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Quantum random access memory (QRAM) is an essential ingredient for many quantum algorithms, such as
quantum machine learning models. The quantum resources (qubit counts and circuit depths) required to load
classical data into a circuit severely prohibit many reasonably sophisticated demonstrations in the near term.
To this end, we propose a method to construct a compact QRAM circuit, leveraging classical preprocessing to
design as shallow a circuit with as few auxiliary qubits as possible. The underlying idea is to map data-encoded
quantum states into an orthogonal set of quantum states (characterized by a family of parametrized circuits);
then one can straightforwardly entangle the data qubits with the address qubits using CNOT gates to realize a
data-loading QRAM circuit. The nonunitary transformation to convert the orthogonalized quantum states back
to the original data-encoded quantum states can be easily achieved with the help of a small set of auxiliary qubits
and postselections. Numerical simulations on handwritten digits and Iris data sets are performed to assess the
effectiveness of the proposed method, and we also highlight how noise influences quantum circuit performance
across diverse configurations using random data sets. The proposed method for constructing a QRAM circuit can
potentially facilitate the development and testing of many quantum machine learning methods in the near term.
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I. INTRODUCTION

Quantum machine learning (QML), as a subfield of
quantum computing, has garnered significant attention from
researchers worldwide. Numerous proposals of QML algo-
rithms effectively demonstrate the potential for achieving
quantum advantages [1]. These promising breakthroughs
are predominantly grounded in the transition from the
classical computing basis to the quantum Hilbert space, en-
abling the exploitation of the intrinsic power inherent in
quantum-mechanical principles, such as superposition and
entanglement for information processing. This offers promis-
ing prospects to enhance machine learning, ranging from
reduced computational complexity to improved generalization
performance.

Efficiently loading a large amount of classical data onto
a quantum computer poses a central challenge for ensuring
the optimal performance of certain quantum algorithms, such
as QML. In response, the concept of quantum random access
memory (QRAM), which served as the counterpart to classical
random access memory, was introduced to streamline the stor-
age and retrieval of data in the form of quantum superposition
[2]. QRAM allows for querying multiple memory addresses
in superposition

∑
i |i〉, and returns the desired data

∑
i |xi〉 in

*Contact author: duanbojia@njnu.edu.cn
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an entangled and superpositioned form:

1√
M

M−1∑
i=0

|i〉|0〉⊗n QRAM−→ 1√
M

M−1∑
i=0

|i〉|xi〉, (1)

where M = 2m and N = 2n represent the number and dimen-
sionality of the normalized data, respectively, and |xi〉 is an
n-qubit quantum state stored in the ith memory cell. The
potential of efficiently implementing QRAM could result in
an exponential speedup for a variety of quantum algorithms
[3–5]. Since then, many proposals have been put forward to
implement the QRAM either via a quantum circuit model or
physical implementations as well as its applications [6–19].
For a more comprehensive understanding of the various struc-
tures of QRAM, please refer to the detailed review provided
in Appendix. A.

In this paper, we propose a framework to implement a com-
pact QRAM circuit. The proposed state-preparation method
is composed of three conceptual steps. Initially, a set of M
classical data xi undergoes preprocessing to be converted to
a set of orthogonalized data x̃i. Subsequently, the proposed
quantum circuit U1 is employed to load the orthogonalized
data x̃i into a quantum superposition state 1√

M

∑
i |i〉|x̃i〉 with

indices i. By doing so, the QRAM enables the representation
of multiple orthogonalized classical data items simultaneously
in the quantum domain. Finally, to recover the desired tar-
get state 1√

M

∑
i |i〉|xi〉, the quantum circuit U2 (along with
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FIG. 1. The schematic diagram illustrates the entire process of
the proposed QRAM. Initially, the M classical data {xi} are prepro-
cessed to become a set of orthogonalized data {x̃i}. Subsequently,
the quantum circuit U1 is employed to load the data set {x̃i} into a
quantum superposition state 1√

M

∑M−1
i=0 |i〉|x̃i〉, and then the quantum

circuit U2 transforms the quantum state 1√
M

∑M−1
i=0 |i〉|x̃i〉 to the target

quantum state 1√
M

∑M−1
i=0 |i〉|xi〉.

auxiliary qubits) is introduced to transform the orthogonalized
data |x̃i〉 back to the original data |xi〉 while preserving the
appropriate entanglement with the address qubits. Overall, a
version of our proposed method requires just O(poly(n, m))
quantum resources.

