proof that this is the best choice but a strong plausibility
argument. In particular, defining

|w0〉 = 1√
2

(|u+〉 + |u−〉)

|w1〉 = 1√
2

(eiθ |u+〉 + e−iθ |u−〉), (3)

we choose |�in〉 = |w0〉 ⊗ |w0〉, and the remaining states we
must discriminate are |w1〉 ⊗ |w0〉, |w0〉 ⊗ |w1〉, and |w1〉 ⊗
|w1〉, which we shall denote by |φ jk〉 = |w j〉 ⊗ |wk〉, where
j, k = 0, 1.

A. Minimum-error discrimination

It is impossible to discriminate nonorthogonal quantum
states perfectly. One is then faced with finding an imperfect
strategy for doing so. One is the minimum-error strategy in
which there is a nonzero probability of making a mistake, but
this probability is minimized. A second strategy, unambiguous
discrimination, will be discussed in the next section. It is only
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possible to find an optimal minimum-error strategy for the
case of two states [21] or for special sets of more than two
states.

The procedure for discriminating two, in general, mixed,
states, ρ0, which occurs with probability p0, and ρ1, which ap-
pears with probability p1, is due to Helstrom [21]. The optimal
positive operator-valued measure (POVM) can be constructed
from the eigenstates of the operator � = p1ρ1 − p0ρ0, and
the probability of successfully discriminating the states is
given by

Ps = 1
2 + 1

2‖�‖1, (4)

where the norm is the trace norm. The POVM operators in the
case where ρ0 and ρ1 are pure qubit states are the orthogonal
projections onto the eigenstates of �. There is no known
solution for the general case of more than two states. In the
case where the set of states has a particular symmetry, opti-
mal solutions can be found, but in general only approximate
analytical solutions are available.

We will assume that |w0〉 occurs with a probability of p0

and |w1〉 occurs with a probability of p1. In order to find the
POVM that discriminates these states with a minimum error,
as noted in the previous paragraph, we construct the operator

� = p1|w1〉〈w1| − p0|w0〉〈w0| (5)

and find its eigenvectors and eigenvalues [21]. We find that the
eigenvalues are

λ = 1
2

{
p1 − p0 ± [

p2
1 + p2

0 − 2p0 p1 cos θ
]1/2}

. (6)

The eigenvectors are (1/
√

2)(|u+〉 ± eiα|u−〉, where

eiα = p1e−2iθ − p0

|p1e2iθ − p0| . (7)

Note that this implies that α will be negative if 0 < θ � π/4.
The POVM operators are

�0 = 1
2 (|u+〉 − eiα|u−〉)(〈u+| − e−iα〈u−|)

�1 = 1
2 (|u+〉 + eiα|u−〉)(〈u+| + e−iα〈u−|).

The conditional detection probabilities p(w j |wk ), where
j, k = 0, 1, which are the probabilities that if the state is |wk〉
then |w j〉 is detected, are

p(w0|w0) = 〈w0|�0|w0〉 = 1
2 (1 − cos α)

p(w1|w0) = 〈w0|�1|w0〉 = 1
2 (1 + cos α)

p(w0|w1) = 〈w1|�0|w1〉 = 1
2 [1 − cos(α + 2θ )]

p(w1|w1) = 〈w1|�1|w1〉 = 1
2 [1 + cos(α + 2θ )]. (8)

The probability of successfully discriminating the states is

P(1)
s = p(w0|w0)p0 + p(w1|w1)p1 = 1

2 (1 + |p1e2iθ − p0|).
(9)

Proceeding now to the case of two two-qubit detectors,
the POVM elements are � jk = � j ⊗ �k , where j, k = 0, 1,
and, assuming the two-qubit state |w j〉 ⊗ |wk〉 appears with

probability p j pk , the success probability is

P(2)
s =

1∑
j,k=0

p(w j |w j )p(wk|wk )p j pk = (
P(1)

s

)2
. (10)

