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Quantum circuit model for discrete-time three-state quantum walks on Cayley graphs

Rohit Sarma Sarkar 1,* and Bibhas Adhikari 2,†

1Department of Mathematics, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
2Fujitsu Research of America, Inc., Santa Clara, California 95054, USA

(Received 25 January 2024; accepted 3 July 2024; published 23 July 2024)

We develop qutrit circuit models for discrete-time three-state quantum walks on Cayley graphs corresponding
to dihedral groups DN and the additive groups of integers modulo any positive integer N . The proposed circuits
comprise of elementary qutrit gates such as qutrit rotation gates, qutrit-X gates and two-qutrit controlled-X
gates. First, we propose qutrit circuit representation of special unitary matrices of order three, and the block
diagonal special unitary matrices with 3 × 3 diagonal blocks, which correspond to multicontrolled X gates
and permutations of qutrit Toffoli gates. We show that one-layer qutrit circuit model needs O(3nN ) two-qutrit
control gates and O(3N ) one-qutrit rotation gates for these quantum walks when N = 3n. Finally we numerically
simulate these circuits to mimic its performance such as time-averaged probability of finding the walker at any
vertex on noisy quantum computers. The simulated results for the time-averaged probability distributions for
noisy and noiseless walks are further compared using KL divergence and total variation distance. These results
show that noise in gates in the circuits significantly impacts the distributions than amplitude damping or phase
damping errors.
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I. INTRODUCTION

Quantum computing has acquired stellar progress over re-
cent years showcasing quantum algorithms can have more
than polynomial speedups compared to their classical coun-
terparts. Hence, developing new efficient quantum algorithms
has been a perceptible goal for researchers over the years.
Quantum walks, a quantum analog of classical random walks,
represent a universal model for quantum computation [1–4]
and act as a great platform for designing fast quantum al-
gorithms. Indeed, it is important to highlight that there is
currently no established method for converting any quan-
tum algorithm into a quantum walk framework. However, for
quantum algorithms where their implementation using quan-
tum circuits is not straightforward, leveraging the quantum
circuit model of the quantum walk associated with the algo-
rithm offers a way to implement the quantum algorithm on
quantum hardware, such as noisy intermediate scale quantum
(NISQ) computers.

Similar to its classical counterpart, quantum walks on
graphs are divided into two models based on nature of time
evolution viz. discrete-time quantum walks (DTQWs) and
continuous-time quantum walks (CTQWs) [5,6]. Apart from
the difference in time evolution, DTQWs act on a larger
Hilbert space on account of requiring a quantum coin op-
erator, which defines the evolution dynamics of the walker.
Several works analyzing fundamental properties of DTQWs
(viz. periodicity and localization) exist for three-state DTQWs
on several graphs such as lines, cycles, mixed paths or cycles,
and Cayley graphs of non-Abelian groups viz. symmetric and
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dihedral groups [7–12]. In Refs. [13,14], the authors study
DTQWs on Cayley graphs of dihedral groups along with
their variants. For a detailed review on quantum walks, see
Ref. [6]. It is also of note that the discrete-time quantum walks
spread quadratically faster in position space in comparison to
classical random walks [6,15].

In order to study quantum walks, we approach it through
the quantum circuit model of quantum computation. In par-
ticular, we will consider qutrit circuits as opposed to the
primarily used qubit circuits to incorporate the degree of
freedom provided by the three-dimensional quantum coin
in our model. Over the years, one of the primary focus in
research has been directed towards construction of efficient
circuits for the quantum walk model. It is of note that unlike
binary system of classical computers, superconducting [16]
and trapped ion computers [17] theoretically posses discrete
energy levels of an infinite spectrum, which in turn, makes
them eligible to work on qudit systems. Many quantum walks
related experiments have been carried out on real quantum
hardware using qubits [16–20]. However, it is still a challenge
to carry out the same experiments efficiently on qutrits and
in turn, qudits [21]. Regardless, qutrit circuit model has been
the object of interest for researchers worldwide and treated
as an alternative to qubit circuits on account of requiring less
resources [22,23]. Hybrid quantum circuits using intermediate
qutrits instead of qubits and used for efficient decomposition
of n-qubit unitary gates has been proposed recently [22,24].
It has been observed that a logarithmic depth can be achieved
for circuit synthesis of various unitaries in order to obtain an
exponential reduction and requires a 70 times less number
of two-qudit gates as compared to two-qubit (CNOT) gates.
Further, qutrit-based processors has been theoretically able to
demonstrate error correction with small code size [25,26] and
it is also theorized to have significant impact in high-fidelity
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magic state distillation [27], and robust quantum cryptography
[28,29] and communication protocols [30]. A recent robust
benchmarking has been carried out on a five-qutrit processor
showing very low single-qutrit gate infidelity [31]. Works
pertaining to constructing circuits of quantum walks exist
in literature [32] and this has been extended to developing
qutrit circuits for three-state lazy quantum walk on the line
[33] and qudit circuits on a lattice for d-state DTQWs [34].
Works also exist in literature showcasing generalizations of
certain quantum algorithms (viz. Shor’s algorithm, Deustch-
Josza algorithm) using qutrits [35–37]. Recently a formulation
of QAOA for solving graph three coloring has been proposed
using qutrits, which showcase a significant decrease in circuit
depth and entangling gates per layer of the QAOA circuit [38].
Moreover, synthesis of certain qudit gates can be found in
Ref. [39].

Two-state DTQWs on cycle graphs using Hadamard coin
was first introduced in Ref. [1], where the authors studied the
limiting behavior of the walk. A three-state DTQW, known as
lively quantum walk on cycle graphs was introduced in Refs,
[9,40]. Periodicity property of these walks using a general
coin has been studied in Ref. [41]. One-dimensional DTQWs
on Cayley graphs of dihedral groups using the Hadamard coin
was first proposed by Dai et al. [42]. This was further extended
to three-state DTQW on Cayley graphs of dihedral groups by
Liu et al. [11] using Grover coin, in which they studied the
time-averaged probability of the walk. Recently, we have ex-
plored the periodicity and localization properties of DTQWs
on Cayley graphs corresponding to dihedral groups for gener-
alized Grover coins in Ref. [12]. Another model of DTQW
that is studied recently include DTQWs for Cayley graphs
of symmetric groups [7]. Other similar models of quantum
walks such as quantum walks on graphs that are generated by
free groups and virtually abelian quantum walks are analyzed
in Refs. [43,44]. Works involving study of periodicity and
localization of DTQWs in line graphs, mixed paths, and cycles
can be found in Ref. [10]. For we detailed surveys on DTQWs
and DTQWs on Cayley graphs, see Ref. [6].

In this paper, we develop qutrit quantum circuit models
for three-state DTQWs on Cayley graphs corresponding to
dihedral group DN and additive groups of integers modulo a
positive integer N , where 3n−1 < N � 3n for some positive
integer n � 1. For both the graphs, we consider the quantum
coins as arbitrary (special) unitary matrices of order 3. We
note that Cayley graphs of DN and ZN though planar in nature,
are not necessarily undirected. Hence, this work provides
qutrit circuit models for quantum walks on mixed (contain-
ing both undirected and directed edges) planar graphs. The
quantum circuits are defined through some elementary qutrit
gates, which include one-qutrit rotation gates and two-qutrit
controlled gates. A detailed analysis of circuit complexity of
the models is also given. The quantum circuits thus obtained
are numerically simulated based on well-known noise models
in order to investigate the performance of the circuit models
in noisy quantum computers by setting the coin operators as
generalized Grover coins, which are one-parameter one-qutrit
gates and can be expressed as linear sum of permutation
matrices. Since near-term quantum computers are prone to
noise, we incorporate varying degrees of error from very high
O(10−2) to low (10−6) orders of magnitude and numerically

observe how much does the erroneous time-averaged prob-
ability distribution deviate from that obtained via the ideal
noiseless quantum circuit. We infer from our observation that
gate noises have a significant impact on the circuit as com-
pared to idle errors. We reproduce the localization property of
these walks that exist in literature through the developed cir-
cuit models and also review the changes in the time-averaged
probability of finding the walker on the vertices of the graphs
due to the noises. We notice that the errors are to be kept
below O(10−6) for the erroneous time-averaged probability to
achieve low deviation with respect to its noiseless counterpart.
This analysis has promising impact on error mitigation strate-
gies for practical implementation of the proposed quantum
circuit models in near-term quantum computers.

The developed circuit models require quantum circuit rep-
resentation of generic one-qutrit gates that are special unitary
matrices, block unitary matrices with 3 × 3 diagonal blocks
that are special unitary matrices, and we provide a mechanism
for decomposing multicontrolled qutrit gates into elementary
qutrit gates, i.e., we provide a decomposition of generic one-
qutrit gates into sequence of qutrit gates that can be viewed as
an analog of ZY Z decomposition of special unitary matrices
of order 2. We further develop a scalable quantum circuit
implementation of block diagonal unitary matrices, which
correspond to multicontrolled qutrit gates.

The rest of the paper is organized as follows. In Sec. II,
we review the definitions and related mathematical details
of DTQWs on the Cayley graphs corresponding to DN and
ZN , and on elementary qutrit gates. Section III addresses
the quantum circuit implementation of generic special unitary
matrices of order 3, qutrit circuit models for the DTQWs.
The scalable quantum circuit representation of block diagonal
unitary matrices and representing multicontrolled qutrit gates
into elementary qutrit gates are given in Sec. IV. The circuit
complexity of the developed circuit model for the DTQWs
is also given in this section. Finally, we report the numerical
simulation results in Sec. V.

II. PRELIMINARIES

In this section, we briefly discuss Cayley graphs and the
DTQW models on these graphs from Refs. [11,12,42,45].
Then we provide an overview of qutrit gates that are building
blocks in the construction of quantum qutrit circuit models for
the DTQWs.

A. Cayley graphs

Given a group (G, ◦) and a generating set H ⊆ G of G,

the Cayley graph corresponding to the pair (G, H ) is defined
as Cay(G, H ) = (V, E ) where V is the set of vertices in G
and two elements a, b ∈ V are linked by a directed edge from
a to b if b = a ◦ c for some c ∈ H and this edge is denoted
by (a, b) [45]. In particular, if c = c−1 then the edge is both
way directed and hence we call it an undirected edge. Hence,
for underlying commutative groups, the corresponding Cayley
graphs are undirected.

For instance, if G = ZN , the additive group of integers
modulo N and H = {1,−1} then Cay(ZN , {1,−1}) is the
undirected cycle graph on N vertices. As an example we
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FIG. 1. Cay(Z4, {1, −1}) (top) and Cay(D4, {μ, ξ}) (bottom).

exhibit a cycle graph with four vertices or Cay(Z4, {1,−1})
in Fig. 1.

For a positive integer N, a dihedral group G is defined
by two elements, say μ, ξ called the generators of G such
that ξ 2 = μN = e, the identity element of the group and
μξμ = ξ . From now onward, we denote this dihedral group
as DN = 〈{μ, ξ}〉. Geometrically, DN is the group of sym-
metries of the regular N-gon [45]. The elements of DN is
denoted as bsar, where s ∈ {0, 1}, r ∈ {0, 1, . . . , N − 1}, and
b represents reflection about an axis of symmetry and the
element a represents a rotation by an angle of 2π

N about the
center. If s = 0, the N-gon admits rotation and the N-gon
admits a reflection if s = 1. Clearly, DN has 2N elements
which can be labeled as the ordered pairs (s, r), 0 � s � 1,

0 � r � N − 1, with {μ, ξ} a generating subset of DN . The
Cayley graph Cay(DN , {μ, ξ}) is a mixed graph meaning
there exist directed edges between vertices μr and μr+1,
i.e., μr → μr+1 along with ξμr+1 → ξμr . Further the undi-
rected edges exist between the vertices ξ r and ξμr, for all
0 � r � N − 1. We provide a labeling of the vertices, which
is (s, r), s ∈ {0, 1}, r ∈ {0, 1, . . . , N − 1} as described above.
Then Cay(DN , {μ, ξ}) can be depicted as two concentric di-
rected cycle graphs possessing opposite orientations, where
the vertices of the inner and outer cycle graphs are given by
(0, r) and (1, r), respectively, and the undirected edges link
the vertices (0, r) with (1, r). For example, in Fig. 1, we
exhibit Cay(D4, {μ, ξ}).

