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Spectral and temporal metrology with band-limited functions and finite-time measurements

Łukasz Rudnicki* and Tomasz Linowski
International Centre for Theory of Quantum Technologies, University of Gdańsk, Jana Bażyńskiego 1A, 80-309 Gdańsk, Poland
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We perform an analysis supplementing the metrology toolbox in the time-frequency domain. While the
relevant time-frequency-based metrological protocols can be borrowed from the spatial domain, where they
have recently been well developed, their ultimate practical usefulness is shown to be restricted by limits put
on the bandwidth of both the signal and measurements, as well as by the finite measurement time. As we
demonstrate for the well-known problem of multiparameter estimation for two incoherent, pointlike sources, the
impact of these experimental limitations on the optimal protocol’s efficiency can be detrimental. Nonetheless, we
propose necessary operational criteria for attainability of the quantum Cramér-Rao bound under the discussed
restrictions.
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I. INTRODUCTION

Time and frequency form a pair of variables which is
conjugate in the sense that, already in classical signal anal-
ysis, they are connected by Fourier transform. In the quantum
framework, their mutual relation is thus very similar to the
one between spatial variables: position and momentum, also
connected by the Fourier transform. However, while develop-
ing a time-frequency counterpart of a notion established for
the position-momentum pair, such as a toolbox for quantum
metrology, careful thought due to subtle differences between
the space-momentum regime and the time-frequency domain
is required.

Even though it is widely known that an operator corre-
sponding to time does not exist (this is because frequencies are
non-negative, in the same vein as energy), such a restriction
does not prevent a comprehensive phase-space description
of time and frequency in terms of the Wigner function [1].
Construction of a complete set of gates also does not pose
issues, since the gates can literally be adapted from the ones
in the position-momentum phase space [1].

As a consequence, the existing metrology toolbox devel-
oped for position and momentum can be also applied to
problems relying on time and frequency measurements. A
prime example of such a metrological scenario, which can
be solved due to quantum-inspired techniques, concerns two
closely separated, incoherent pointlike light sources [2–4],
relevant for, e.g., resolving starlight and exoplanet detection
[5,6]. In such a case, the usual goal is to estimate the sources’
relative separation [7–12] or, in the most general, multipa-
rameter case, their separation simultaneously with relative
brightness and the centroid [13,14]. As has been theoretically
proven and experimentally verified, the very same problem
phrased in the time domain admits an analogous solution
[15,16]. Similar conclusions apply to other scenarios, such as
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continuous variable tomography [17,18]: the same techniques
that are used to restrict tomography protocols to a finite spatial
subspace spanned by a fixed set of Hermite-Gauss (HG) or
Laguerre-Gauss modes can be applied to the time or fre-
quency domain, where the HG modes are a basic tool [19].
In short, from a practical point of view, the transfer of spatial
metrology techniques to the time-frequency domain is mostly
straightforward.

Nonetheless, the different character of the time-frequency
pair (in comparison with the position-momentum pair) does
impose certain limiting factors. Taking into account the exper-
imental conditions, in this work, we identify and analyze two
salient features of metrology in the time-frequency domain:

(i) finite bandwidth �,
(ii) finite measurement time 2T .
As we show, depending on the value of a single parameter

�T , the above restrictions can have significant impact on
the efficiency of time-frequency protocols borrowed from the
spatial domain, including the previously discussed multipa-
rameter estimation for two incoherent sources. To derive our
findings, we develop a set of tools for time-frequency metrol-
ogy based on so-called spheroidal wave functions known from
signal analysis [20–22].

This paper is organized as follows. In Sec. II, we review the
basic properties of the spherodial wave functions. In Sec. III,
we discuss the general metrology-oriented consequences of
time- and band-limiting. These results are then applied by
us in Sec. IV to derive limits on temporal superresolution
obtained from well-proven protocols known from the spatial
domain. Finally, in Sec. V, we provide an outlook.

II. PROLATE SPHEROIDAL WAVE FUNCTIONS

Spheroidal wave functions of various kinds are related to
the solutions of the Helmholtz equation in prolate or oblate
spheroidal coordinates. Due to their unique properties, they
are also ubiquitous in signal analysis, where they were intro-
duced by Slepian and Pollack [20]. There are many sources,
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summarizing various useful properties of these functions.
In this very brief introduction we rely on the pedagogical
presentation from Ref. [21], though we will slightly change
the notation to fit our problem.