This result clearly generalizes to N detectors if we assume
an initial product state and the probabilities that the detectors
fire are independent. In the case where the probabilities that
the states appear are not independent, that is, that the prob-
ability that the state |w j〉 ⊗ |wk〉 appears is not p j pk , then,
as was seen in our previous work, the situation is different
[9]. In that case only the states |w0〉 ⊗ |w1〉 and |w1〉 ⊗ |w0〉
could appear, each with a probability of 1/2, and then the
optimal initial state was entangled and the optimal measure-
ments were global measurements that were projections onto
entangled states. This suggests that entanglement can provide
an advantage when the sets of detectors that will fire possess
correlations.

B. Unambiguous discrimination

We will now look at the unambiguous discrimination of
the states |w j〉 ⊗ |wk〉, where j, k = 0, 1. In this measurement
scheme we will never make a mistake, but the measurement
may fail. In the case of pure states, in order for unambigu-
ous discrimination to be possible, the states must be linearly
independent. In the case of mixed states, the supports of the
density operators must not be identical. In our case the POVM
elements will be of the form � jk = c|φ⊥

jk〉〈φ⊥
jk|, where the

vector |φ⊥
jk〉 is the unit vector that is orthogonal to |wm〉|wn〉

for m �= j or n �= k, and the constant c is chosen to be as large
as possible so that the POVM element corresponding to the
failure of the measurement,

� f = I − c
1∑

j,k=0

|φ⊥
jk〉〈φ⊥

jk|, (11)

is positive. Note that the POVM element � jk corresponds to
detecting the state |w j〉 ⊗ |wk〉, and the fact that � jk (|wm〉 ⊗
|wn〉) = 0 for m �= j or n �= k implies that we will never make
an error.

Define the vectors |v0〉 = (1/
√

2)(|u+〉 − |u−〉) and |v1〉 =
(1/

√
2)(eiθ |u+〉 − e−iθ |u−〉). Note that 〈v j |w j〉 = 0 for j =

0, 1. We can now take

|φ⊥
kl〉 = |vk̄〉|vl̄〉, (12)

where k̄ = k + 1 mod 2, and similarly for l̄ . The failure oper-
ator can now be expressed as

� f = I − c

⎛
⎝ 1∑

j=0

|v j〉〈v j |
⎞
⎠ ⊗

(
1∑

k=0

|vk〉〈vk|
)

. (13)

Defining T = ∑1
j=0 |v j〉〈v j |, we see that if λmax is the largest

eigenvalue of T , then � f will be positive if cλ2
max � 1, so we

will set c = 1/λ2
max. Now, in matrix form we have that

T = 1

2

(
2 −(e2iθ + 1)

−(e−2iθ + 1) 2

)
, (14)
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FIG. 1. Failure probability Pf as a function of θ . The failure
probability remains close to one for a significant range of θ , suggest-
ing that the unambiguous measurement strategy is not an optimal one
for this situation.

so that λmax = 1 + (1/
√

2)(1 + cos 2θ )1/2 = 1 + cos θ for
0 � θ � π/2. Assuming the states are equally likely, the fail-
ure probability is

Pf = 1 − c

4

1∑
k=0

1∑
l=0

|〈wk|vk̄〉|2|〈wl |vl̄〉|2

= 1 − 1

4

(
1

λmax

1∑
k=0

|〈wk|vk̄〉|2
)2

. (15)

We also have that 〈v1|w0〉 = 〈v0|w1〉 = i sin θ , so

Pf = 1 − sin4 θ

[1 + cos θ ]2
. (16)

This is plotted in Fig. 1. As can be seen, the failure probability
is close to one for small angles. The reason for this is that the
second term in the above equation is proportional to θ4 for
small angles. The success probability is 1 − Pf , and is just the
probability that both measurements succeed.