B. Discrete-time quantum walks on Cay(ZN, {1, −1})
and Cay(DN, {μ, ξ})

A DTQW on a graph is governed by a unitary operator
U = S(C ⊗ I ), which is applied repeatedly over time to the
initial state |ψ (0)〉 of the walker. The operator S is called

the shift operator and C is called the coin operator. Hence
U acts on the space HC ⊗ Hp where HC is the coin space
whose dimension gives the internal degree of freedom of the
quantum coin associated with the quantum walk and Hp is
the position space spanned by the quantum states localized at
the vertices of the graph. Here ⊗ denotes the tensor product
between vector spaces. The state of the quantum walk at time
t for an initial state |ψ (0)〉 is given by |ψ (t )〉 = Ut |ψ (0)〉.

Below we review the DTQWs on Cay(ZN , {1,−1}) and
Cay(DN , {μ, ξ}) from Refs. [11,12] and [9,41], respectively.

1. Three-state lively quantum walk model on Cay(ZN, {1,−1})

The vertices of the cycle graph Cay(ZN , {1,−1}) can be
represented as m, where 0 � m � N − 1 and there are undi-
rected edges between the vertices labeled m and m ± 1. The
lively DTQW was first introduced in Ref. [40] using the
Grover coin. Later, we explored the periodicity properties of
these walks in Ref. [41] by considering the coin operators as
generalized Grover coins.

The lively DTQW on cycle graph [41] is defined on
the Hilbert space H = HC ⊗ HV ∈ C3 ⊗ CN where HC =
span{|0〉3 , |1〉3 , |2〉3} such that {|l〉3 |l = 0, 1, 2} is the canon-
ical basis of C3, the coin space and HV is the Hilbert space
spanned by the vertices |m〉N ∈ V, 0 � m � N − 1 of the cy-
cle graph Cay(Zn, {1,−1}), which are, in turn, the canonical
basis of CN . Hence, for lively quantum walks, the proposed
quantum walk corresponds to the unitary matrix U = S(C ⊗
IN ), which evolves in time where C = [ci j] ∈ U (3) and S is
the shift operator, which is as follows.

S = |0〉3 〈0|3 ⊗
N−1∑
m=0

|m〉N 〈m + 1(mod N )|N

+ |1〉3 〈1|3 ⊗
N−1∑
m=0

|m〉N 〈m − 1(mod N )|N

+ |2〉3 〈2|3 ⊗
N−1∑
m=0

|m + a(mod N )〉N 〈m|N (1)

for some liveliness factor a � 	N
2 
, i.e., the walker moves

right,left or can jump to another vertex depending on the coin
states. When a = 0, the walk takes the form of the standard
lazy three state quantum walk, i.e., the walker may also stay
put instead of jumping off to another vertex.

Hence, the discrete-time evolution of the walk is defined
by |ψ (t )〉 = Ut |ψ (0)〉 for an initial state |ψ (0)〉 ∈ H. Conse-
quently,

|ψ (t )〉 = Ut |ψ (0)〉

=
N−1∑
m=0

∑
l∈{0,1,2}

ψ (l, m, t ) |l〉3 ⊗ |m〉N

=
N−1∑
m=0

|ψ (m, t )〉 ⊗ |m〉N , (2)

where
∑2

l=0

∑N−1
m=0 |ψ (l, m, t )|2 = 1.
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2. Three-state quantum walk model on Cay(DN, {μ, ξ})

Similar to lively quantum walk in cycles, the three-state
DTQW on Cay(DN , {μ, ξ}) is defined on the Hilbert space
H = HC ⊗ HV where HC = span{|0〉3 , |1〉3 , |2〉3} is the coin
space and HV is the Hilbert space spanned by the vertices of
|(s, r)〉 ∈ V of Cay(DN , {μ, ξ}).

Hence, HV = span{|s〉2 |r〉N |s ∈ {0, 1}, r ∈
{0, 1, . . . , N − 1}} ∼= C2 ⊗ CN . Thus the vertex set is given
by

{
rotation without reflection︷ ︸︸ ︷

|0〉2 |0〉N , |0〉2 |1〉N , . . . |0〉2 |N − 1〉N ,

rotation after reflection︷ ︸︸ ︷
|1〉2 |0〉N , |1〉2 |1〉N , . . . |1〉2 |N − 1〉N },

where the first qubit |.〉2 represents the reflection qubit such
that {|s〉2 | s = 0, 1} is the canonical basis of C2 and {|r〉N |0 �
r � N − 1} is the canonical basis of CN . It is evident that
the vertices labeled (0, r) are the rth vertices and the vertices
labeled (1, r) are the (N + r)th vertices, 0 � r � N − 1. The
proposed quantum walk evolves via the following unitary
matrix U = S(C ⊗ I2 ⊗ IN ), where C = [ci j] ∈ U (3) and S is
the shift operator defined in the following way. We follow the
walk described in Refs. [11,12], i.e., the walker performs one
rotation in the direction of the edges of the cycle on which the
walker resides if the coin state is |0〉3. If the reflection state is
|0〉2, the walker moves along the inner directed cycle and if
the reflection state is |1〉2, the walker moves along the outer
directed cycle. The walker remains at the same position if the
coin state is |1〉3, and walker jumps cycles via one reflection
if the coin state is |2〉3.

Then the shift operator is defined as

S = |0〉3 〈0|3 ⊗ |0〉2 〈0|2 ⊗
N−1∑
r=0

|r〉N 〈r − 1(mod N )|N

+ |0〉3 〈0|3 ⊗ |1〉2 〈1|2 ⊗
N−1∑
r=0

|r〉N 〈r + 1(mod N )|N

+ |1〉3 〈1|3 ⊗ |0〉2 〈0|2 ⊗
N−1∑
r=0

|r〉N 〈r|N

+ |1〉3 〈1|3 ⊗ |1〉2 〈1|2 ⊗
N−1∑
r=0

|r〉N 〈r|N

+ |2〉3 〈2|3 ⊗ |0〉2 〈1|2 ⊗
N−1∑
r=0

|r〉N 〈r|N

+ |2〉3 〈2|3 ⊗ |1〉2 〈0|2 ⊗
N−1∑
r=0

|r〉N 〈r|N . (3)

The discrete-time evolution of the walk is defined by
|ψ (t )〉 = Ut |ψ (0)〉 for an initial state |ψ (0)〉 ∈ H where U
is a 6N × 6N matrix. Consequently,

|ψ (t )〉 = Ut |ψ (0)〉

=
∑
s=0,1

N−1∑
r=0

∑
l∈{0,1,2}

ψ (l, s, r, t ) |l〉3 ⊗ |s〉2 ⊗ |r〉N , (4)

where
∑2

l=0

∑1
s=0

∑N−1
r=0 |ψ (l, s, r, t )|2 = 1.

Remark 1. Note that constructing a qutrit circuit for this
walk is challenging since the reflection state is two dimen-
sional, i.e., it represents a qubit. However, we will see later in
Sec. III that constructing a circuit by taking the reflection state
as a qutrit instead of qubit preserves the walk.

C. Qutrit rotation gates, qutrit X gates and two-qutrit
controlled gates

Now, we recall some elementary quantum gates for qutrits
such as qutrit rotation gates, qutrit X gates along with the
two-qutrit controlled gates, which will play the pivotal role
in developing a circuit model of the quantum walks discussed
above. Obviously, the qubit rotation gates are given by

RX (θ ) =
[

cos θ i sin θ

i sin θ cos θ

]
, RY (θ ) =

[
cos θ sin θ

− sin θ cos θ

]
,

RZ (θ ) =
[

eiθ 0
0 e−iθ

]
, (5)

which represent the rotation of a qubit on the Bloch sphere
around an angle θ with respect to the X , Y , and Z axes,
respectively. Here i = √−1.

Now since a qutrit has three dimensions, we use the
following elementary qutrit gates, which were first used in
Refs. [39,46]. These gates are formed by applying the qubit
rotation gates on the subspace of dimension 2 for a qutrit
keeping the remaining dimension unchanged. Thus we have
the following qutrit rotation gates:

RX01(θ ) =
⎡
⎣ cos θ i sin θ 0

i sin θ cos θ 0
0 0 1

⎤
⎦, RX12(θ ) =

⎡
⎣1 0 0

0 cos θ i sin θ

0 i sin θ cos θ

⎤
⎦, RX02(θ ) =

⎡
⎣ cos θ 0 i sin θ

0 1 0
i sin θ 0 cos θ

⎤
⎦,

RY 01(θ ) =
⎡
⎣ cos θ sin θ 0

− sin θ cos θ 0
0 0 1

⎤
⎦, RY 12(θ ) =

⎡
⎣1 0 0

0 cos θ sin θ

0 − sin θ cos θ

⎤
⎦, RY 02(θ ) =

⎡
⎣ cos θ 0 sin θ

0 1 0
− sin θ 0 cos θ

⎤
⎦

RZ01(θ ) =
⎡
⎣eiθ 0 0

0 e−iθ 0
0 0 1

⎤
⎦, RZ12(θ ) =

⎡
⎣1 0 0

0 eiθ 0
0 0 e−iθ

⎤
⎦, RZ02(θ ) =

⎡
⎣eiθ 0 0

0 1 0
0 0 e−iθ

⎤
⎦. (6)
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Thus if p, q, k denote the three dimensions of a qubit then
RF pq(θ ) denotes the F qubit (subspace generated by p, q)
rotation of the qutrit keeping the dimension k fixed. We also
use the following gate in sequel:

S(θ ) =
⎡
⎣eiθ 0 0

0 eiθ 0
0 0 eiθ

⎤
⎦. (7)

We also recall the following single-qutrit gates considered
in Ref. [33] as follows:

X0,1 =
⎡
⎣0 1 0

1 0 0
0 0 1

⎤
⎦, X1,2 =

⎡
⎣1 0 0

0 0 1
0 1 0

⎤
⎦, (8)

X0,2 =
⎡
⎣0 0 1

0 1 0
1 0 0

⎤
⎦, X+1 =

⎡
⎣0 0 1

1 0 0
0 1 0

⎤
⎦,

X+2 =
⎡
⎣0 1 0

0 0 1
1 0 0

⎤
⎦.

Obviously, Xp,q gate maps |p〉3 (|q〉3) to |q〉3 (|p〉3) where for
p, q ∈ {0, 1, 2} and X+a gate is a linear transformation from
|p〉3 to |a + p mod 3〉3. We will call these single-qutrit gates
as qutrit-X gates where X ∈ {X0,1, X1,2, X0,2, X+1, X+2}.

Finally, we discuss two-qutrit controlled-X gates repre-
sented by a quantum circuit given by

(9)

Obviously, this gate applies one-qutrit X gate on the target
(second) qutrit when the control (first) qutrit is a ∈ {0, 1, 2}.
When a = 2, such a gate is called Muthukrishnan-Stroud gate
[47]. It is also of note that the circuit

(10)

is equivalent to

(11)

Similarly, the circuit

(12)

is equivalent to

(13)

We denote a n-qutrit gate, also known as n-qutrit
controlled-U gate where U is a (n − 1)-qutrit gate as follows:

(14)

Another gate we will introduce in this work is
the qudit SWAP gate, i.e., given 0 � a � b � d − 1,
|a〉d |b〉d →︸︷︷︸

SWAP(d )
a,b

|b〉d |a〉d . The SWAP(d )
a,b is denoted by the

following circuit:

(15)

For d = 3, we get the qutrit version of the SWAP gate. It is
of note that the SWAP(d )

a,b gate can be constructed using three
controlled qudit-X gates in the following way,

(16)

where Xa,b gate maps |a〉d to |b〉d and |b〉d to |a〉d .