The rest of the paper is organized as follows: Section II
briefly introduces the proposed method for constructing a
compact QRAM circuit with classical preprocessing, followed
by the analysis of the QRAM circuit. Section III illustrates
numerical simulations using both the handwritten digits data
set and the Iris data set from sklearn. It also includes an
experimental analysis of how noise affects quantum circuit
performance across different configurations using random
data sets. Section IV contains the relative conclusions and the
possibility of future improvements. The typical research on
QRAM is discussed in Appendix A.

II. METHOD

Our proposed method comprises three stages: data or-
thogonalization, a QRAM circuit for entangling the orthog-
onalized data with the address qubits, and a QRAM circuit
for the nonunitary transformation for the reverse operation
(nonorthogonalization) in the qubits’ subspace. The schematic
diagram for the entire workflow is summarized in Fig. 1. The
preprocess depicted in the figure is presented in Sec. II A, and
U1 and U2 are thoroughly discussed in Secs. II B and II C,
respectively.

A. Data orthogonalization

Consider a set of normalized classical data {xi} ∈ RN ,
where i = 0, 1, 2, . . . , M − 1 represents the data index, and
N = 2n is the dimension of xi. Assume that {xi} are linearly
independent, but any pair of data, such as xi and x j , are
probably not orthogonal to each other. For this data set, one
may define an overlap matrix S ∈ RM×M , where the element
Si j of the matrix S represents the inner product between the
classical data vectors xi and x j , denoted as Si j := 〈xi|x j〉 when
using ket and bra notation. A new orthogonal data set {x̃i} can

be derived as follows:

x̃i =
M−1∑
j=0

(S−1/2)i jx j, (2)

where S−1/2 is the inverse of S1/2.
One can easily verify that these constructed vectors x̃i are

orthonormal:

〈x̃i|x̃ j〉 =
∑

k

∑
l

〈xk|(S−1/2)ik (S−1/2) jl |xl〉

=
∑

k

∑
l

(S−1/2)ik〈xk|xl〉(S−1/2) jl

=
∑

k

∑
l

(S−1/2)ikSkl (S
−1/2)l j

= (S−1/2SS−1/2)i j = δi j, (3)

where we use the fact that the S−1/2 matrix is symmetric such
that S−1/2

i j = S−1/2
ji .

It is important to note that in order to obtain the or-
thogonalized data, the matrix S should be well-conditioned.
This condition is often satisfied when m � n in the small
data regime. But, under the scenario m > n, maintaining a
well-conditioned S becomes more challenging. To address
this issue, we proposed a straightforward “data grouping
method,” wherein we aggregate each set of 2m−n data into
small groups, treating each one as distinct new “grouped-data”
points. In this sense, we have interchanged the roles of m
and n. Consequently, the number of “grouped-address” qubits
and “grouped-data” qubits are equal to n and m, respectively.
A more detailed description of the data grouping method
is provided in Appendix B. It is crucial to emphasize that
this grouping method significantly improves the likelihood of
obtaining a well-conditioned matrix S. Specifically, matrix S
is deemed ill-conditioned when there exist at least two data
points that exhibit high similarity. The transformation of the
original data points into grouped data substantially reduces
the similarity among them. In cases in which a single group-
ing approach fails to achieve the desired effect, we have the
option to adjust the allocation of grouped data during prepro-
cessing to further diminish the similarity between them. This
straightforward method proves to be an effective strategy in
facilitating the attainment of a well-conditioned matrix S in
our approach.

It is worth noting that, for the sake of simplicity, we will
focus on the scenario where m � n in the subsequent discus-
sions.