Let � be a bandwidth and 2T be the length of time interval
[−T, T ]. Prolate spheroidal wave functions (PSWFs) ψn(c, t )
are solutions of the following integral equation:∫ T

−T
dz

sin [�(t − z)]

π (t − z)
ψn(c, z) = λn(c)ψn(c, t ), (1)

where n = 0, 1, 2, . . . and we stress that the domain of the
PSWFs is the whole real number line, not just the interval
[−T, T ]. The dimensionless parameter c = �T (not to be
confused with the speed of light), also sometimes called the
Slepian frequency, provides a single number characterizing
the system. If c � 1, potential effects due to time- and band-
limiting are negligible. Moreover, it is enough to relax just one
of these constraints to reach the limit c → ∞.

The eigenvalues 0 � λn � 1, given by the formula

λn(c) = 2c

π
[Rn0(c, 1)]2, (2)

are ordered decreasingly. In the limit c → ∞, they all ap-
proach the unity; however, the largest eigenvalue λ0 equals
approximately 0.999 already for c = 5.

The quantities Rn0(c, z) are radial spheroidal functions of
the first kind. While there are many platforms suitable for
numerical studies of these functions, for the sake of clarity
and consistency it is useful to mention that, in MATHEMATICA

[23], we have the correspondence

Rn0(c, z) ≡ SpheroidalS1[n, 0, c, z].

The wave functions ψn(c, z) are appropriately normal-
ized versions of Sn0(c, z/T ), with the latter being angular
spheroidal functions of the first kind. For completeness, let
us mention that in MATHEMATICA they are denoted by

Sn0(c, z) ≡ SpheroidalPS[n, 0, c, z],

provided that the normalization of the angular functions is
chosen to be ∫ 1

−1
dz[Sn0(c, z)]2 = 2

2n + 1
.

Here, we adopt the following normalization of the solutions
of Eq. (1):

ψn(c, z) =
√

λn(c)

T
∫ 1
−1 dz′[Sn0(c, z′)]2

Sn0

(
c,

z

T

)
,

so that the relations of “double orthogonality” hold:∫ ∞

−∞
dzψn(c, z)ψm(c, z) = δnm, (3)∫ T

−T
dzψn(c, z)ψm(c, z) = λn(c)δnm. (4)

From the latter relation we can see that the eigenvalues λn(c)
quantify the amount of the corresponding PSWF contained
within the interval [−T, T ].

An important property of PSWFs concerns their usage as
an orthonormal basis for band-limited functions. The function

f (t ) can be expanded as

f (t ) =
∞∑

n=0

fnψn(c, t ) (5)

with some coefficients fn if and only if its Fourier transform
f̃ (ω) is supported on [−�,�]. This means that Eq. (5) is
a natural way to impose the constraint of limited bandwidth
on a function, which we make frequent use of below. We
remark that the expansion is valid for every finite T , though
the coefficients fn do depend on the choice of the time limit.

To gain some intuition behind the above decomposition,
let us point out the asymptotic connection between the PSWF
and the Hermite-Gauss (HG) modes; the latter are explicitly
defined as

ψHG
n (c, z) =

( c

π

)1/4 e−cz2/2

√
2nn!

Hn
(√

cz
)
, (6)

where the variance of the modes equals σ 2 = 1/(2c) and
Hn(x) is the nth Hermite polynomial. Then, for c � 1, it is
known that [24]

ψn(c, z) ≈ ψHG
n (c, z). (7)

See Fig. 1 for an illustration of this effect. This result is a
special case of a more general branch-dependent asymptotic
expansion of the PSWFs. As we can see, if c is sufficiently
large, Eq. (5) is simply a standard decomposition of the func-
tion f (t ) in the basis formed by narrow HG modes.