This procedure can easily be generalized for more than
two detectors if we start from a product state |ψin〉 = |w0〉⊗n.
We will then be faced with discriminating states of the form
|φx〉 = |wxn−1〉|wxn−2〉 . . . |wx0〉, where x = xn−1xn−2 . . . x0 is an
n-digit binary number. The POVM element corresponding
to detecting this state is �x = c|φ⊥

x 〉〈φ⊥
x |, where |φ⊥

x 〉 =
|vx̄n−1〉 . . . |vx̄0〉. The constant c is now given by c = 1/λn

max,
and the failure probability for 0 � θ � π/2, if the states are
equally probable, is

Pf = 1 − sin2n θ

[1 + cos θ ]n
. (17)

III. GROUPING DETECTORS

Suppose we are only interested in whether detectors in cer-
tain groups fire. In particular, suppose we divide our detectors
into two sets, and all we are interested in is whether some
detectors in the first set fired, or whether some in the second
set fired. We will look at two cases. In the first, only a single
detector will fire, and in the second, multiple detectors in a
single group can fire.

A. Single detector fires

We will first consider the case in which only a single detec-
tor fires, and we will examine the case of four detectors split
into two groups of two. However, it is first useful to review the
case of only two detectors when it is guaranteed that only one
of them fires [9]. We start with the state

1√
2

(|u+〉1|u−〉2 + |u−〉1|u+〉2). (18)

If detector 1 fires we apply U ⊗ I to this state and get

1√
2

(eiθ |u+〉1|u−〉2 + e−iθ |u−〉1|u+〉2). (19)

If, instead, detector 2 fires, we apply I ⊗ U to the state and
we get

1√
2

(e−iθ |u+〉1|u−〉2 + eiθ |u−〉1|u+〉2). (20)

Our task, then, is to distinguish these states, and we will
present the results for minimum-error discrimination (see
Ref. [9] for the case of unambiguous discrimination). The
optimal measurements are global ones, that is, both qubits are
measured together, not individually, and the operators describ-
ing the measurements are proportional to projections onto
entangled states. The measurement operators are orthogonal
projections and are given by

�1 = |v1〉〈v1|
�2 = |v2〉〈v2|, (21)

where

|v1〉 = 1√
2

(|u+〉1|u−〉2 − i|u−〉1|u+〉2)

|v2〉 = 1√
2

(|u+〉1|u−〉2 + i|u−〉1|u+〉2). (22)

The success probability, that is, the probability of getting the
right answer, is

P(min)
s = 1

2 [1 + sin(2θ )], (23)

where we have assumed that the two states are equally likely.
Now, let us move on to two groups of two detectors. The

first group contains detectors 1 and 2, and the second group
contains detectors 3 and 4. We are only considering the case
where one detector in one of the groups fires, and we only
want to know in which group the firing detector lies. We will
start with the state

1√
2

(|u+〉1|u+〉2|u−〉3|u−〉4 + |u−〉1|u−〉2|u+〉3|u+〉4). (24)

Note that this state was obtained from the one in Eq. (18)
by replacing |u+〉 with |u+〉|u+〉 and |u−〉 with |u−〉|u−〉. If a
detector in the first group fires, then we apply U ⊗ I ⊗ I ⊗ I
or I ⊗ U ⊗ I ⊗ I to this state, obtaining, in both cases,

1√
2

(eiθ |u+〉1|u+〉2|u−〉3|u−〉4 + e−iθ |u−〉1|u−〉2|u+〉3|u+〉4).

(25)
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If a detector in the second group fires, we apply I ⊗ I ⊗ U ⊗ I
or I ⊗ I ⊗ I ⊗ U to the initial state, resulting in

1√
2

(e−iθ |u+〉1|u+〉2|u−〉3|u−〉4 + eiθ |u−〉1|u−〉2|u+〉3|u+〉4).