III. QUTRIT CIRCUIT MODELS FOR THREE-STATE
QUANTUM WALKS

It is of note that, the coin operator in a three-state quan-
tum walk or a lively quantum walk is a single-qutrit gate.
Hence, it is a perceptible goal to provide a qutrit circuit
model in order to realize the three-state DTQWs defined in
Sec. II B on Cay(DN , {μ, ξ}) and Cay(ZN , {1,−1}), where
3n−1 < N � 3n for some positive integer n. In this section,
we will construct qutrit quantum circuit for the said quantum
walks using single-qutrit rotation gates and qutrit controlled-
X gates or Muthukrishnan-Stroud gate (M-S gate). Our circuit
construction is similar to the model proposed for two-state
DTQWs on a cycle using Hadamard coins in Ref. [32].

First we provide a theorem that deals with decomposing
generic single-qutrit gate into single-qutrit rotation gates in
the following section. A similar technique is used in Ref. [48]
and a decomposition approach using Cartan algebra is carried
in Ref. [39].

A. Decomposition of generic qutrit gates
into qutrit-rotation gates

It is well known that for a vector
[

a
b

]
∈ C2, there

exists a 2 × 2 special unitary matrix
[

a b
−b a

]
such that

1√
|a|2+|b2|

[
a b

−b a

][
a
b

]
=
[√

|a|2 + |b|2
0

]
.

It is also obvious that any 3 × 3 unitary matrix is a single-

qutrit gate. Let the matrix be C =
[

c11 c12 c13
c21 c22 c23
c31 c32 c33

]
∈ SU(3)

such that each ci j is of the form ri je−iαi j where ri j � 0 and
αi j ∈ R. Hence, in this section, we provide a decomposition
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of generic unitary matrix, i.e., a single-qutrit gate into product
of rotation gates. We state the following theorem.

Theorem 1. Any 3 × 3 special unitary matrix
U = [ui j]3×3 has the following parametric representation:

u11 = cos θ1 cos θ2e−iφ1

u12 = − sin θ1 sin θ3ei(ψ1−ψ3 ) − cos θ1 sin θ2 cos θ3ei(ψ2−φ1−φ3 )

u13 = − sin θ1 cos θ3ei(φ3+ψ1 ) + cos θ1 sin θ2 sin θ3ei(ψ2−φ1+ψ3 )

u21 = sin θ2e−iψ2

u22 = cos θ2 cos θ3e−iφ3

u23 = cos θ2 sin θ3e−i(ψ3−π )

u31 = sin θ1 cos θ2e−iψ1

u32 = cos θ1 sin θ3ei(φ1−ψ3 ) − sin θ1 sin θ2 cos θ3ei(ψ2−ψ1−φ3 )

u33 = cos θ1 cos θ3ei(φ1+φ3 ) + sin θ1 sin θ2 sin θ3ei(−ψ1+ψ2+ψ3 )

where θ1, θ2, θ3, φ1, φ3, ψ1, ψ2, ψ3 ∈ R. Besides, U has the
following factorization through qutrit-rotation gates:

U = RZ02

(−φ1 + ψ1

2

)
RY 02(−θ1)RZ02

(−φ1 − ψ1

2

)

RZ01

(
ψ2

2

)
RY 01(−θ2)RZ01

(−ψ2

2

)

RZ12

(−φ3 + ψ3

2

)
RY 12(−θ3)RZ12

(−φ3 − ψ3

2

)
.

Proof. See the discussion in Appendix A.
Remark 2.
(1) The Theorem 1 can be considered as qutrit analog of

the qubit ZY Z decomposition.
(2) It is to be noted that the matrix U in Theorem 1,

requires eight parameters, which is precisely the dimension
of the manifold SU(3).

(3) Given any matrix from SU(3), the nine equations
are easily solvable. For example, let us take V = [vi j]3×3 ∈
SU(3). Then through some computation, we obtain

θ2 = arcsin |v21|, ψ2 = arctan arg(v21)

θ1 = arccos
|v11|

cos θ2
, where θ2 = π

2

φ1 = − arctan arg(v11), ψ1 = − arctan arg(v31)

θ3 = arccos
|v22|

cos θ2
, where θ2 = π

2

φ3 = − arctan arg(v22), ψ3 = − arctan arg(v23) + π.

We will take ψ3 = 0, θ1 = π
2 = θ3, when θ2 = π

2 .

(4) Further, any 3 × 3 unitary matrix can be written as
eiαU for some real α where U ∈ SU(3). Thus any unitary
matrix has a similar decomposition.

(5) Given a 3 × 3 diagonal matrix D =
diag(eiα, eiβ, eiζ ) ∈ U (3), α, β, ζ ∈ R. Then

D = exp

(
α + β + ζ

3
I

)
RZ01

(
2α − β − ζ

3

)

RZ12

(
α + β − 2ζ

3

)
.

It is also of note that a 3 × 3 diagonal unitary matrix of
the form D̃ = diag(eiα, eiβ, e−i(α+β ) ) ∈ SU(3), α, β ∈ R can
be decomposed as

D̃ = RZ01(α)RZ12(α + β ) = RZ02(α)RZ12(β )

= RZ02(α + β )RZ01(−β ).

B. Qutrit circuit model for DTQW on Cay(DN, {μ, ξ})

Recall that the vertices of Cay(DN , {μ, ξ}) are labeled
as (s, r), s ∈ {0, 1}, r ∈ {0, 1 . . . , N − 1} where s denotes the
reflection and r denotes rotation. Thus the position space
is given by the Hilbert space HV = span{|s〉2 |r〉N : s ∈
{0, 1}, r ∈ {0, 1, . . . , N − 1}} ∼= C2 ⊗ CN . Now in order to
incorporate this labeling into the proposed qutrit circuit
model, we consider the quantum states corresponding to
the vertex set as {|s〉3 |rn〉3 |rn−1〉3 . . . |r1〉3 : s ∈ {0, 1}, r j ∈
{0, 1, 2}, j ∈ {1, 2, . . . , n − 1}} where the ternary represen-
tation of r is given by r =∑n

j=1 r j3 j−1, i.e., |r〉N =
|rn〉3 |rn−1〉3 . . . |r1〉3. It is also of note that the reflection
state |s〉2 belongs to C2, which we consider as a qutrit,
i.e., |s〉3. Hence, |s〉3 ∈ {|0〉3 , |1〉3 , |2〉3}, the canonical ba-
sis sates of C3. Thus, from our construction, we label the
rth vertex of the inner cycle of Cay(DN , {μ, ξ}) labeled by
(0, r) as |0〉3 |rn〉3 |rn−1〉3 . . . |r1〉3 where 0 � r j � 2; and the
state |1〉3 |rn〉3 |rn−1〉3 . . . |r1〉3 represents the (N + r)th vertex
labeled by (1, r), i.e., the rth vertex in the outer cycle of
Cay(DN , {μ, ξ}). Because of such qutrit circuit representation
of vertices, it is evident that n + 1 qutrits are required to
describe the position space, in which the first qutrit represents
the reflection state and the rest n qutrits for the reflection state.
We will use another qutrit for the quantum coin state from C3.
Hence, for the quantum circuit model of the quantum walk,
n + 2 qutrits are required, i.e., the unitary matrix correspond-
ing to the qutrit quantum circuit is of order 3n+2.

Moreover, the circuit should be constructed in such a way
that the input states of the form |c〉3 |2〉3 |rn〉3 |rn−1〉3 . . . |r1〉3
remain invariant where |c〉3 ∈ HC denotes the coin state
such that c ∈ {0, 1, 2}, r j ∈ {0, 1, 2}, j ∈ {1, 2, . . . , n}. By
constructing the circuit in such a way, we will prove that the
quantum circuit thus formed does not impede on the structure
of the walk. First, we construct the following qutrit quantum
gates using a similar approach used in Ref. [32].

INCREMENT:

(17)

and
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DECREMENT:

(18)

Clearly, these gates comprise of multicontrolled qutrit gates.
Each string of qutrits representing the rotation state of the ver-
tex after passing through increment or decrement will always
give us the immediate adjacent rotation state, i.e.,

|rn〉3 |rn−1〉3 . . . |r1〉3
︷︸︸︷→

increment
|r′

n〉3 |r′
n−1〉3 . . . |r1〉3

|rn〉3 |rn−1〉3 . . . |r1〉3 →︸︷︷︸
decrement

|r̃n〉3 |r̃n−1〉3 . . . |r̃1〉3

where
∑n

j=1 r′
j3

j−1 = (r + 1) mod N and
∑n

j=1 r̃ j3 j−1 =
(r − 1) mod N . It is also evident that when the coin state is
|0〉3 and reflection state is |0〉3 then using the INCREMENT gates
on the rotation states, the state |0〉3 |0〉3 |rn〉3 |rn−1〉3 . . . |r1〉3
is mapped to |0〉3 |0〉3 |r′

n〉3 |r′
n−1〉3 . . . |r′

1〉3. Similarly,
when the coin state is |0〉3 and reflection state is |1〉3,
then using the DECREMENT gates on the rotation states,
the state |0〉3 |1〉3 |rn〉3 |rn−1〉3 . . . |r1〉3 is mapped to
|0〉3 |1〉3 |r̃n〉3 |r̃n−1〉3 . . . |r̃1〉3. Besides, the INCREMENT and
DECREMENT gates also maintain a periodic condition of the
walk, which means |0〉3 |0〉3 . . . |0〉3 and |2〉3 |2〉3 . . . |2〉3
are adjacent rotation states. Hence these gates map rth
[(N + r)th] vertex to (r ± 1)th [(N + r ± 1)th] vertex.

Now, using all previous circuits discuss above, we present
the circuit model for three-state quantum walks on Cayley
graph of dihedral group Cay(DN , {μ, ξ}) where N = 3n as
follows:

(19)

where C and C
 are the coin operator and its inverse, respec-
tively.

From our proposed circuit, we observe the following.
(1) Let N = 27 and the walker starts with the state |0〉⊗5

3 at
t = 0. Let the coin C = (ci j )3×3. Then at t = 1, the walker has
the state |ψ (1)〉 = c11 |0〉3 |0〉3 |001〉3 + c21 |1〉3 |0〉3 |000〉3 +
c31 |2〉3 |1〉3 |000〉3. This is due to the fact that C |0〉3 =
c11 |0〉3 + c21 |1〉3 + c31 |2〉3. Now since the second qutrit is
not |2〉3, it remains unaffected through the second gate in the
circuit and then the X0,1 gate applies when the first qutrit
is |2〉3. The final two gates act as increment or decrement
operators when the first two qutrits of the state of the walker
are |0〉3 |0〉3 and |0〉 |1〉3, respectively, and we get our result.

Similarly for t = 2, we get the following state:

|ψ (2)〉 = c2
11 |0〉3 |0〉3 |002〉3 + c11c21 |1〉3 |0〉3 |001〉3

+ c11c31 |2〉3 |1〉3 |001〉3 + c12c21 |0〉3 |0〉3 |001〉3

+ c22c21 |1〉3 |0〉3 |000〉3 + c32c21 |2〉3 |1〉3 |000〉3

+ c31c13 |0〉3 |1〉3 |222〉3 + c31c23 |1〉3 |1〉3 |000〉3

+ c31c33 |2〉3 |0〉3 |000〉3 .

The probability of finding the walker at the starting point
(0,0), i.e., |0〉3 |000〉3 at t = 2 is |c22c21|2 + |c31c33|2.

When N = 25, for t = 2, the state becomes

|ψ (2)〉 = c2
11 |0〉3 |0〉3 |002〉3 + c11c21 |1〉3 |0〉3 |001〉3

+ c11c31 |2〉3 |1〉3 |001〉3 + c12c21 |0〉3 |0〉3 |001〉3

+ c22c21 |1〉3 |0〉3 |000〉3 + c32c21 |2〉3 |1〉3 |000〉3

+ c31c13 |0〉3 |1〉3 |221〉3 + c31c23 |1〉3 |1〉3 |000〉3

+ c31c33 |2〉3 |0〉3 |000〉3 .

It is easy to see that for t = 1 and t = 2, the final state be-
comes a linear combination of three and nine quantum states,
respectively, and the walker passes over three and six distinct
vertices, respectively.