III. METROLOGY WITH TIME AND BAND LIMITATIONS

A generic protocol of quantum metrology consists of a
probe state 	̂θ , in which parameters of interest [denoted by
θ = (θ1, θ2, . . .)] are being encoded, and a positive operator
valued measure (POVM), which describes the measurement
used to reveal the values of the parameters [25]. The latter, for
the sake of manageability, can be considered as consisting of
a finite number d of operators �̂i, for i = 0, . . . , d − 1. Due
to information completeness, the last operator reads �̂d =
1̂ − ∑d−1

i=0 �̂i.
Both the probe state 	̂θ and the POVM elements �̂i can be

decomposed in various ways in accord with the Schrödinger
mixture theorem, in particular, in terms of their eigendecom-
positions. Let us, therefore, write

	̂θ =
∑

k

	k|�k〉〈�k|, (8)

�̂i =
∑

l

�il |πil〉〈πil |. (9)

Information about the parameters θ can be then accessed
through probabilities

pi = Tr(	̂θ�̂i ) =
∑
k,l

	k�il |〈πil |�k〉 |2, (10)

for i = 0, . . . , d − 1. Obviously pd = 1 − ∑d−1
i=0 pi. We re-

mark that in optical considerations (like in the next section),
the probe states 	̂θ are typically restricted to mixtures of
single-photon states, with |�k〉 referring to single-photon
states of the associated temporal modes.
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FIG. 1. Comparison between the second prolate spheroidal wave function ψ2(c, t ) (blue, dashed line) and the second Hermite-Gauss mode
ψHG

2 (c, t ) (red line) for c ∈ {1, 5, 10, 20}, starting from the left and increasing to the right. The vertical axis is shared by all four plots. As we
can see, for c = 1 there is a severe discrepancy between the functions, while for c = 10 the difference is almost unnoticeable.

The efficiency of the protocol is quantified by the general-
ization of the Cramér-Rao bound [26–28] to multiparameter
estimation [29,30]. For a given measurement scheme, each of
the parameters can be, in principle, measured with uncertainty
not smaller than

θn �
√

(F−1)nn(θ), (11)

where F is the (classical) Fisher information matrix [31]:

Fnm =
∑

j

1

p j

∂ p j

∂θn

∂ p j

∂θm
. (12)

In the case of a single parameter, one can optimize over all
POVMs to obtain the quantum Fisher information matrix,
which saturates the Cramér-Rao bound, corresponding to the
ultimate resolution allowed by quantum mechanics [29,30].
In the case of more than one parameter, optimal measure-
ments for different parameters may be mutually incompatible,
preventing the Cramér-Rao bound from being saturated [32].
Finding the general necessary and sufficient conditions under
which the multiparameter quantum Fisher information matrix
is attainable remains an open problem in quantum information
theory [33].

To incorporate both practical limitations under considera-
tion, let us first note that in continuous variable systems, all
pure states |φ〉 can be further described in terms of wave func-
tions. For example, in the position domain, the wave function
is given by φ(x) = 〈x|φ〉. The same construction does hold in
the time or frequency domain [19]. Without loss of generality,
let us focus on the time domain.

Following the above notation, the probe state is described
by a collection of wave functions �k (t ), while the POVM
elements are given by πil (t ). Their properties are the same
as for the position domain, with one important caveat: lim-
ited bandwidth implies that all functions �k (t ) and πil (t ) are
band-limited too; i.e., their Fourier transforms “living” in the
frequency domain must be finitely supported. This assertion
holds independently of the assumed convex decompositions
of the probe state and the POVMs.

The restriction to band-limited functions can be explicitly
imposed on the wave functions associated with the probe and
with the POVMs by decomposing them according to Eq. (5):

�k (t ) =
∞∑

n=0

�knψn(c, t ), (13)

πil (t ) =
∞∑

n=0

πilnψn(c, t ). (14)

Then, due to the orthogonality of the PSWFs on the whole real
line (3), the probabilities (10) take the form

pi =
∑
k,l

	k�il

∣∣∣∣∣
∞∑

n=0

π∗
iln�kn

∣∣∣∣∣
2

. (15)

Note that for large c this expansion is the same as if we used
narrow HG modes.

In addition to finite bandwidth, we need to account for
the fact that the measurement occurs in a finite-time interval,
here denoted as [−T, T ]. To this end, we introduce a projector
onto this interval, denoted by �̂T . For an arbitrary pure state
|φ〉 with its wave function φ(t ), the action of this operator
gives the state �̂T |φ〉, whose wave function equals φ(t ) for
t ∈ [−T, T ] and vanishes outside of this interval (of course,
for T → ∞, the wave function is untouched). Such a wave
function is no longer normalized, and its norm is in general
smaller than 1. When calculating expectation values, we can
think of �̂T as being represented by

�̂T =
∫ T

−T
dt |t〉〈t |, (16)

with |t〉 being orthonormal vectors such that, for any |φ〉, we
have 〈t |φ〉 = φ(t ).