(26)

Our problem is now to discriminate between these two states,
but that is essentially the same as discriminating between the
states in the case of two detectors. We can obtain the POVM
elements for the four-detector case from those of the two-
detector case by making the replacement |u±〉 → |u±〉|u±〉.
This procedure clearly generalizes to more detectors in each
group, and to a larger number of groups. For the case in
which only a single detector fires, it reduces the problem of
discriminating among groups of detectors to discriminating
among single detectors.

B. Multiple detectors fire

Let us now consider four detectors split into two groups
as before, but now either one detector or both detectors in a
group can fire. We will assume for now that the case in which
detectors in both sets fire does not occur. In this section we
will be making use of minimum error detection. The case of
unambiguous discrimination will be examined in the next sec-
tion. If our initial state is |ψin〉, we are distinguishing between
the sets of states

{(U ⊗ I ⊗ I ⊗ I )|ψin〉, (I ⊗ U ⊗ I ⊗ I )|ψin〉,
(U ⊗ U ⊗ I ⊗ I )|ψin〉} (27)

and

{(I ⊗ I ⊗ U ⊗ I )|ψin〉, (I ⊗ I ⊗ I ⊗ U )|ψin〉,
(I ⊗ I ⊗ U ⊗ U )|ψin〉}. (28)

As we shall see, each of these sets will correspond to a density
matrix, ρ12 for the first set and ρ34 for the second. Our task
will then be to discriminate these two density matrices. This
same general structure would hold with larger numbers of
detectors in each group. We would again have two density
matrices, each describing all of the ways within a given group
can fire. We would then have to discriminate these two density
matrices.

We want to compare two initial states, an entangled state

|ψin〉 = 1√
2

(|u+, u+〉12|u−, u−〉34 + |u−, u−〉12|u+, u+〉34)

(29)

and a product state

|ψin〉 = 1

4

4∏
j=1

(|u+〉 j + |u−〉 j ) = |w0〉⊗4. (30)

In this section we will only be examining the case of
minimum-error discrimination. In order for unambiguous dis-
crimination of two mixed states to be possible, it is necessary
that their supports not be the same. The next example we con-
sider will not satisfy this requirement, so that unambiguous
discrimination is not a possibility.

Let us first look at the entangled state. Applying the oper-
ators to the initial state results in two sets of states, which we
would like to discriminate,

{
1√
2

(eiθ |u+, u+〉12|u−, u−〉34 + e−iθ |u−, u−〉12|u+, u+〉34),

1√
2

(e2iθ |u+, u+〉12|u−, u−〉34 + e−2iθ |u−, u−〉12|u+, u+〉34)

}
, (31)

and {
1√
2

(e−iθ |u+, u+〉12|u−, u−〉34 + eiθ |u−, u−〉12|u+, u+〉34),

1√
2

(e−2iθ |u+, u+〉12|u−, u−〉34 + e2iθ |u−, u−〉12|u+, u+〉34)

}
. (32)

Let us denote the two vectors in the first set by |v1〉 and |v2〉,
and those in the second set by |v3〉 and |v4〉. If we assume that
each of the states in Eq. (27) are equally likely, that means |v1〉
is twice as likely as |v2〉, because it can occur in two different
ways. Similarly, |v3〉 is twice as likely as |v4〉. Therefore, we
can find a measurement that distinguishes between the two
sets by finding one that distinguishes between the two density
matrices

ρ12 = 2
3 |v1〉〈v1| + 1

3 |v2〉〈v2|
ρ34 = 2

3 |v3〉〈v3| + 1
3 |v4〉〈v4|. (33)

The success probability in distinguishing between these two
density matrices is given by the Helstrom formula

Ps = 1
2 + 1

4‖ρ12 − ρ34‖1. (34)

In the {|u+, u+〉12|u−, u−〉34, |u−, u−〉12|u+, u+〉34} basis
these density matrices are

ρ12 =
(

1
2

1
3 e2iθ + 1

6 e4iθ

1
3 e−2iθ + 1

6 e−4iθ 1
2

)
(35)
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and

ρ34 =
(

1
2

1
3 e−2iθ + 1

6 e−4iθ

1
3 e2iθ + 1

6 e4iθ 1
2

)
. (36)