B. QRAM circuit for orthogonalized data

Let {|0〉, . . . , |k〉, . . . , |2n − 1〉} denote a set of n-qubit
computational bases (for instance, |3〉 = |0011〉 when n = 4).
Let |xi〉 := ∑N−1

k=0 (xi )k|k〉 represent an n-qubit amplitude en-
coding quantum state corresponding to the classical data xi.
For clarity, all computational basis states denoted by |·〉 utilize
binary encoding, while all vectors represented by |·〉 employ
amplitude encoding. Define a 2n × 2n unitary transformation
Ux̃ that converts the basis |i〉 to the quantum state |x̃i〉, i.e.,
Ux̃|i〉 = |x̃i〉. Since the states |x̃i〉 are mutually orthonormal,
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FIG. 2. An illustration of U1 with the parametrized quantum
circuit U1(θ) = [Ia ⊗ U d

x̃ (θ)](U ad
CNOT)(Ha ⊗ Id ). The left Hadamard

and UCNOT gates convert |0〉a|0〉d to 1√
M

∑
i |i〉a|i〉d . The right solid

square represents a PQC with multiple layers of a hardware-efficient
ansatz (HEA) [21], specifically designed for the conversion from

1√
M

∑
i |i〉a|i〉d to 1√

M

∑
i |i〉a|x̃i〉d . Measurement is performed to esti-

mate the probability distribution, which is then used to minimize the
loss function, such as the mean-squared error (MSE) loss, in order to
obtain the optimal parameters.

the following relationship holds:

Ux̃ =
∑

i

|x̃i〉〈i|. (4)

As previously assumed, when m � n, one needs to con-
struct an N × N unitary matrix in which the first N × M
matrix should correspond to Ux̃ and the remaining N × (N −
M ) matrix can be defined arbitrarily, as long as the overall
transformation keeps its unitarity. One possible approach is
to employ the Gram-Schmidt method to derive additional
orthogonal states. Consequently, Eq. (4) can be unfolded in
detail as follows:

Ux̃ =
M−1∑
i=0

|x̃i〉〈i| +
M−N∑
i=N

|ũi〉〈i|. (5)

The unitary operation Ux̃, as presented in Eq. (4), is clearly
defined. Therefore, it can be decomposed into elementary
quantum gates using some quantum circuit compiling meth-
ods [20]. Another possible approach is to variationally learn
a compact quantum circuit for Ux̃ as a PQC. This approach
leverages the quantum hardware to identify the desired circuit
implementation of the desired transformation. More details
are given in Sec. II B 1.

Once we have already obtained the quantum circuit for
Ux̃, then we may define the three-step unitary U1, which
transforms the initial state |0〉 to |�1〉 := 1√

M

∑
i |i〉|x̃i〉. First,

the Hadamard gates are applied to the m address qubits.
Subsequently, the UCNOT gate is executed on both the m ad-
dress qubits and the m data qubits. Finally, the Ux̃ gate is
solely applied to the n data qubits. A quantum circuit diagram
that demonstrates the step-by-step execution of the circuit is
shown in Fig. 2. The definition of U1 is given by Eq. (6), where
the superscripts a and d represent the address qubits and the
data qubits, respectively:

U1 = (
Ia ⊗ U d

x̃

)(
U ad

CNOT

)
(Ha ⊗ Id ). (6)

It is easy to verify that after executing U1, one then achieves
the QRAM operation for loading the orthogonalized data:

U1|0〉ad = (
Ia ⊗ U d

x̃

)(
U ad

CNOT

)
(Ha ⊗ Id )|0〉ad

= (
Ia ⊗ U d

x̃

)(
U ad

CNOT

)( 1√
M

M−1∑
i=0

|i〉a ⊗ |0〉d

)

= (
Ia ⊗ U d

x̃

)( 1√
M

M−1∑
i=0

|i〉a ⊗ |i〉d

)

= 1√
M

M−1∑
i=0

|i〉a|x̃i〉d = |�1〉. (7)