While the normalization of the probe state must be intact,
the same does not need to hold for the POVM elements. At
the end, the “leakage” element �̂d subsumes all information
which has not been captured by the measurements. In other
words, while we are not allowed to model the finite time of
the measurement by truncating the probe state, we can replace
the POVM elements (except the last one) according to the rule

�̂i → �̂T �̂i�̂T . (17)

To incorporate this replacement inside the measurement prob-
abilities we resort to the second orthogonality condition (4).
As a result, taking into account both limitations, the probabil-
ities (15) become

pi =
∑
k,l

	k�il

∣∣∣∣∣
∞∑

n=0

π∗
iln�knλn(c)

∣∣∣∣∣
2

, (18)

where we stress that the equation applies only to i =
0, . . . , d − 1. Note also the presence of λn(c) inside the ab-
solute value.

Physical intuition behind the steps taken above is the fol-
lowing. First, through Eqs. (13) and (14), we impose the
restriction of being band-limited to both the probe state and
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FIG. 2. Eigenvalues λn(c) shown as a function of n (on the hor-
izontal axis), for c such that �(2c)/π� = {5, 10, 20} (red circles,
green squares, and blue diamonds, respectively). As can be seen,
the eigenvalue is almost equal to unity starting from n = 0 and up
to approximately n = �(2c)/π�, around which we observe a sudden
decay involving three to four eigenvalues. The rest of the spectrum is
approximately vanishing.

the measurements. Without this assumption, we are, in princi-
ple, allowed to generate arbitrarily narrowly localized signals
(probe states) and perform arbitrarily narrow measurements.
The second step, captured by Eq. (17), accounts for the fact
that the measurement does not last “forever.” So even though
the signal can extend beyond (especially before) the measure-
ment starts, the measurement itself happens in a finite-time
window.

As previously discussed, the extent to which the two re-
strictions affect the measurement is ultimately captured by a
single parameter, the Slepian frequency c. In Ref. [16], for
example, the bandwidth and measurement time characteriz-
ing the experiment equaled 17 GHz and 20 µs, resulting in
c ≈ 105, way above the negligibility threshold c � 1. How-
ever, in that same paper, the true accessible timescale was
reported to be of the order of 30 fs, which would correspond
to the radically small c ≈ 10−4, given the same bandwidth.
With a growing need for enhanced measurement efficiency
and precision, we predict the latter regime to be gradually ap-
proached, necessitating taking the discussed restrictions into
account.

To infer meaningful conclusions of general validity we
resort to a very handy property of the eigenvalues λn(c). As is
well known [21], with the exception of relatively small values
of c, the first �(2c)/π� eigenvalues are very close to 1, while
the remaining eigenvalues quickly drop to 0. This behavior
can be observed in Fig. 2. Given this, our previous result (18)
can be faithfully approximated as

pi ≈
∑
k,l

	k�il

∣∣∣∣∣∣
�(2c)/π�∑

n=0

π∗
iln�kn

∣∣∣∣∣∣
2

. (19)

An underpinning of this equation can serve as a litmus paper
for optimality in a quantum metrology protocol, the latter
being understood as saturation of the quantum Cramer-Rao
bound (11).

To this end, given a probe state, one shall look for a POVM
saturating this bound. Assuming that such a POVM has been
found, we need to expand it in the PSWF basis. As long
as it is enough to consider only first �(2c)/π� terms of this
expansion, optimality is preserved. In other words, we shall
require that the optimal POVM fulfills

πil (t ) ≈
�(2c)/π�∑

n=0

πilnψn(c, t ). (20)

This is true because probabilities relevant for the discussed
measurement circumstances, which turn out to be well ap-
proximated by Eq. (19), do not differ from the probabilities
obtained in an infinitely long experiment. However, when
higher-order terms are necessary to describe the optimal
POVM elements faithfully, we know that optimality is lost.
What might be even more striking is that there is no other
choice for a POVM, which would be able to restore optimality.
Had that been possible, we would have already started with an
optimal POVM sufficiently well approximated by the terms of
the order not higher than �(2c)/π�.

IV. LIMITS ON TEMPORAL SUPERRESOLUTION

To demonstrate the potential effect of time- and band-
limiting in practical scenarios, we consider the problem of
resolving temporal separations between two pointlike incoher-
ent light pulses.