The eigenvalues of ρ12 − ρ34 are λ = ±[(2/3) sin(2θ ) +
(1/3) sin(4θ )]. For the trace norm we have

‖ρ12 − ρ34‖1 = 2
[

2
3 sin(2θ ) + 1

3 sin(4θ )
]
, (37)

and the success probability is

Ps = 1
2 + 1

3 sin(2θ ) + 1
6 sin(4θ ). (38)

Now let us look at the case when |ψin〉 is a product state.
Define the vectors

|μ1〉 = |w1〉 ⊗ |w0〉⊗3 |μ2〉 = |w0〉|w1〉|w0〉⊗2

|μ3〉 = |w1〉⊗2|w0〉⊗2 |μ4〉 = |w0〉⊗2|w1〉|w0〉
|μ5〉 = |w0〉⊗2|w0〉|w1〉 |μ6〉 = |w0〉⊗2|w1〉⊗2.

(39)

Under the same assumptions as before, we want to discrimi-
nate the density matrices

ρ12 = 1

3

3∑
j=1

|μ j〉〈μ j | (40)

and

ρ34 = 1

3

6∑
j=4

|μ j〉〈μ j |. (41)

In order to apply Helstrom’s method, we have to diagonalize
ρ12 − ρ34, and this is a six-dimensional problem. One way to
proceed is to express the eigenstates as linear combinations
of the linearly independent vectors {|μ j〉 | j = 1, 2, . . . , 6},
|ζ 〉 = ∑6

j=1 d j |μ j〉. The equation (ρ12 − ρ34)|ζ 〉 = λ|ζ 〉 can
be expressed as M|ζ 〉 = λ|ζ 〉, where the matrix M, which is
expressed in a nonorthonormal basis, is

M =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 c2 c c2 c2 c3

c2 1 c c2 c2 c3

c c 1 c3 c3 c4

−c2 −c2 −c3 −1 −c2 −c
−c2 −c2 −c3 −c2 −1 −c
−c3 −c3 −c4 −c −c −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (42)

where c = cos θ . This matrix can be diagonalized using
MATHEMATICA, and the results inserted into the Helstrom for-
mula for the success probability. The success probability is
plotted for both the entangled state and the product state in
Fig. 2. As can be seen, the entangled state performs better
for values of θ less than approximately 0.7, and this corre-
sponds to the weak signal regime, which is the one of greatest
interest.

Since the entangled state was better at discriminating
which set of detectors fired for small theta, let us now expand
on it further. As previously noted, we are most interested in
the case of weak signals, which correspond to small θ . We
will add a third state, the one that corresponds to no detector

FIG. 2. Comparison of probability of successfully discriminating
between excitations in two groups of detectors with an entangled ini-
tial state and with a product initial state. For small θ , corresponding
to weak signals, the entangled state does better.

firing. That state is just ρ0 = |ψin〉〈ψin|, or, in matrix form,

ρ0 = 1

2

(
1 1
1 1

)
. (43)

The idea is to discriminate between ρ0, ρ12, and ρ34, and we
will assume each occurs with a probability of 1/3. In order to
do this, we will use the pretty good measurement.

The pretty good measurement allows us to find a good ap-
proximation to the minimum-error POVM for discriminating
general sets of states [24]. If we wish to discriminate the states
ρ j , j = 1, 2, . . . N , and ρ j occurs with probability p j , then the
pretty good measurement gives the POVM elements

� j = p jρ
−1/2ρ jρ

−1/2, (44)

where ρ = ∑N
j=1 p jρ j , and the probability of successfully

discriminating the states is

Ps =
N∑

j=1

p jTr(� jρ j ). (45)

Applying this to the current case, we have that the POVM
elements are

�0 = 1
3ρ−1/2ρ0ρ

−1/2

�12 = 1
3ρ−1/2ρ12ρ

−1/2

�34 = 1
3ρ−1/2ρ34ρ

−1/2, (46)

where ρ = (1/3)(ρ0 + ρ12 + ρ34), or

ρ =
(

1
2 a

a 1
2

)
, (47)

where a = 1
6 + 2

9 cos(2θ ) + 1
9 cos(4θ ). The eigenvalues of ρ

are (1/2) ± a and the eigenvectors are

1√
2

(
1
1

)
1√
2

(
1

−1

)
. (48)
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FIG. 3. Success probability of discriminating the detector states
in which the case where neither group of detectors fires is included.