(2) The input state |l〉3 |2〉3 |rn〉3 . . . |r1〉3 is invariant for all
l ∈ {0, 1, 2}, r j ∈ {0, 1, 2}, j ∈ {1, . . . , n}.

(3) The quantum circuit is scalable, i.e., using the cir-
cuit for DTQW on Cay(D3n , {μ, ξ}), one can construct the
circuit for DTQW on Cay(D3n+1, {1,−1}), by addition of
multicontrolled qutrit-X gates to construct INCREMENT and
DECREMENT gates.

The quantum circuit proposed so far can also be modi-
fied for Cay(DN , {μ, ξ}), 3n−1 < N < 3n. The main idea is
to incorporate necessary qutrit controlled gates in between
the INCREMENT and DECREMENT gates so that the periodic
conditions are suitably modified. Let, N = k < 3n and hence,
k =∑n

j=1 3 j−1k j where k j ∈ {0, 1, 2}, 0 � j � n and not all
k j’s are equal to 2. Then we assign necessary multicontrolled
qutrit-X gates in order to modify the periodic conditions so
that the |s〉3 |kn〉3 . . . |k1〉3 and |s〉3 |0〉3 . . . |0〉3 are adjacent
vertices for s ∈ {0, 1}. Let us consider |k′

n〉3 . . . |k′
1〉3 such that

|k′
n〉3 . . . |k′

1〉3 and |kn〉3 . . . |k1〉3 differ in exactly one qutrit. We
call these vertices as Hamming-1 vertices. Hence, the main
idea is to find suitable set of multicontrolled qutrit-X gates
such that we can construct a mapping between the vertices in
the following way,

|0〉3 |kn〉3 . . . |k1〉3 �→ |0〉3 |k′
n〉3 . . . |k′

1〉3

. . . �→︸ ︷︷ ︸
Hamming-1 vertices

|0〉3 |2〉3 . . . |2〉3

�→ |0〉3 |0〉3 . . . |0〉3

|1〉3 |0〉3 . . . |0〉3 �→ |1〉3 |2〉3 . . . |2〉3

. . . �→︸ ︷︷ ︸
Hamming-1 vertices

|1〉3 |k′
n〉3 . . . |k′

1〉3

�→ |1〉3 |kn〉3 . . . |k1〉3 .

The mapping from one state |kn〉3 . . . |k1〉3 to another state
|0〉3 . . . |0〉3 by creating a sequence of Hamming-1 vertices, is
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similar to the construction of qubit circuits that maps one state
to another through multicontrolled CNOT gates using Gray
codes [49].

For any N , the basic idea is to incorporate a multicontrolled
qutrit-X gate with the target qutrit located at the single posi-
tion where the two adjacent Hamming-1 vertices differ, and
then undoing the process. To be more descriptive, suppose we
are given a starting state a = |an〉3 . . . |a1〉3 and ending state
b = |bn〉3 . . . |b1〉3 and our aim is to construct a quantum gate
that maps a to b and b to a. Then we want to find a sequence
of Hamming-1 vertices such that

a �→ a(1), . . . . . .︸ ︷︷ ︸
Hamming-1 vertices

, a(n−1) �→ a(n) = b.

Thus, first we will find a multicontrolled qutrit-X gate
that swaps a and a(1). Suppose a and a(1) differ at the ith
digit. Then a multicontrolled X gate can be used to flip the
qutrit on the ith position. The multicontrolled qutrit-X gate is
constructed keeping in mind the values of the other qutrits
being same to those in both a and a(1). This process can
be repeated for a(1) and a(2) until a multicontrolled qutrit-X
gate is obtained that maps a(n−1) to b and vice versa. Hence,
using this construction, one can map from a to b. In order to
complete the circuit however, the circuit must also map from
b to a. A similar construction can be designed as follows.
Suppose b and a(n−1) differ in the jth qutrit. Then apply a
multicontrolled qutrit-X gate with the jth qutrit as target and
the gate being conditional on the other qutrits having the same
values as in both b and a(n−1). Hence, continuing this way, a
map can be constructed in order to obtain the sequence

b �→ a(n−1), . . . . . .︸ ︷︷ ︸
Hamming-1 vertices

, a(1) �→ a.

Let us look at an example. Consider three-state DTQW
on Cay(D25, {μ, ξ}). In this case N = 25, which is less than
27 = 33. Hence in this case, the last vertex of both directed
cycles in the graph is represented by |s〉3 |2〉3 |2〉3 |0〉3 , s ∈
{0, 1}. Hence, we will incorporate multicontrolled qutrit
gates comprising of generalized multicontrolled qutrit-X
gates in between the INCREMENT and DECREMENT gates
such that |s〉3 |0〉3 |0〉3 |0〉3 and |s〉3 |2〉3 |2〉3 |0〉3 are adja-
cent vertices and the input states |l〉3 |s〉3 |2〉3 |2〉3 |2〉3 and
|c〉3 |s〉3 |2〉3 |2〉3 |1〉3 remains invariant in the circuit where
|c〉3 is the coin state such that c ∈ {0, 1, 2}. Thus we construct
the following two unitaries.

INSTOP:

(20)

and
DESTOP:

(21)

Using the gates above, the circuit for the walk on
Cay(D25, {μ, ξ}) is given by

(22)

Now, we will prove that constructing quantum circuits with
reflection states as qutrits does not affect the structure of the
walk.

Theorem 2. Let UCay(DN ) ∈ C6N×6N , 3n−1 � N � 3n be the
unitary matrix corresponding to the three-state DTQW
on Cay(DN , {μ, ξ}) obtained theoretically as described in
Sec. II B 2. Also, let Ucirc ∈ C3n+2×3n+2

be the unitary matrix
corresponding to the qutrit circuit for the three-state DTQW
Cay(DN , {μ, ξ}). Then there exists a permutation matrix P
such that

Ucirc = P

[
UCay(DN ) 0

0 I(3n+2−6N )

]
PT .

Proof. See Appendix B. �.
Hence, we have successfully provided a qutrit quan-

tum circuit for three-state discrete-time quantum walk on
Cay(DN , {μ, ξ}). In the next section, we will provide some-
what similar circuit construction for three-state lively quan-
tum walks on cycle graphs.

C. Qutrit circuit model for three-state lively
DTQWs on Cay(ZN, {1,−1})

We now propose a qutrit quantum circuit model for the
lively DTQW on cycle graphs [9]. We recall that the walker
moves to the left if the coin state |0〉3 and walker moves to the
right if the coin state is |1〉3 and jumps to vertex at distance
a( mod N ) if the coin state is |2〉3 where 0 < a � 	N

2 
 is the
liveliness parameter. For a = 0, it is obvious that the walk
becomes a standard three-state lazy quantum walk [9] on
cycles. For further analysis of the walk, see Refs. [9,41].

Similar to the previous model, in our circuit model, we
see that for the cycle of length 3n−1 < N � 3n, we require
total n + 1 qutrits. The first qutrit is required for the coin
states and the rest n qutrits are required for the vertices
in order to represent the position states. We first construct
the simple model of three-state lively quantum walks on
cycles where the liveliness parameter is taken to be 0,
i.e., the standard three-state lazy quantum walk. The cir-
cuit for three-state lazy DTQW on cycle of length 3n is as
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follows:

(23)

The observations obtained from the above circuit are as follows.
(1) The walker has a nonzero probability of being found at all vertices of the cycle after N time steps.
(2) The quantum circuit is again scalable.
Similarly, when 3n−1 < N < 3n we use multicontrolled qutrit X gates in between. For example, let us look at a walk with 25

vertices. Then we take the circuit

(24)

For lively quantum walk on cycles with nonzero liveliness
operator a � 	N

2 
 and N = 3n, the circuit needs to be modified
slightly in the following manner. Define a new repeated circuit
RC(a) as

(25)

Hence, the circuit for three-state lazy DTQWs on cycle of
length 3n is as follows.

(26)

Similarly, when 3n−1 < N < 3n, then one can add the gates
INSTOP and DESTOP in the circuit to modify the periodic con-
dition.

Remark 3. Note from our circuit construction that the coin
operators C and C
 can be implemented though the elementary
qutrit gates due to Theorem 1 (special unitary matrix) and a
global phase. However, the implementation of multicontrolled
qutrit gates used to construct INCREMENT, DECREMENT, IN-
STOP, and DESTOP through elementary qutrit gates need further
investigation. These circuits can also be viewed as n-qutrit
Toffoli gates. In Sec. IV, we provide construction of qutrit
circuits for block diagonal unitary matrices for 3 × 3 diagonal
blocks and any n-qutrit Toffoli gate is a special case.

IV. SCALABLE QUTRIT CIRCUIT IMPLEMENTATION
OF 3 × 3 BLOCK DIAGONAL UNITARY MATRICES

The quantum circuit models as proposed above utilize mul-
ticontrolled qutrit-X gates of the following form:

(27)

where a ∈ {0, 1, 2}. In this section, we develop a quantum cir-
cuit model of its implementation through single-qutrit rotation
gates and controlled qutrit-X gates.

First, we note that the matrix representation of the circuit

(28)

is a block diagonal special unitary matrix. In what follows, we
construct an ancilla-free quantum circuit for n-qutrit block-
diagonal special unitary matrices having 3 × 3 special unitary
blocks using M-S gates and single-qutrit rotation gates.

We emphasize that the obtained circuit is scalable, i.e., we
can construct circuit for (n + 1)-qutrit block-diagonal special
unitary using circuits from n-qutrit block-diagonal special
unitary. The construction is also exact and the process follows
similar to work done in Ref. [12]. It is also of note that since
any unitary matrix U can always be expressed as eiαV for
some α ∈ R and V is a special unitary matrix, i.e., any unitary
matrix is a special unitary matrix multiplied by a global phase,
hence, we restrict our construction to special unitary matri-
ces only. Using the construction of block diagonal unitary
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matrices and in turn, the circuit in Eq. (28), we also provide a
circuit construction for the qutrit gate in Eq. (27).

Definition 1. For n-qutrit systems, a multicontrolled rota-
tion gate is defined as

(29)

ψ j ∈ R, 1 � j � 3n−1 and

a ∈ {X01, X02, X12,Y 01,Y 02,Y 12, Z01, Z02, Z12}.
Then the unitary matrix corresponding to the above circuit is
given by

Fn(Ra(ψ1, ψ2, . . . , ψ3n−1 )) =

⎡
⎢⎣ Ra(ψ1) 0 0

0 . . . 0
0 0 Ra(ψ3n−1 )

⎤
⎥⎦,

which is a block diagonal matrices with 3 × 3 rotation blocks.

In short, we denote the circuit in Definition 1 as

(30)

such that � = (ψ1, . . . , ψ3n−1 ).
In order to demonstrate the scalability of such multicon-

trolled gates, win the following we construct (n + 1)-qutrit
multicontrolled gates that consists of n-qutrit multicontrolled
rotation gates and some additional two-qutrit control gates.
It is to be noted that similar construction has been done in
Ref. [39], however, in this work, we provide a more gen-
eral construction of generalized Toffoli gates mentioned in
Eq. (27) using the construction of multicontrolled qutrit-X
gates.

First, consider the following circuits. with ,� =
(φ1, . . . , φ3n−2 ), = (θ1, . . . , θ3n−2 ), � = (γ1, . . . , γ3n−2 ):

(31)

(32)

where

ψk =

⎧⎪⎨
⎪⎩

θ j + φ j + γ j where 1 � j � 3n−2, k = j

θ j − φ j + γ j where 1 � j � 3n−2, k = j + 3n−2

θ j + φ j − γ j where 1 � j � 3n−2, k = j + 2 · 3n−2.

Then we have the following lemma.
Lemma 1. The following statements hold true:
(1) The quantum circuits in Eq. (30) and

Eq. (31) are equivalent when any of the cases hold:

{
Ra ∈ {RY 01, RZ01} and V = X0,1 or ,

Ra ∈ {RY 12, RZ12} and V = X1,2 or ,

Ra ∈ {RY 02, RZ02} and V = X0,2.