As discussed previously in the Introduction, in the absence
of time and band limitations, the scenario is fully analogous
to the well-known problem of resolving spatial separations
between light sources [7–14] and hence can be modeled in a
similar fashion [15,16]. Assuming that the pulses have relative
intensities ν and 1 − ν (so that the total intensity is normalized
to 1) and that they are temporally separated by τ with centroid
τ0, the total signal is represented by the following density
operator [14]:

	̂θ = ν|�+〉〈�+| + (1 − ν)|�−〉〈�−|, (21)

with the parameters of interest being θ = (τ, τ0, ν). Here,
|�±〉 are τ -displaced states of the amplitude point spread
function �(t ) describing the pulses, defined in such a way
that 〈t |�±〉 = �±(t ) = �(t − τ0 ∓ τ/2), with τ0 being the
signal’s centroid. See Fig. 3 for illustration. Note that �(t ) is
assumed to be real-valued. We remark that, although usually
only the separation is of practical significance, in practice it
cannot be reliably measured without simultaneously treating
the remaining two parameters, hence the need for multiparam-
eter estimation.

For the problem at hand, it was found in Ref. [14] that
the quantum Fisher information, saturating the Cramér-Rao
bound (11), is achieved with the following scheme. To start
with, one needs to define a basis in the signal space. A conve-
nient choice arises by considering the set {|�n〉}, defined by

〈t |�n〉 = ∂n

∂t n
�(t − τ0). (22)

From this, an orthonormal basis {|�n〉} is obtained by means
of the standard Gram-Schmidt process. Then, the optimal
POVM set consists of four elements: the first three ( j = 0,
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FIG. 3. Illustration of the problem of resolving temporal separa-
tions between two pointlike incoherent light pulses. Two incoherent
signals characterized by different intensities ν and 1 − ν are centered
at τ0 and temporally separated by τ (the latter assumed to be very
small). The goal is to simultaneously estimate all three parameters
with the best possible precision. In the optimal scheme, the mea-
surement consists of projections onto a set constructed from the
Hermite-Gaussian modes, like the one in Fig. 1.

1, and 2) being projectors �̂ j = |π j〉〈π j | of the form

|π j〉 ≡
3∑

k=0

Cjk|�k〉, (23)

and the last defined as �̂3 = 1̂ − �̂0 − �̂1 − �̂2. Here, Cjk =
〈�k|π j〉 are real coefficients, such that the POVMs are all non-
negative and linearly independent.

As was found in Ref. [14], provided a suitable choice of
alignment for the measurement apparatus and as long as1

C00 = C10 = 0, C01,C11,C02,C12 �= 0, (24)

the Fisher information obtained from this scheme differs
from the quantum Fisher information only by a multiplicative
factor of

A ≡ (C01C12 − C11C02)2

C2
01 + C2

11

� 1. (25)

Being dependent on four parameters, one may suspect that
the inequality can be easily saturated. Indeed, as reported in
Ref. [14], this can be done in infinitely many ways, mean-
ing that there are infinitely many measurements attaining the
quantum limit. As we will now show, for measurement that is
time- and band-limited, this is no longer possible.

To see this, let us first recall how the above limita-
tions affect the measurement. First, due to band-limiting, all
the time-dependent functions have to be decomposable into
PSWFs, as in Eq. (5). Notably,

�k (t ) =
∞∑

n=0

�knψn(c, t ). (26)

1According to Eq. (13) in Ref. [14], the nonvanishing coefficients
should be C20 and C21, rather than C02 and C12. However, it is clear
from their further results that the latter was meant.

Second, due to time-limiting, the POVMs should be replaced
according to the rule (17). In particular, this implies the fol-
lowing change in the coefficients defining the POVMs:

Cjk = 〈�k|π j〉 → 〈�k|�̂T |π j〉. (27)

This is all we need to prove our claim. Because all the coeffi-
cients are real, we have

C2
jk = CjkC

∗
jk = 〈�k|�̂T �̂ j�̂T |�k〉. (28)

In particular,

C2
01 + C2

11 = 〈�1|�̂T (�̂0 + �̂1)�̂T |�1〉 � 〈�1|�̂T |�1〉,
(29)

where the last step follows from the fact that �̂0 + �̂1 � 1̂.
The above inequality defines a two-dimensional sphere in the
space of (C01,C11) centered at (0,0) and with radius squared
r2