We can then write

ρ−1/2 = 1

2[(1/2) + a]1/2

(
1 1
1 1

)

+ 1

2[(1/2) − a]1/2

(
1 −1

−1 1

)
. (49)

The POVM elements are

�0 = 1

6

1

(1/2) + a

(
1 1
1 1

)
, (50)

�12 = 1

12

[
1

(1/2) + a

(
2(1 + 3a) −1

−1 2(1 + 3a)

)

+ 2i

3

[2 sin(2θ ) + sin(4θ )]

[(1/4) − a2]1/2

(
0 1

−1 0

)]
, (51)

and �34 = �∗
12.

The success probability for this measurement is given by

Ps = 1
3 [Tr(�0ρ0) + Tr(�12ρ12) + Tr(�34ρ34)]. (52)

We find that Tr(�12ρ12) = Tr(�34ρ34) and

Tr(�0ρ0) = 1

(3/2) + 3a
Tr(�12ρ12) = 3a + (5/2)

6 + 12a

+ 1

6[(1/4) − a2]1/2

[
2

3
sin(2θ ) + 1

3
sin(4θ )

]2

.

(53)

This is plotted in Fig. 3. Note that the success probability is
lower than it was in the case when the no-firing state was not
included. This is to be expected, since increasing the set of
states to be discriminated increases the difficulty of the task.

IV. UNAMBIGUOUS DISCRIMINATION
AND CLUSTERS OF DETECTORS

We already looked at the unambiguous discrimination of
states of two detectors, and now we want to extend those
results to two clusters of two detectors. We are able to build
on our previous results to do this, and the form of the solu-
tions suggests how they can be extended to more than two
clusters. The object of this section is to compare the results of

FIG. 4. Failure probability Pf as a function of θ for the unam-
biguous discrimination of two groups of detectors. The solid curve is
for the POVM and the dashed curve is for measuring each detector
individually. As before, the failure probability remains close to one
for a significant range of θ , but the POVM performs better than
individual measurements.

a collective measurement to those of measuring each detector
individually.

We will start the system in the state |ψin〉 = |φ00〉12 ⊗
|φ00〉34. Let

R = I − |φ00〉〈φ00|. (54)

Note that R is a projection and that R|φ00〉 = 0. We now define
POVM elements

�0 = c0|φ⊥
00〉12〈φ⊥

00| ⊗ |φ⊥
00〉34〈φ⊥

00|
�12 = c1R12 ⊗ |φ⊥

00〉34〈φ⊥
00|

�34 = c1|φ⊥
00〉12〈φ⊥

00| ⊗ R34

�both = c2R12 ⊗ R34. (55)

The element �0 corresponds to no detectors being excited,
�12 corresponds to only detectors in cluster 12 being excited,
�34 corresponds to only detectors in cluster 34 being excited,
and �both corresponds to detectors in both clusters being
excited. The constants c0, c1, and c2 are determined by the
condition that the failure operator,

� f = I12 ⊗ I34 − �0 − �12 − �34 − �both, (56)

be a positive operator.
Now, let us split the individual Hilbert spaces into two

orthogonal subspaces, S = span {|φ00〉, |φ⊥
00〉} and S⊥, which

consists of all vectors orthogonal to S. Now consider a vector
in S⊥

12 ⊗ S⊥
34, which is a four-dimensional space. When acting

on this vector, only the first and last term of � f give a nonzero
contribution, and that contribution is 1 − c2 times the vector.
Therefore, � f has 1 − c2 as an eigenvalue and this eigenvalue
is fourfold degenerate. The condition that this eigenvalue be
greater than or equal to zero is just 1 � c2. Now, consider a
vector in S12 ⊗ S⊥