PQCs for Ux̃

For a concrete illustration, we consider using the varia-
tional algorithm to design a quantum circuit for the unitary
operation Ux̃(θ) by optimizing the tuneable parameters θ.
Once the optimal parameters are learned to minimize the loss
function, as given in Eq. (8), the PQC Ux̃(θ) is then a candidate
for Ux̃,

arg min
θ

L = arg min
θ

∑
i

(1 − |〈i, x̃i|U (θ)|0〉ad |2). (8)

Figure 2 offers one possible circuit structure for U1(θ).
Recall that the left Hadamard and UCNOT gates convert the
initial state |0〉a|0〉d to an entangled state 1√

M

∑
i |i〉a|i〉d . Then

the left parametrized quantum circuit Ux̃(θ) generates the pre-
dicted probability amplitude that approximates |x̃i〉 for each
index |i〉, thereby accomplishing the “data-loading” process.
By comparing the predicted probability distribution with the
orthogonalized data, typically by the evaluation of the mean-
squared error (MSE) loss, the circuit can be optimized to
derive the optimal parameters.

It is important to emphasize that the width of the PQCs is
exclusively determined by the number of “data-qubits.” Addi-
tionally, as the number of data records grows, the depth of the
PQCs is also expected to increase. Although it is difficult to
know precisely how deep a circuit has to extend, we assume
a polynomial scaling as commonly assumed for variational
quantum algorithms.

C. QRAM circuit for the reverse transformation

The objective of the QRAM circuit is to prepare the spe-
cific target state given in Eq. (1). Therefore, it is necessary
to introduce a quantum circuit, denoted as U2, to convert
the orthogonalized superposed state 1√

M

∑
i |i〉|x̃i〉 back to the

target state 1√
M

∑
i |i〉|xi〉. The entire framework, including the

execution of U1 and U2, is depicted in Fig. 3.
Now, we present a comprehensive exposition on the design

of U2. More specifically, according to Eq. (2), one can easily
obtain

xi =
M−1∑
i=0

M−1∑
j=0

(S1/2)i j (S
−1/2) jixi =

M−1∑
j=0

(S1/2)i j x̃ j . (9)

Let us denote S1/2 as A in this context, where Ai j represents
the (i, j)th element of A, and Id represents the identity matrix
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FIG. 3. The schematic diagram of the quantum circuit for our
proposed QRAM. The left black dotted square represents the execu-
tion of U1 in Fig. 2, and the right blue solid square represents the
execution of U2.

which is applied to the data qubits. As |�1〉 = 1√
M

∑
i |i〉|x̃i〉,

we have

(Aa ⊗ Id )|�1〉

= 1√
M

(Aa ⊗ Id )
∑

i

|i〉a|x̃i〉d

= 1√
M

⎡
⎢⎣ A00I · · · A0,M−1I

...
. . .

...

AM−1,0I · · · AM−1,M−1I

⎤
⎥⎦

⎡
⎢⎣ x̃0

...

x̃M−1

⎤
⎥⎦

= 1√
M

⎡
⎢⎣

∑M−1
j=0 A0 j x̃ j

...∑M−1
j=0 AM−1, j x̃ j

⎤
⎥⎦ = 1√

M

⎡
⎢⎣ x0

...

xM−1

⎤
⎥⎦

= 1√
M

∑
i

|i〉a|xi〉d := |�T 〉, (10)

where |�T 〉 denotes the target quantum state, which is stored
within the desired QRAM. Consequently, after applying
A on the address qubits, we can convert 1√

M

∑
i |i〉|x̃i〉 to

1√
M

∑
i |i〉|xi〉.