(2) The quantum circuits in Eq. (30) and
Eq. (32) are equivalent when any of the cases hold:

{
Ra = RX02 and Rb = RZ12, Rc = RX02, or ,

Ra = RX01 and Rb = RZ12, Rc = RX01, or ,

Ra = RX12 and Rb = RZ02, Rc = RX12.

Proof. See Appendix C.

Now using Lemma 1, we show how to construct scalable
qutrit circuits for block diagonal special unitaries. Let U ∈
SU(3n) be a block diagonal special unitary matrix with 3 × 3
special unitary diagonal blocks. In other words,

U =

⎡
⎢⎢⎣

U1(�1)
U2(�2)

. . .

U3n−1 (�3n−1 )

⎤
⎥⎥⎦, (33)

where � j := (θ ( j)
1 , φ

( j)
1 , ψ

( j)
1 , θ

( j)
2 , φ

( j)
2 , ψ

( j)
2 , θ

( j)
3 , φ

( j)
3 , ψ

( j)
3 )

and each Uj (� j ) ∈ SU(3). Then clearly from proof of
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Theorem 1 in Appendix A and Eq. (A4), we have

U = U1U2U3, (34)

where U1,U2,U3 are block-diagonal special unitary matrices with each block belonging to SU(3) such that

Uj = (35)⎡
⎢⎣Mj (−θ

(1)
j ,−φ

(1)
j , ψ

(1)
j )

. . .

Mj (−θ
(3n−1 )
j ,−φ

(3n−1 )
j , ψ

(3n−1 )
j )

⎤
⎥⎦

for some θ
(k)
j , φ

(k)
j , ψ

(k)
j j ∈ {1, 2, 3} and k ∈ {1, 2 . . . , 3n−1}. In order to construct qutrit circuit of U , we will look at the circuits

for each of its components on the right-hand side in Eq. (34), i.e., Uj in Eq. (35).
Theorem 3. The qutrit circuit for Uj, j ∈ {1, 2, 3} in Eq. (34) and Eq. (35) is given by

(36)

where {
Ra = RZ02, Rb = RY 02, if j = 1,

Ra = RZ01, Rb = RY 01, if j = 2,

Ra = RZ12, Rb = RY 12, if j = 3
such that

( j) = (− θ
(1)
j , . . . ,−θ

(3n−1 )
j

)
,

�
( j)
1 =

⎛
⎝−φ

(1)
j + ψ

(1)
j

2
, . . . ,

−φ
(3n−1 )
j + ψ

(3n−1 )
j

2

⎞
⎠,

�
( j)
2 =

⎛
⎝−φ

(1)
j − ψ

(1)
j

2
, . . . ,

−φ
(3n−1 )
j − ψ

(3n−1 )
j

2

⎞
⎠,

and φ
(k)
2 = 0∀k ∈ {1, . . . , 3n−1}

Proof. Follows from Eqs. (A1), (A2), (A3) from the proof of Theorem 1 in Appendix A and from the construction of qutrit
block-diagonal rotations. �

From the discussions so far, we are now ready to provide a scalable circuit construction of multicontrolled qutrit-X gates using
single-qutrit gates and controlled qutrit-X gates. Let us take the following multicontrolled n-qutrit-X gate used in construction
of quantum qutrit circuits of three-state DTQWs of Cayley graphs discussed before.

Note that the gate

(37)

is equivalent to the following gates

(38)
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(39)

(40)

(41)

respectively

So far we have constructed ancilla free circuits of the
n-qutrit block-diagonal special unitaries with special unitary
blocks. However, the quantum circuit for DTQWs as derived
above require the quantum gates given by

(42)

where X ∈ {X+1, X+2}, a ∈ {0, 2}. Hence, it is imperative that
we express the qutrit gates in Eq. (42), in terms of multicon-
trolled n-qutrit-X gates. The main problem boils down to find
unitary matrices P1, P2 such that

(43)

implements

(44)

where X1, X2 are one-qutrit-X gates mentioned in Eq. (8) and
a ∈ {0, 1, 2}.

To resolve this we first define the following circuit:

(45)

then have the following theorem.
Theorem 4. Let P ∈ U (9) be a permutation matrix given

by P = P(3,8)P(6,7) where P(i, j) represents a two cycle permu-
tation with ith and jth rows interchanged. Then setting P1 =

P2 = P, the circuits in Eqs. (43) and (44) are equivalent for the

following two cases. {a = 2, X1 = X+1, X2 = X+2 or,
a = 2, X1 = X+2, X2 = X+1.

Further the circuit of P is given by Eq. (45).
Proof. The proof is trivial follows by mapping the input and

output states for the circuits. �
It is to be noted that the n-qutrit circuit, given by

(46)

can be written as

(47)

where X = {X+2 if n is odd
X+1 otherwise.

Finally, we recall that the circuit

012617-12



QUANTUM CIRCUIT MODEL FOR DISCRETE-TIME … PHYSICAL REVIEW A 110, 012617 (2024)

is equivalent to the circuit

Thus, from our discussion so far, the qutrit gate

(48)

is equivalent to

(49)

where X = {X+2 if n is odd
X+1 otherwise.

This concludes the construction of quantum circuit model
of the DTQWs on Cayley graphs considered in this paper
using single-qutrit rotation gates and controlled qutrit gates.

Remark 4. We observe that the qutrit circuit models devel-
oped above can also be derived for other DTQW models on
other graphs when the walk can be studied by converting the
time-space into Fourier space.

A. Circuit complexity of the models

In this section we discuss the circuit complexity of the
quantum circuit models for the DTQWs developed above.
This includes the number of elementary gates that are
needed to implement the circuits for the cycle graphs, i.e.,
Cay(ZN , {1,−1}) and the Cayley graphs Cay(DN , {μ, ξ})
where 3n−1 � N � 3n. Note that a time step of a DTQW is
same as one layer in the circuit model for the implementation
of t-step quantum walks, t � 1.

Moreover, the primary gates that are used in the design of
the circuits are multicontrolled X gates (generalized Toffoli
gates), which correspond to the construction of the circuits for
block-diagonal unitary matrices, and the gates INCREMENT,
DECREMENT, DESTOP, INSTOP, and RC.

First we have the following result for multicontrolled X
gates.

Theorem 5. The multicontrolled X gates described in
Eqs. (27) and (28), where X ∈ {X+1, X+2} need O(4 · 3n−1)
two-qutrit controlled-X gates and O(2 · 3n−1) one-qutrit rota-
tion gates.

Proof. Follows from using simple induction on the number
of gates and the proof directly follows from Eq. (37) and its
equivalent circuits starting from Eq. (38), Lemma 1, construc-
tion of qutrit SWAP gates and Theorem 4. �

From the construction of multicontrolled qutrit gates, it
is obvious that that more number of two-qutrit controlled-X
gates or M-S gates are always used if we want more number
of standard basis elements to remain invariant under multicon-
trolled qutrit gate transformation. Hence, it is obvious that a
circuit like

(49)

comprises of more number of two-qutrit controlled-X gates or
M-S gates than that a circuit like

(50)

where a ∈ {0, 1, 2}.
We also note that, the circuit

(51)

is equivalent to

(52)

Besides, we know that

is equivalent to
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Similar argument is also valid when we replace INCREMENT

by DECREMENT as well. Further, we see that constructing a
general one-qutrit gate (special unitary matrix) requires nine
one-qutrit rotation gates. Thus we have the following theorem.

Theorem 6. A single layer (one time-step) of DTQW on
Cay(DN , {μ, ξ}) where N = 3n requires O(8n3n+1 + 2) two-
qutrit controlled-X gates and O(4 × 3n+1) one-qutrit rotation
gates.

Proof. Follows from the argument above and Theorem 5.�
Remark 5.
(1) Since constructing gates like DESTOP and INSTOP

require a sequence of multicontrolled qutrit-X gates, it
is clear from Theorem 5 that the number of two-qutrit
controlled-X gates required for constructing such gates
is O[4p(n)3n−1] for some polynomial p. Hence, we get
the following result trivially that a single layer (time
step) of DTQW on Cay(DN , {μ, ξ}), 3n−1 � N < 3n re-
quires O{8[n + p(n)]3n+1} two-qutrit controlled-X gates and
O{4[n + q(n)]3n+1} one-qutrit rotation gates, where p, q are
some polynomials in n.

(2) Similar results can be obtained for three-state lively
DTQWs on cycles, i.e., Cay(ZN , {1,−1}), however, it is to be
observed that for nonzero liveliness parameter a, by the same
argument used so far, the gate RC(a) requires O(4na3n−1)
two-qutrit controlled-X gates. Further, unlike DTQW on Cay-
ley graphs of dihedral groups which is a (n + 2)-qutrit circuit,
this circuit is a unitary matrix of order 3n+1 × 3n+1. From
this, we find that a single layer (one time step) of three-
state lively DTQW on Cay(ZN , {1,−1}), N = 3n, a � 	N

2 
,
O[(8n + 4na)3n] two-qutrit controlled-X gates and O(4na3n)
one-qutrit rotation gates.

(3) When N = 3n however, a single layer (time step)
of three-state lively DTQW on Cay(ZN , {1,−1}), 3n−1 �
N < 3n, a � 	N

2 
 requires O{4[na + f (n)]3n|} two-qutrit
controlled-X gates and O{4[na + g(n)]3n} one-qutrit rotation
gates, where f , g are some polynomials in n.

All of these results are trivial and follow immediately using
Theorem 5 and Theorem 6.

Finally, we prove one result for quantum circuit complexity
of constructing block-diagonal special unitary matrices with
special unitary blocks. Such matrices are seldom used in
sparse matrix decomposition and hence, are important.

Theorem 7. Let U ∈ SU(3n) be a block-diagonal special
unitary matrix with 3 × 3 special unitary diagonal blocks.
Then the quantum circuit for U requires O(2 × 3n+1) two-
qutrit controlled-X gates and O(3n+1) one-qutrit rotation
gates.

Proof. The proof follows from Lemma 1 and Eqs. (34) and
(35). �

In the following section we numerically simulate these
quantum circuits by inducing generic noise models in order
to replicate its output which would be obtained in a noisy
quantum computer.

V. NOISY SIMULATION OF THE CIRCUIT MODEL

In this section, we report numerical simulation results
based on the circuit models as obtained above. The simu-
lations are performed incorporating noise models in order
to mimic a noisy quantum computer such as noisy interme-
diate scale quantum (NISC) computers for implementation
of the qutrit model of the DTQWs on Cay(DN , {μ, ξ}) and
Cay(ZN , {1,−1}). This noise includes gate error and idle
error, which are standard practice for numerical simulation
of quantum circuits [22]. Further, in order to investigate
and verify the simulations results and the analytical re-
sults obtained in the literature, we consider a family of
one-parameter coins for the DTQWs, known as generalized
Grover coins. See Ref. [41] for a more on generalized Grover
coins.

The generalized Grover coin matrices of order 3 are or-
thogonal matrices that can be expressed as linear sum of
permutation matrices. These matrices are divided into four
classes as described below.