34, also a four-dimensional space. Only the
first, fourth, and fifth terms of � f give nonzero contributions,
and note that � f acting on a vector in S12 ⊗ S⊥

34 maps the
vector into S12 ⊗ S⊥

34. That means we can find four more
eigenvalues of � f by diagonalizing � f in the space S12 ⊗ S⊥

34.
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Doing so is relatively straightforward. Let |v〉 ∈ S⊥. Then,

� f |φ00〉12|v〉34 = |φ00〉12|v〉34 − c1〈φ⊥
00|φ00〉 |φ⊥

00〉12|v〉34

� f |φ⊥
00〉12|v〉34 = |φ⊥

00〉12|v〉34 − c1|φ⊥
00〉12|v〉34 − c2(|φ⊥

00〉
− 〈φ00|φ⊥

00〉|φ00〉12)|v〉34, (57)

and we see that since the vector |v〉34 is not affected by this
transformation, all we really have to do is diagonalize the part
of it in S. If we define our eigenstate to be |ζ 〉 = d0|φ00〉 +
d1|φ⊥

00〉, we want it to satisfy � f |ζ 〉12|v〉34 = λ|ζ 〉12|v〉34, and
the above equation then implies

d0 + d1c2z∗ = λd0

−d0c1z + d1(1 − c1 − c2) = λd1, (58)

where z = 〈φ⊥
00|φ00〉 = − sin2 θ . These equations can be put

in matrix form, yielding the characteristic equation for the
eigenvalues

λ2 − λ(2 − c1 − c2) + 1 − c1 − c2 + c1c2|z|2 = 0. (59)

For both eigenvalues to be positive, we need 2 − c1 − c2 � 0
and 1 − c1 − c2 + c1c2|z|2 � 0. Note that if the second con-
dition is satisfied, the first is too, so we really only have the
second condition here.

Similarly, we diagonalize the part of � f in S⊥
12 ⊗ S34, and

this yields the same condition on c1, c2, and c3 as above.
Now let us diagonalize � f in S12 ⊗ S34, which is the

span of |φ00〉12|φ00〉34, |φ00〉12|φ⊥
00〉34, |φ⊥

00〉12|φ00〉34, and

|φ⊥
00〉12|φ⊥

00〉34. We find that

� f |φ00〉12|φ00〉34 = |φ00〉12|φ00〉34 − c0z2|φ⊥
00〉12|φ⊥

00〉34

� f |φ00〉12|φ⊥
00〉34 = |φ00〉12|φ⊥

00〉34 − z(c0 + c1)|φ⊥
00〉12|φ⊥

00〉34

+ c1|z|2|φ⊥
00〉12|φ00〉34

� f |φ⊥
00〉12|φ00〉34 = |φ⊥

00〉12|φ00〉34 − z(c0 + c1)|φ⊥
00〉12|φ⊥

00〉34

+ c1|z|2|φ00〉12|φ⊥
00〉34, (60)

and

� f |φ⊥
00〉12|φ⊥

00〉34 = (1 − c0 − 2c1 − c2)|φ⊥
00〉12|φ⊥

00〉34

+ z∗(c1 + c2)(|φ00〉12|φ⊥
00〉34

+ |φ⊥
00〉12|φ00〉34)−c2(z∗)2|φ00〉12|φ00〉34.