1 � 〈�1|�̂T |�1〉. This means that we can parametrize C01

and C11 as

C01 = r1 sin φ1, C11 = r1 cos φ1, (30)

where φ1 �= nπ/2, so that neither coefficient vanishes, as
required by Eq. (24). In full analogy, for some r2

2 �
〈�2|�̂T |�2〉 and φ2 �= nπ/2,

C02 = r2 sin φ2, C12 = r2 cos φ2. (31)

Substituting these into Eq. (25) and using elementary proper-
ties of trigonometric functions, we obtain

A = r2
2 sin2(φ1 − φ2) � r2

2

� 〈�2|�̂T |�2〉 =
∫ T

−T
dt �2

2(t ), (32)

where in the last step we used Eq. (16). According to the
Schwartz’s Paley-Wiener theorem [34], any function (other
than the constant zero function) whose Fourier transform has
finite support cannot be finitely supported itself. This means
that, since �2 is band-limited, the right-hand side above is
strictly smaller than unity for any finite T , finishing the proof.

A more nontrivial upper bound follows from explicit cal-
culation. Using Eqs. (26) and (4) in the last equation, we get

A �
∞∑

n=0

�2
2nλn(c). (33)

Since λn(c) are ordered decreasingly, we can bound the sum
from above by replacing all λn(c) with λ0(c), yielding

A � λ0(c). (34)

Therefore, in the presence of band- and time-limiting, the
Fisher information attained from the optimal scheme differs
from the ultimate precision allowed by quantum mechanics
by a multiplicative factor not larger than the eigenvalue λ0(c).
As seen from Fig. 4, despite approaching unity relatively
quickly with c, there is still a significant range of values of
this parameter, for which the implied limitations are severe.
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FIG. 4. The largest eigenvalue of PSWFs λ0(c) (red line), con-
stituting an upper bound on the multiplicative factor by which the
Fisher information in the optimal measurement scheme differs from
the ultimate quantum precision in the presence of band- and time-
limiting. For convenience, the ideal value of the multiplicative factor,
equal to 1, is denoted by a dashed black line. As seen, for values of c
close to 0, the limitations put on superresolution are severe.

Let us furthermore observe that the inequality (34) is sat-
urated only if �2m = δm,0, i.e., if �2(t ) coincides with the
zeroeth PSWF ψ0(c, t ). However, this is highly unlikely as,
by construction, �2(t ) is related to the second derivative of
the amplitude point spread function, which should be closer to
the second or higher PSWF. For example, in the well-known
case of a Gaussian point spread function, the ideal �2(t )
corresponds to the second Hermite-Gauss mode, which, due
to the asymptotic relation (7), must reduce to a function
much closer to the second than the zeroeth PSWF after
band-limiting. In short, we expect that in practice, the true
implications of time- and band-limiting should be even more
severe than demonstrated here. As such, in experiment, special
attention should be paid to extend both the bandwidth and the
time of each measurement, so as to maximize the efficiency-
lowering parameter c.

V. OUTLOOK

Virtually all techniques developed for metrology in the
spatial domain can be recontextualized to the time (or fre-
quency) domain in a way which, at least from the theory
perspective, is straightforward. However, our analysis, taking
into account potential experimental limitations, reveals that
during such adaptation the optimality of a given metrology
protocol is lost if the dimensionless product of the bandwidth
and the time of the measurement c (the Slepian frequency)
is too small in comparison with the number of PSWFs with
the same Slepian frequency necessary to faithfully reproduce
the optimal POVMs. This was demonstrated by us explicitly
for multiparameter estimation for two incoherent, pointlike
sources, where small values of c had a radical impact on
protocol efficiency.

While typical contemporary experiments should be char-
acterized by sufficiently large Slepian frequency, practical
problems, such as the need to maximize the number of mea-
surements performed during an allocated time window, or
simply lack of appropriate resources, may lead to extreme
experimental conditions, in which both the bandwidth and the
time of the measurement are pushed to their limits. It is clear
that, in such a regime, strategies different to the ones from the
spatial domain need to come into play. From a comparison
between Eqs. (18) and (19), we can see that a partial solution
to the problem is given by a careful preparation of the probe
state. If the latter is approximately decomposable into exclu-
sively low order PSWFs, the optimal POVMs will follow this
pattern, leading to high protocol efficiency. Specific methods
to counteract the detrimental effect of band- and time-limiting
shall be considered as the right target for further studies.
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