Xθ =

⎧⎪⎪⎨
⎪⎪⎩
⎡
⎢⎢⎣

2 cos θ+1
3

1−cos θ
3 + sin θ√

3
1−cos θ

3 − sin θ√
3

1−cos θ
3 − sin θ√

3
2 cos θ+1

3
1−cos θ

3 + sin θ√
3

1−cos θ
3 + sin θ√

3
1−cos θ

3 − sin θ√
3

2 cos θ+1
3

⎤
⎥⎥⎦ : −π < θ � π

⎫⎪⎪⎬
⎪⎪⎭, (53)

Yθ =

⎧⎪⎪⎨
⎪⎪⎩
⎡
⎢⎢⎣

2 cos θ−1
3

−1−cos θ
3 + sin θ√

3
−1−cos θ

3 − sin θ√
3

−1−cos θ
3 − sin θ√

3
2 cos θ−1

3
−1−cos θ

3 + sin θ√
3

−1−cos θ
3 + sin θ√

3
−1−cos θ

3 − sin θ√
3

2 cos θ−1
3

⎤
⎥⎥⎦ : −π < θ � π

⎫⎪⎪⎬
⎪⎪⎭, (54)

Zθ =

⎧⎪⎪⎨
⎪⎪⎩
⎡
⎢⎢⎣

2 cos θ+1
3

1−cos θ
3 + sin θ√

3
1−cos θ

3 − sin θ√
3

1−cos θ
3 + sin θ√

3
1−cos θ

3 − sin θ√
3

2 cos θ+1
3

1−cos θ
3 − sin θ√

3
2 cos θ+1

3
1−cos θ

3 + sin θ√
3

⎤
⎥⎥⎦ : −π < θ � π

⎫⎪⎪⎬
⎪⎪⎭, (55)

Wθ =

⎧⎪⎪⎨
⎪⎪⎩
⎡
⎢⎢⎣

2 cos θ−1
3

−1−cos θ
3 + sin θ√

3
−1−cos θ

3 − sin θ√
3

−1−cos θ
3 + sin θ√

3
−1−cos θ

3 − sin θ√
3

2 cos θ−1
3

−1−cos θ
3 − sin θ√

3
2 cos θ−1

3
−1−cos θ

3 + sin θ√
3

⎤
⎥⎥⎦ : −π < θ � π

⎫⎪⎪⎬
⎪⎪⎭. (56)
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FIG. 2. Time-averaged probability for Cay(D27, {μ, ξ}) taking
coins from the classes ,Xθ ,Yθ ,Zθ ,Wθ with initial position (1,0)
and initial coin state |0〉3. The time step is taken up to 300. The
generic depolarizer gate noise and amplitude damping idle noise is
incorporated in the circuit. In (a), C ∈ Xθ , θ = π , i.e., the coin is the
Grover matrix. In (b), C ∈ Yθ , θ = π/2. In (c), C ∈ Zθ , θ = π/3.
In (d), C ∈ Wθ , θ = −π/4. In the figures, the solid black line with ◦
markers denotes the noiseless or ideal time-averaged probability. The

The Grover matrix of order 3 given by

G =

⎡
⎢⎢⎣

−1
3

2
3

2
3

2
3

−1
3

2
3

2
3

2
3

−1
3

⎤
⎥⎥⎦ ∈ Xθ

by setting θ = π.

We also corroborate our results on localization pertaining
to DTQWs on Cayley graphs obtained in Ref. [12]. All simu-
lations have been done in MATLAB2019A on a system with 16
GB RAM, Intel(R) Core(TM) i5 - 035G1 CPU @1.00 GHz
1.19 GHz processor.

A. Noise models

The noise in the gate and idle errors are incorporated
through the use of Kraus operators. Kraus operators are a
set of positive semidefinite matrices {Ej | j ⊂ N}, such that
the time evolution of a quantum system with initial state
density matrix σ = |ψ (0)〉 〈ψ (0)| is expressed as a function
E (σ ) =∑ j E jσE 


j , where 
 denotes the transpose. We follow
the operators discussed in Refs. [22,50].

1. Gate noise

For qutrits, taking X+1 =
[

0 0 1
1 0 0
0 1 0

]
and Z3 =[

1 0 0
0 exp (i2π/3) 0
0 0 exp (i4π/3)

]
, the depolarizer gate error for

single-qutrit gate is defined as

EG1(σ ) = (I −
∑

j,k∈{0,1,2}
p jkσ )

+
∑

j,k∈{0,1,2}
p jk
(
X j

+1Zk
3

)
σ
(
X j

+1Zk
3

)

. (57)

We assume the probabilities of all the error terms to be
equal to p1. Then the Eq. (58) can be rewritten as

EG1(σ ) = (I − 9p1σ )

+
∑

j,k∈{0,1,2}
p1
(
X j

+1Zk
3

)
σ
(
X j

+1Zk
3

)∗
. (58)

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
solid red line with � markers depicts the time-averaged probability
when both gate and idle errors are of order O(10−2). The solid blue
line with � markers denotes the time-averaged probability when
only gate error of O(10−3) strength is present in the circuit and the
turquoise solid line with � markers is the plot of the time-averaged
probability when only idle error of O(10−3) strength is present in the
circuit. The magenta dashed line with + markers and the dotted green
line with ∗ markers are the plots of time-averaged probability when
both gate and idle errors are of order O(10−4) and O(10−6), respec-
tively. The insets introduced in the figures are a zoomed-in version
of the plots depicting the extremely minute deviation between the
time-averaged probability at the localized vertex of a noiseless circuit
and a circuit with gate and idle error of order O(10−6) or less.
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FIG. 3. Time averaged probability for Cay(D27, {μ, ξ}) taking
coins from the classes ,Xθ ,Yθ ,Zθ ,Wθ with initial position (1,0) and
initial coin state |0〉3. The time step is taken up to 300. The generic
depolarizer gate noise and phase damping idle noise is incorporated
in the circuit. The error parameters are chosen from uniform distri-
bution. In (a), C ∈ Xθ , θ = π , i.e., the coin is the Grover matrix. In
(b), C ∈ Yθ , θ = π/2. In (c), C ∈ Zθ , θ = π/3. In (d), C ∈ Wθ , θ =
−π/4. The solid black line with ◦ markers denotes the noiseless or
ideal time-averaged probability. The solid red line with � markers
depicts the time-averaged probability when both gate and idle errors
are of order O(10−2). The solid blue line with � markers denotes the
time-averaged probability when only gate error of O(10−3) strength

For n-qutrit gates, the gate error is defined as

EGn(σ )

=
( ∑

a1,a2,...,an,b1,b2,...bn∈{0,1,2}
p1Ea1b1a2b2...anbnσE 


a1b1a2b2...anbn

)

+ (I − 32n p1σ ), (59)

where Ea1b1a2b2...anbn = ⊗n
j=1X

aj

+1Z
bj

3 .

2. Idle error

Idle errors occur from decoherence of a quantum system
that arises with interaction with the environment. Idle errors
such as amplitude and phase damping errors are incorporated
for excited qutrits. Some variants of idle errors are presented
here.

(1) Amplitude damping: In a mathematical sense, ampli-
tude damping idle errors are represented using the expression

KA(σ ) =
∑

j∈{0,1,2}
KjσK∗

j . (60)

set of Kraus operators {Kj} such that
∑

j KjK∗
j = I and

K0(t ) =

⎡
⎢⎣1 0 0

0
√

exp (−r1t ) 0

0 0
√

exp (−r2t )

⎤
⎥⎦, (61)

K1(t ) =

⎡
⎢⎣0

√
1 − exp (−r1t ) 0

0 0 0

0 0 0

⎤
⎥⎦, (62)

K2(t ) =

⎡
⎢⎣0 0

√
1 − exp (−r2t )

0 0 0

0 0 0

⎤
⎥⎦, (63)

where r1, r2,> 0 are error parameters.
(2) Phase damping: Similar to amplitude damping, the

phase damping idle errors are represented using the expres-
sion

EA(σ ) =
∑

j∈{0,1}
KjσK∗

j (64)

set of Kraus operators {Kj} such that
∑

j KjK∗
j = I and

K0(t ) = √
exp (−r1t )I, K1(t ) = √

1 − exp (−r1t )Z3, where
r1 > 0.

Now, we will incorporate these errors in to our circuit and
numerically simulate it in order to see the effect of various
errors on localization of the walk.

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
is present in the circuit and the turquoise solid line with � markers
is the plot of the time-averaged probability when only idle error of
O(10−3) strength is present in the circuit. The magenta dashed line
with + markers and the dotted green line with ∗ markers are the plots
of time-averaged probability when both gate and idle errors are of
order O(10−4) and O(10−6) respectively. The insets introduced in the
figures are a zoomed-in version of the plots depicting the extremely
small deviation between the time-averaged probability of a noiseless
circuit and a circuit with gate and idle error of order O(10−6) or less.
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FIG. 4. Time-averaged probability for Cay(Z27, {1, −1}) taking
coins from the classes ,Xθ ,Yθ ,Zθ ,Wθ with initial position 0 and
initial coin state 1√

3
(|0〉3 + |1〉3 + |2〉3). The time step is taken up to

300. The generic depolarizer gate noise and amplitude damping idle
noise is incorporated in the circuit. The error parameters are chosen
from uniform distribution. In (a), C ∈ Xθ , θ = π , i.e., the coin is the
Grover matrix. In (b), C ∈ Yθ , θ = π/2. In (c), C ∈ Zθ , θ = π/3. In
(d), C ∈ Wθ , θ = −π/4. The solid black line with ◦ markers denotes
the noiseless or ideal time-averaged probability. The solid red line
with � markers depicts the time-averaged probability when both
gate and idle errors are of order O(10−2). The solid blue line with

B. Numerical simulation of three-state DTQW
on Cay(D27, {μ, ξ})

We corroborate our results from Ref. [12] on time-averaged
probability of three-state quantum walks and periodicity of
Cay(DN , {μ, ξ}) where N = 27. We recall that the unitary
matrix corresponding to increment and decrement gates are

INCREMENT =
[

01×26 1
I26 026×1

]
, (65)

DECREMENT =
[

026×1 I26

1 01×26

]
. (66)

The unitary matrix for the circuit

(67)

is given by

UIn =
[

INCREMENT 027×216

0216×27 I216

]
. (68)

Similarly, the unitary matrix for the circuit

(69)

is given by

UDe =
⎡
⎣ I27 O27×27 O27×189

O27×27 DECREMENT O27×189

O189×27 O27×27 I189

⎤
⎦. (70)

In Fig. 2, we plot the time-averaged probability of finding a
particle at all vertices of Cay(D27, {μ, ξ}) for the initial coin
state |0〉3 and starting vertex (1,0). In the first figure the coin
C is taken from the class Xθ where θ = π , i.e., the coin is the
Grover coin G. In the subsequent figures, the coin C is taken
from the class Yθ where θ = π/2, C ∈ Zθ , θ = π/3, and
C ∈ Wθ , θ = −π/4, respectively. We incorporate the gate
error and amplitude damping idle error in order to replicate
the output, which would be typically found in a near-term

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
� markers denotes the time-averaged probability when only gate
error of O(10−3) strength is present in the circuit and the turquoise
solid line with � markers is the plot of the time-averaged probability
when only idle error of O(10−3) strength is present in the circuit. The
magenta dashed line with + markers and the dotted green line with
∗ markers are the plots of time-averaged probability when both gate
and idle errors are of order O(10−4) and O(10−6), respectively. The
insets in the figures are a zoomed-in version of the plots depicting the
small difference between the time-averaged probability of a noiseless
circuit and a circuit with gate and idle error of order O(10−6) or less.
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FIG. 5. Time-averaged probability for Cay(Z27, {1, −1}) taking
coins from the classes ,Xθ ,Yθ ,Zθ ,Wθ with initial position 0 and
initial coin state 1√

3
(|0〉3 + |1〉3 + |2〉3). The time step is taken up to

300. The generic depolarizer gate noise and phase damping idle noise
is incorporated in the circuit. The error parameters are chosen from
the uniform distribution. In (a), C ∈ Xθ , θ = π , i.e., the coin is the
Grover matrix. In (b), C ∈ Yθ , θ = π/2. In (c), C ∈ Zθ , θ = π/3. In
(d), C ∈ Wθ , θ = −π/4.The solid black line with ◦ markers denotes
the noiseless or ideal time-averaged probability. The solid red line
with � markers depicts the time-averaged probability when both
gate and idle errors are of order O(10−2). The solid blue line with

quantum computer. We incorporate varying degrees of error
and see how much the result deviates from the result obtained
via noiseless simulation. First we run a noiseless simulation
whose time-averaged probability is depicted by the solid black
line with circular markers (◦) in the figure, then we incorpo-
rate high values [O(10−2)] of gate error and idle error with the
error parameters chosen at random from uniform distribution
presented through the solid red line with square markers (�).
We also simulate the circuit by incorporating only gate error
and only channel error of order O(10−3), depicted by solid
blue line with triangular markers, i.e., � and solid Turquoise
line with diamond markers, i.e., �, respectively, to see the
effect of individual errors on the simulation. Finally we simu-
late the circuit with very small values [O(10−4) and O(10−6)]
of gate and idle errors. The time-averaged probability cor-
responding to these error values are shown in the figure as
dashed magenta line with plus markers (+) and dotted green
line with asterisk markers (∗). We notice that for high value
of errors, the maximum probability of finding the walker on
the graph is not necessarily found at the starting vertex or
its reflection vertex as observed in noiseless simulation. It is
also to be noted that the error parameters r1, r2, p1 are chosen
randomly via uniform distribution between 0 and 10−ε to gen-
erate an error of order O(10−ε−1) for some ε ∈ N. Similarly,
in Fig. 3 we plot the time-averaged probability at various
positions of the walk on Cay(D27, {μ, ξ}) with coin state |0〉3
and starting vertex (1,0) and coin is taken from the classes
Xθ ,Yθ ,Zθ ,Wθ for several values of θ as described in Fig. 2.
The only difference is that we incorporate phase damping
instead of the amplitude damping as the idle error and the error
parameters are chosen from uniform distribution.