(61)

Expressing the eigenvector of � f confined to S12 ⊗ S34 as

|ζ 〉 = d0|φ00〉12|φ00〉34 + d1|φ00〉12|φ⊥
00〉34

+ d2|φ⊥
00〉12|φ00〉34 + d3|φ⊥

00〉12|φ⊥
00〉34, (62)

we find the eigenvalue equation � f |ζ 〉 = λ|ζ 〉 can be ex-
pressed as

L

⎛
⎜⎜⎝

d0

d1

d2

d3

⎞
⎟⎟⎠ = λ

⎛
⎜⎜⎝

d0

d1

d2

d3

⎞
⎟⎟⎠, (63)

where the matrix L is given by

L =

⎛
⎜⎜⎜⎝

1 0 0 −(z∗)2

0 1 c1|z|2 z∗(c1 + c2)

0 c1|z|2 1 z∗(c1 + c2)

−c0z2 −z(c0 + c1) −z(c0 + c1) 1 − c0 − 2c1 − c2

⎞
⎟⎟⎟⎠. (64)

Defining x = 1 − λ, the characteristic equation of this
matrix is

0 = x4 − (c0 + 2c1 + c2)x3 + |z|2[2(c0 + c1)(c1 + c2)

− |z|2(c2c0 + c2
1

)]
x2 + |z|4c1

(
c2

1 − c0c2
)
x

+ |z|8c0c2c2
1, (65)

and the condition that the eigenvalues be non-negative is
equivalent to the condition that the roots of this equa-
tion satisfy x � 1. To solve this equation, we will adopt a
perturbative approach. For θ small, |z| is also small, so keep-
ing only terms up to first order in |z|2, we find two roots
of x = 0, and, setting b = c0 + 2c1 + c2, the two additional
roots

x = 1
2 {b ± [b2 − 8|z|2(c0 + c1)(c1 + c2)]1/2} < b. (66)

Therefore, if b � 1, the roots will satisfy x � 1. Taking into
account all the conditions on c0, c1, and c2, the choice c0 =
c1 = c2 = 1/4 will guarantee that the operator � f is non-
negative. This solution is not guaranteed to be optimal, but

it is sufficient to demonstrate that the collective measurement
outperforms individual measurements.

Now that we have the POVM we can calculate its suc-
cess probability, assuming each of the states |φ jk〉12 ⊗ |φlm〉34,
j, k, l, m = 0, 1 is equally likely. We find that

Ps = 1
16 sin4 θ

[(
1 + 1

2 sin2 θ
)2

+ (1 + cos2 θ )
(

3
2 + 1

4 sin2 θ
)]

. (67)

This can be compared to the case where each detector is
measured individually. For that measurement to succeed, all
four of the individual measurements must succeed. This will
happen with a probability of [see Eq. (17)]

Ps−ind =
(

sin2 θ

1 + cos θ

)4

. (68)

These are plotted in Fig. 4, and it can be seen that while both
curves are close to one for small θ , the failure probability of
the collective POVM measurement is lower than that provided
by measuring the detectors individually. While the POVM
measurement is not optimal, the fact that it does better than
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individual measurements does show that there is an advantage
to be gained by collective measurements.

V. CONCLUSION

We have examined a number of different scenarios involv-
ing detector networks. We began with only two detectors, and
our conclusion was that the best initial state of the detectors
when we wanted to find which detectors fired was a prod-
uct state. We then moved on to arranging the detectors into
groups, and here entangled initial states proved useful. We
considered two groups, each consisting of two detectors, and
we only wished to know in which group detectors fired and
not which individual detectors did so. The case in which only
one detector fires can be reduced to that of only two detectors,
and an entangled initial state is best. In the case in which
one or two detectors can fire in each group, we studied both

entangled and product initial states, and for small interaction
strengths, the entangled state was better. This was extended to
include the case where detectors in neither group fire. Most
of these studies made use of minimum error discrimination.
Finally, we looked at the case of unambiguous discrimination
with an initial product state, and compared a collective POVM
measurement to measuring each detector individually. The
POVM measurement was found to perform better. Our overall
conclusion is that when considering groups of detectors and
only requiring information about in which group a detection
occurred, entangled initial states and collective measurements
can provide an advantage.
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