More specifically, to apply the nonunitary transformation
A on the system, we introduce an ancilla qubit on the top of
the circuit as shown in Fig. 3. Denote |+〉 = 1/

√
2(|0〉 + |1〉)

and |−〉 = 1/
√

2(|0〉 − |1〉). Then the Hadamard gate H can
convert |0〉 and |1〉 to |+〉 and |−〉, respectively, and vice versa.
Given that A is a Hermitian operator, the matrices e−iAt and
eiAt are both unitary. Now we introduce a controlled unitary
U2 ∈ R(M+1)×(M+1) satisfying

(U2 ⊗ Id )|0〉c|�1〉

= 1√
2

Hc(|0〉c(eiAt ⊗ Id )|�1〉 + |1〉c(e−iAt ⊗ Id )|�1〉)

= 1√
2
|+〉(eiAt ⊗ Id )|�1〉 + 1√

2
|−〉(e−iAt ⊗ Id )|�1〉

= |0〉(cos (At ) ⊗ Id )|�1〉 + |1〉i(sin (At ) ⊗ Id )|�1〉.
(11)

After projecting the ancilla qubit onto the state |1〉, we get
the following |�2〉:

|�2〉 = 1√
P

(sin (At ) ⊗ Id )|�1〉, (12)

where P = Tr([sin†(At ) sin(At ) ⊗ Id ]|�1〉〈�1|) = 1
M Tr

( sin†(At ) sin(At )) = 1
M || sin(At )||2F , with the fact that

|�1〉〈�1| = 1
M

∑
i j |i, x̃i〉〈 j, x̃ j | = 1

M IM (IM denotes the
M × M identity matrix). And it is worth noting that
P = 1

M || sin(At )||2F is exactly the success probability of
projecting the ancilla qubit onto the state |1〉, where || · ||F
presents the Frobenius norm of the matrix.

In the case in which t ||A|| is sufficiently small, the follow-
ing approximation holds, |�2〉 ≈ (A ⊗ I )|�1〉 = |�T 〉. Upon
projecting the ancilla qubit into |1〉, the desired QRAM state
is successfully prepared.

Once again, we can either employ parametrized quantum
circuits or quantum circuit compiling methods to effectively
construct the quantum circuit required for executing U2

[20,22].

D. Analysis

In this section, we shall perform a comprehensive analysis
of the proposed method, including complexity, error, and the
success probability. For the sake of discussing more extensive
scenarios, we will employ the notations k = max(m, n) and
p = min(m, n) in our further discussions.

Complexity analysis

The consumption of the quantum resources encompasses
qubits and quantum gates necessary for executing the quan-
tum circuit. As previously discussed, our proposed framework
requires one ancilla qubit. Consequently, the overall memory
complexity is O(1).

Regarding the gate complexity, the U1 stage requires p
Hadamard gates, p CNOT gates and the PQCs for Ux̃i . If the
number of layers in the PQC is denoted as L, then O(kL)
single rotations and CNOT gates are required when using the
hardware-efficient ansatz (HEA) in Fig. 2. Empirically, L is
observed as a polynomial function of k within the framework
of variational quantum circuits. This choice stems from the
tolerance associated with the precision of generating quan-
tum states. In situations in which precision can be flexibly
adjusted, it becomes possible to strike a balance between
efficiency and accuracy by reducing the circuit depth L. This
situation may be more suitable for certain QML applications,
where only retaining the main features of the input data is
necessary. In this sense, the number of quantum gates for ex-
ecuting the U1 stage is O(poly(k)). Considering the U2 stage,
to efficiently simulate the unitary eiAt using the method in
Ref. [22], O(poly(p)) elementary quantum gates are needed.
It is worth noting that the controlled eiAt operation and the
execution of Ux̃i can be performed in parallel. As a result, the
overall gate complexity is O(poly(k)), primarily governed by
the larger number of address qubits and data qubits.

While rigorously determining the computational complex-
ity of training the PQCs is not a straightforward task, we know
the complexity is given by O(Nt Nm), where Nt denotes the
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number of iterative training steps required to obtain a fully
minimized loss function, and Nm represents the number of
measurements performed at each step.

Error and success probability analysis

For the sake of simplicity, we have omitted the obvious
identity matrix I , which should be applied on the data qubits
whenever it can be easily understood in the following discus-
sion. Referring to Eqs. (10) and (12), our goal is to get the
target quantum state |�T 〉 = A|�1〉, but our quantum circuit
actually outputs the quantum state |�2〉 = 1√

P
sin(At )|�1〉.