C. Numerical simulation of three-state lazy
DTQW on Cay(Z27, {1,−1})

We perform numerical simulations pertaining to three-state
lazy DTQWs on cycle graphs with 27 vertices. In Fig. 4 we
plot the time-averaged probability of finding the quantum
walker at vertices of Cay(Z27, {1,−1}) for the initial coin
state 1√

3
(|0〉3 + |1〉3 + |2〉3) and starting vertex 0. In the first

figure the coin C is taken from the class Xθ where θ = π

(Grover coin G), Yθ where θ = π/2, C ∈ Zθ , θ = π/3, and
C ∈ Wθ , θ = −π/4, respectively. Also, in Fig. 5, we plot
same the time-averaged probability of finding a particle at
all vertices of Cay(Z27, {1,−1}) for the initial coin state

1√
3
(|0〉3 + |1〉3 + |2〉3) and starting vertex 0 and coin similar

to Fig. 4. The idle error is taken to be phase damping instead

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
� markers denotes the time-averaged probability when only gate
error of O(10−3) strength is present in the circuit and the turquoise
solid line with � markers is the plot of the time-averaged probability
when only idle error of O(10−3) strength is present in the circuit. The
magenta dashed line with + markers and the dotted green line with
∗ markers are the plots of time-averaged probability when both gate
and idle errors are of order O(10−4) and O(10−6), respectively. The
insets introduced in the figures are a zoomed-in version of the plots
showing the little difference between the time-averaged probability
of a noiseless circuit and a circuit with gate and idle error of order
O(10−6) or less.
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FIG. 6. Comparison DKL(IDEAL‖NOISY) (left blue bar) and
TV D(IDEAL‖OISY) (right orange bar) between the time-averaged
probability distributions obtained through noiseless and noisy cir-
cuits for DTQWs in Cay(D27, {μ, ξ}) taking coins (denoted by C)
from the classes ,Xθ ,Yθ ,Zθ ,Wθ with initial position (1,0) and
initial coin state |0〉3. The time step is taken up to 300. The generic
depolarizer gate noise and amplitude damping idle noise is incorpo-
rated in the circuit. The error parameters are chosen from uniform

of amplitude damping. We incorporate several gate and idle
errors into our circuits similar to Fig. 2 and Fig. 3 with a
similar phenomenon of the walker not localizing at the starting
vertex being observed for high error values.

Remark 6. We also have performed numerical simula-
tion based on the noise models for the cycle graph and
Cayley graph corresponding to dihedral group with dif-
ferent number of nodes and different initial coin states.
Those results validate the theoretical results obtained in
Ref. [12].

Now in order to gain further insights from the above sim-
ulation results for the time-averaged probability distributions,
we compare it for the noise models and noiseless simulation
results. We consider the Kullback-Leibler divergence (KL di-
vergence) and the total variation distance (TVD) for finding
the distance between the probability distributions (in the unit
bits). First we recall these measures as follows.

Let P, Q be two probability distributions for a discrete
random variable X. Let X denote the range set of X.

Then:
(1) KL divergence [51,52]:

DKL(P‖Q) =
∑
x∈X

P(x) log2

(
P(x)

Q(x)

)

= −
∑
x∈X

P(x) log2

(
Q(x)

P(x)

)
.

(2) Total variation distance [53]:

TV D(P‖Q) = 1

2

∑
x∈X

|P(x) − Q(x)|.

We will denote the time-averaged probability distribution
of the walker obtained via noiseless circuit as IDEAL, and
NOISY for the time-averaged probability distribution obtained
in a noisy quantum circuit.

In Fig. 6, we plot the KL divergence DKL(IDEAL‖NOISY)
(left blue bar) and the total variation distance
TV D(IDEAL‖NOISY) (right orange bar) between the noiseless
and noisy time-average probability distributions for finding
the walker over the vertices of Cay(D27, {μ, ξ}) for the initial
coin state |0〉3 and starting vertex (1,0) as shown in Fig. 2
and Fig. 3. In the first figure the coin C is taken from the
class Xθ where θ = π i.e. the coin is the Grover coin G. In
the subsequent figures, the coin C is taken from the class Yθ

where θ = π/2, C ∈ Zθ , θ = π/3, and C ∈ Wθ , θ = −π/4,
respectively. Further, amplitude damping idle error and the
generic depolarizer gate noise are chosen as noise models.
It is observed from the figure that the gate error plays a
significant role in deviating from noiseless distribution. It
is also interesting to notice that the idle error sometimes
mitigates the effects of gate errors as we see that for several
figures the second bars and columns are longer than the first
despite the second columns containing no idle errors. The

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
distribution. Specifically, in (a), C ∈ Xθ , θ = π i.e. the coin is the
Grover matrix. In (b), C ∈ Yθ , θ = π/2. In (c), C ∈ Zθ , θ = π/3. In
subfigure (d ), C ∈ Wθ , θ = −π/4. The y axis of the plot is in log
scale.
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FIG. 7. Comparison DKL(IDEAL‖NOISY) (left blue bar) and
TV D(IDEAL‖NOISY) (right orange bar) between the time-averaged
probability distributions obtained through noiseless and noisy cir-
cuits for DTQWs in Cay(D27, {μ, ξ}) taking coins (denoted by C)
from the classes ,Xθ ,Yθ ,Zθ ,Wθ with initial position (1,0) and
initial coin state |0〉3. The time step is taken up to 300. The generic
depolarizer gate noise and phase damping idle noise is incorporated
in the circuit and the error parameters are chosen from uniform

effect of gate noise is further emphasized from the third and
fourth bars and columns in the figure where we see that a
small gate error coupled with a small idle error provides a
more noisy distribution as compared to a distribution obtained
via a larger idle error with no gate error. Further, comparing
second and third columns in the Fig. 6 is another justification
that gate errors are more significant than idle errors. Now, in
Fig. 7 we plot same comparison between noisy and noiseless
distributions using KL divergence and TVD. Though, the
idle error comprises of phase damping instead of amplitude
damping in this case, the results observed are found to be
similar to that mentioned in Fig. 6 as well.

It is also to be noted that the y-axis plots (deviation) in fig-
ures involving KL divergence and TVD have been carried out
in log scale, i.e., we are also interested in measuring the order
of deviation as well from our results. We have incorporated
this log scale due the fact that the values of KL divergence and
TVD becomes extremely small when the gate and idle error
of order O(10−6) or less. In other words, DKL(IDEAL‖NOISY)
and TV D(IDEAL‖NOISY) where the noise O(10−6) or less
becomes extremely difficult to track in normal scale due to
its very small values as compared to the cases when the noise
is greater than O(10−6).

Similar results comparing noisy and noiseless time-
averaged probability distributions are obtained for DTQWs
on Cay(Z27, {1,−1}). In Figs. 8 and 9 we plot the KL di-
vergence DKL(IDEAL‖NOISY) and the total variation distance
TV D(IDEAL‖NOISY) between the noiseless and noisy time-
averaged probability distributions for finding the walker over
the vertices of Cay(Z27, {1,−1}) for the initial coin state

1√
3
(|0〉3 + |1〉3 + |2〉3) and starting vertex 0. Several coins

from classes Xθ ,Yθ ,Wθ ,Zθ are chosen similar to Fig. 6 and
Fig. 7. The generic depolarizer gate noise is considered along
with amplitude damping (Fig. 8) and phase damping (Fig. 9).

Hence, in our proposed circuit when incorporated with
both gate and idle errors of order O(10−6) or less behaves
almost similar to its noiseless counterpart as seen from the
values of KL divergence and TVD in Figs. 6–9.

VI. CONCLUSION

In this paper we develop qutrit quantum circuit models
for quantum walks on Cayley graphs of dihedral groups and
additive group of integers modulo a positive integer. The
circuits are based on elementary qutrit gates, and during the
process we propose qutrit quantum circuit models for block-
diagonal special unitary matrices of order 3n with diagonal
blocks as special unitary matrices of order three. We derive
the circuit complexity of the developed circuit models and we
numerically simulate the time-averaged probability distribu-
tions of the walker employing the circuit models with various
noise models. These results show that gate noises significantly
impact the distributions of noiseless models compared to

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
distribution. Specifically, in (a), C ∈ Xθ , θ = π , i.e., the coin is the
Grover matrix. In (b), C ∈ Yθ , θ = π/2. In (c), C ∈ Zθ , θ = π/3. In
subfigure (d ), C ∈ Wθ , θ = −π/4. The y axis of the plot is in log
scale.
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FIG. 8. Comparison DKL(IDEAL‖NOISY) (left blue bar) and
TV D(IDEAL‖NOISY) (right orange bar) between the time-averaged
probability distributions obtained through noiseless and noisy cir-
cuits for DTQWs in Cay(Z27, {1,−1}) taking coins (denoted by
C) from the classes ,Xθ ,Yθ ,Zθ ,Wθ with initial position 0 and
initial coin state 1√

3
(|0〉3 + |1〉3 + |2〉3). The time step is taken up to

300. The generic depolarizer gate noise and amplitude damping idle

amplitude or phase damping errors. We observe that our noisy
circuit behaves very close to its noiseless counterpart if the
gate and idle errors are set to be not more than O(10−6).
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APPENDIX A: PROOF OF THEOREM 1

Proof. Since any 3 × 3 unitary matrix is a single-qutrit

gate, let the matrix be C =
[

c11 c12 c13
c21 c22 c23
c31 c32 c33

]
∈ SU(3) such that

each ci j is of the form ri je−iαi j where ri j � 0 and αi j ∈ R.
We choose C to be special unitary due to the fact that any
unitary matrix is a special unitary matrix multiplied by a
global phase. Hence, by left multiplying the matrix M1 =

1√
r2

11+r2
31

[
r11eiα11 0 r31eiα31

0 1 0
−r31e−iα31 0 r11e−iα11

]
to C, we obtain M1C =[√

r2
11 + r2

31 × ×
c21 × ×
0 × ×

]
. It is of note that M1 can be written

as M1 := M1(θ1, φ1, ψ1) =
[

cos θ1eiφ1 0 sin θ1eiψ1

0 1 0
− sin θ1e−iψ1 0 cos θ1e−iφ1

]
where

θ1 = arctan r31
r11

, φ1 = α11, ψ1 = α31. Also, from ZY Z decom-
position [49],

M1(θ1, φ1, ψ1) = RZ02

(
φ1 + ψ1

2

)
RY 02(θ1)RZ02

(
φ1 − ψ1

2

)
.

(A1)

Similarly, left multiplying the matrix M1C by the matrix M2 =
1√

r2
11+r2

21+r2
31

⎡
⎣
√

r2
11 + r2

21 r21eiα21 0

−r21e−iα21

√
r2

11 + r2
21 0

0 0 1

⎤
⎦, we obtain

M2M1C =

⎡
⎢⎣
√

r2
11 + r2

21 + r2
31 × ×

0 × ×
0 × ×

⎤
⎥⎦ =

⎡
⎣1 × ×

0 × ×
0 × ×

⎤
⎦

since |c11|2 + |c21|2 + |c31|2 = 1 and similarly, M2 :=
M2(θ2, φ2, ψ2) =

[
cos θ2eiφ2 sin θ2eiψ2 0

− sin θ2e−iψ2 cos θ2e−iφ2 0
0 0 1

]
where θ2 =

arctan
√

r2
11+r2

31

r21
, φ2 = 0, ψ2 = α21, i.e., we obtain

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
noise is incorporated in the circuit. The error parameters are cho-
sen from uniform distribution. Specifically, in (a), C ∈ Xθ , θ = π ,
i.e., the coin is the Grover matrix. In (b), C ∈ Yθ , θ = π/2. In (c),
C ∈ Zθ , θ = π/3. In (d), C ∈ Wθ , θ = −π/4. The y axis of the plot
is in log scale.
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FIG. 9. Comparison DKL(IDEAL‖NOISY) and TV D(IDEAL

‖NOISY) between the time-averaged probability distributions
obtained through noiseless and noisy circuits for DTQWs in
Cay(Z27, {1,−1}) taking coins from the classes ,Xθ ,Yθ ,Zθ ,Wθ

with initial position 0 and initial coin state 1√
3
(|0〉3 + |1〉3 + |2〉3).

The time step is taken up to 300. The generic depolarizer gate
noise and phase damping idle noise is incorporated in the circuit

M2(θ2, 0, ψ2). Further from, ZY Z decomposition again,
we have

M2(θ2, 0, ψ2) = RZ01

(
ψ2

2

)
RY 01(θ2)RZ01

(−ψ2

2

)
. (A2)

Continuing in this way, we see that there exists

M3 = M3(θ3, φ3, ψ3) =
[

1 0 0
0 cos θ3eiφ3 sin θ3eiψ3

0 − sin θ3e−iψ3 cos θ3e−iφ3

]
such that

M3M2M1C =
[

1 × ×
0 r ×
0 0 ×

]
︸ ︷︷ ︸

R

where r > 0.

Clearly, R is an upper triangular matrix, which is also a
special unitary matrix. Hence, R is a special unitary diagonal
matrix. Further, since two diagonal entries of R are real and
positive, hence entries in R cannot be complex on account of
the determinant being 1. Hence R = I , i.e., the identity matrix.
We also have

M3(θ3, φ3, ψ3) = RZ12

(
φ3 + ψ3

2

)
RY 12(θ3)RZ12

(
φ3 − ψ3

2

)
.

(A3)

Hence, M3(θ3, φ3, ψ3)M2(θ2, 0, ψ2)M1(θ1, φ1, ψ1)C = I.
Thus, we obtain

C = M∗
1 (θ1, φ1, ψ1)M∗

2 (θ2, 0, ψ2)M1(θ1, φ1, ψ1)

× M∗
3 (θ3, φ3, ψ3)

= M1(−θ1,−φ1, ψ1)M2(−θ2, 0, ψ2)M3(−θ3,−φ3, ψ3)

(A4)

for any arbitrary C ∈ SU (3). From this discussion, the proof
follows immediately. �

APPENDIX B: PROOF OF THEOREM 2

Proof. Let N = 3n. Then from the construction of Ucirc,
we see that any state of the form |l〉3 |2〉3 |rn〉3 . . . |r1〉3, i.e.,
any state with |2〉3 in the reflection state remains invariant to
the circuit where the coin state |l〉3 ∈ {|0〉3 , |1〉3 , |2〉3}, and
0 � r � N − 1 such that r =∑n

j=1 r j3 j−1, r j ∈ {0, 1, 2}, j ∈
{1, . . . , n}. For the state |l〉3 |s〉3 |rn〉3 . . . |r1〉3 , s ∈ {0, 1}, r j ∈
{0, 1, 2}, j ∈ {1, . . . , n}, the circuit acts nontrivially.

Then, the state of the walker after time t is given by
|φ(t )〉 = Ut

circ |φ(0)〉 for initial state |φ(0)〉. Further

|φ(t )〉 =
2∑

s=0

N−1∑
r=0

∑
l∈{0,1,2}

φ(l, s, r, t ) |l〉 ⊗ |s〉3 |rn〉3 . . . |r1〉3

=
N−1∑
r=0

|φ(r, t )〉 ⊗ |rn〉3 . . . |r1〉3 ,

where
∑2

s=0

∑N−1
r=0 |φ(l, s, r, t )|2 = 1 and r =∑n

j=1 r j3 j−1,

r j ∈ {0, 1, 2}, j ∈ {1, . . . , n}. Further |φ(r, t )〉 = [φ(0, 0, r, t )
φ(0, 1, r, t ) φ(0, 2, r, t ) φ(1, 0, r, t ) φ(1, 1, r, t ) φ(1, 2, r, t )

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
and the error parameters are chosen from uniform distribution.
Specifically, in (a), C ∈ Xθ , θ = π , i.e., the coin is the Grover
matrix. In (b), C ∈ Yθ , θ = π/2. In (c), C ∈ Zθ , θ = π/3. In (d),
C ∈ Wθ , θ = −π/4. The y axis of the plot is in log scale.
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φ(2, 0, r, t ) φ (2, 1, r, t ) φ(2, 2, r, t )]′ where ′ denotes
the conjugate-transpose operation. If the coin operator is
C = [ci j] ∈ C3×3 then the probability that the walker will be
at the vertex labeled (s, r) at time t is

∑
l=0,1,2 |φ(l, s, r, t )|2,

where s ∈ {0, 1}. Further, the state |l〉3 |2〉3 |rn〉3 . . . |r1〉3 is
invariant in our circuit for all 0 � r � N − 1, 0 � l � 2.

Thus it is computationally easy to verify that

|φ(r, t + 1)〉 = V1 |φ(r − 1, t )〉 + V2 |φ(r + 1, t )〉
+ V3 |φ(r, t )〉 ,

where

V1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

c11 0 0 c12 0 0 c13 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, V2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0 0
0 c11 0 0 c12 0 0 c13 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

V3 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0

c21 0 0 c22 0 0 c23 0 0
0 c21 0 0 c22 0 0 c23 0
0 0 0 0 0 1 0 0 0
0 c31 0 0 c32 0 0 c33 0

c31 0 0 c32 0 0 c32 0 0
0 0 0 0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Further, using the discrete Fourier (DFT) transformation [54] of |φ(r, t )〉, we get |�(k, t )〉 =∑N−1
r=0 e−i2πkr/N |φ(r, t )〉 where

0 � k � N − 1. Hence, we obtain |(�(k, t + 1))〉 =∑N−1
r=0 e−i2πkr/NV1 |(φ(r + 1, t ))〉 +∑N−1

r=0 e−i2πkr/NV2 |[φ(r − 1, t )]〉 +∑N−1
r=0 e−i2πkr/NV3 |[φ(r, t )]〉. Consequently, we obtain the Fourier evolution matrix |(�[k, t + 1)]〉 = Ucirc(k) |�(k, t )〉 where

Ucirc(k) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

c11e−2iπk/N 0 0 c12e−2iπk/N 0 0 c13e−2iπk/N 0 0
0 c11e2iπk/N 0 0 c12e2iπk/N 0 0 c13e2iπk/N 0
0 0 1 0 0 0 0 0 0

c21 0 0 c22 0 0 c23 0 0
0 c21 0 0 c22 0 0 c23 0
0 0 0 0 0 1 0 0 0
0 c31 0 0 c32 0 0 c33 0

c31 0 0 c32 0 0 c32 0 0
0 0 0 0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

From elementary computation, we observe that Ucirc(k) = P[ UCay(DN ) (k) 0
0 I3

]PT holds true for all k ∈ {0, 1, . . . , N − 1} where

P is a 9 × 9 permutation matrix such that P = P(34)P(45)P(57)P(68), and UCay(DN )(k) ∈ C6×6 is the Fourier evolution matrix of
UCay(DN ) (see [12]). Note that P(a,b) denotes a transposition matrix i.e. an identity matrix whose a and b-th rows are interchanged.
From Theorem 2.1 in Ref. [12], we know that the spectra of Ucirc(k) and UCay(DN )(k), 0 � k � N − 1 are equal to that of Ucirc

and UCay(DN ), respectively. Hence, we obtain

Ucirc = (P ⊗ I3n )

[
UCay(DN )6.3n×6.3n 0

0 I3n+2−6.3n

]
(P ⊗ I3n )T = (P ⊗ I3n )

[
UCay(DN )6.3n×6.3n 0

0 I3n+1

]
(P ⊗ I3n )T .

This concludes the proof for N = 3n. Next, consider 3n−1 � N < 3n. Then the additional states such as |l〉3 |s〉3 |r′
n〉3 . . . |r′

1〉3 are
unaffected in the circuit where s ∈ {0, 1} and r′

j ∈ {0, 1, 2} such that
∑n

j=1 r′
j3

j−1 > N . The rest of the proof is similar to the
first case and after a bit of computations we obtain

Ucirc = (P ⊗ I3n )

⎡
⎣ UCay(DN )6N×6N 0 0

0 I6.3n−6N 0
0 0 I3n+2−6N

⎤
⎦(P ⊗ I3n )T .

This completes the proof. �
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APPENDIX C: PROOF OF LEMMA 1

Proof. We will prove the theorem for the first case. The proofs for the rest of the cases and statements are similar. For the first
case, the unitary matrix corresponding to the circuit in Eq. (31) is given by⎛

⎜⎝I3 ⊗

⎡
⎢⎣ RY 01(θ1) 0 0

0 . . . 0
0 0 RY 01(θ3n−2 )

⎤
⎥⎦
⎞
⎟⎠
⎡
⎣ I3n−2 O O

O U O
O O I3n−2

⎤
⎦
⎛
⎜⎝I3 ⊗

⎡
⎢⎣ RY 01(φ1) 0 0

0 . . . 0
0 0 RY 01(φ3n−2 )

⎤
⎥⎦
⎞
⎟⎠

⎡
⎣ I3n−2 O O

O U O
O O I3n−2

⎤
⎦
⎡
⎣ I3n−2 O O

O I3n−2 O
O O U

⎤
⎦
⎛
⎜⎝I3 ⊗

⎡
⎢⎣ RY 01(γ1) 0 0

0 . . . 0
0 0 RY 01(γ3n−2 )

⎤
⎥⎦
⎞
⎟⎠
⎡
⎣ I3n−2 O O

O I3n−2 O
O O U

⎤
⎦

where U3n−2×3n−2 = [

X0,1 0 0 0
0 X0,1 0 0

0 0 . . . 0
0 0 0 X0,1

]. This gives the matrix [
R11 0 0
0 R22 0
0 0 R33

] where

R11 =

⎡
⎢⎣ RY 01(θ1 + φ1 + γ1) 0 0

0 . . . 0
0 0 RY 01(θ3n−2 + φ3n−2 + γ3n−2 )

⎤
⎥⎦

R22 =

⎡
⎢⎣ X0,1RY 01(φ1)X0,1RY 1(θ1 + γ1) 0 0

0 . . . 0
0 0 X0,1RY 01(φ3n−2 )X0,1RY 01(θ3n−2 + γ3n−2 )

⎤
⎥⎦

=

⎡
⎢⎣ RY 01(θ1 − φ1 + γ1) 0 0

0 . . . 0
0 0 RY 01(θ3n−2 − φ3n−2 + γ3n−2 )

⎤
⎥⎦.

R33 =

⎡
⎢⎣ X0,1RY 01(γ1)X0,1RY 01(θ1 + φ1) 0 0

0 . . . 0
0 0 X0,1RY 01(γ3n−2 )X0,1RY 01(θ3n−2 + φ3n−2 )

⎤
⎥⎦

=

⎡
⎢⎣ RY 01(θ1 + φ1 − γ1) 0 0

0 . . . 0
0 0 RY 01(θ3n−2 + φ3n−2 − γ3n−2 )

⎤
⎥⎦.

This completes the proof. The proof of the other statements and cases follow similarly. �
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