Now let us define an error ε to bound the infidelity 1 −
|〈�T |�2〉|2:

ε � 1 − |〈�1|A† sin(At )|�1〉|2

P

= 1 − [Tr(A† sin(At )|�1〉〈�1|)]2

Tr( sin2(At ))/M

= 1 − [Tr(A† sin(At ))]2

MTr( sin2(At ))

= 1 −
(∑M

i=1 σi sin(σit )
)2

M
∑M

i=1 sin2(σit )
, (13)

where σi is the ith singular value of the matrix A. In short,
after specifying a bound ε on the state infidelity, we can
select t to make sure this bound is satisfied. Once t is set,
the success probability for projecting the ancilla qubit on |1〉
is straightforwardly given by P = 1

M || sin(At )||2F .
Given Eq. (13), it is clear that the condition number of the

matrix A = √
S is lower-bounded by 1. This well-conditioned

case happens when σi = 1, and it can happen when the data-
encoded states are all orthogonal to begin with. For this ideal
case, ε = 0 always holds regardless of the number of data
points M and the choice for the hyperparameter t . The success
probability P can be easily optimized to a high value, too.
From an alternate perspective, in the scenario where all data
points exhibit orthogonality, the desired QRAM consequently
obviates the necessity for the U2 stage, directly resulting in
a success probability of 1. On the other hand, for an ill-
conditioned A (corresponding to many σi ≈ 0 when many
basis vectors are linearly dependent), then the error ε is very
difficult to suppress in the big-data limit when M 	 1. This is
because ε � 1 − Tr(A2 )Tr( sin2(At ))

MTr( sin2(At ))
= 1 − ||A||2

M , and the second

term on the right side scales with ||A||2/M factor. In addition,
the success probability P will scale with 1/M 
 1 in the
ill-conditioned limit.

III. NUMERICAL SIMULATIONS

This section focuses on the numerical simulations to as-
sess the effectiveness of our proposed method, which are
performed with PENNYLANE [23]. Here we utilize two data
sets, namely the handwritten digits data set and the Iris data
set, obtained from sklearn [24]. The handwritten digits data set
is selected to represent the case in which m � n, while the Iris
data set is chosen to represent the case in which m > n. These
specific cases align with the theoretical analysis discussed in

FIG. 4. The simplified quantum circuit for loading four hand-
written digits data points. The circuit consists of various qubits
with designated roles: qubit 0 serves as the ancilla qubit, qubits
1–2 function as the address qubits, and qubits 3–8 represent the
data qubits. Notably, the PQCs with L layers, enclosed within blue
dotted squares, solely operate on the data qubits. To enhance clarity,
intermediate layers of the PQCs have been omitted in the illustration.
Additionally, the controlled unitary U2 exclusively acts on the ancilla
and address qubits, as depicted in the circuit layout.

Sec. II. Moreover, we incorporate an experimental investiga-
tion into the impact of noise on quantum circuit performance
across diverse configurations using random data sets.

A. Handwritten digits data set

Each data point in the handwritten digits data set is repre-
sented as an 8 × 8 image of a digit, which is then transformed
into an N = 64-dimensional vector. Consequently, loading a
single data point requires n = log2 N = 6 qubits. In the fol-
lowing example, we choose M = 4 data points, implying that
m = log2 M = 2, thereby satisfying the case in which m � n.

The quantum circuit that exemplifies the process of our
proposed QRAM, as depicted in Fig. 3, is specifically illus-
trated in Fig. 4. As depicted in the circuit layout, it is evident
that the PQCs solely operate on the data qubits (qubits 3–8),
where the U2 solely acts on the ancilla and address qubits
(qubits 0–2). This clear separation of operations on qubits
ensures an efficient parallel processing of the quantum circuit.

Now, we look at how well the proposed QRAM cir-
cuit performs in loading four handwritten digits data points.
Figure 5 provides a clear comparison between the original
input data and the output quantum state of the QRAM circuit,
as displayed in the first and fourth columns, respectively. Ad-
ditionally, the second column represents the orthogonalized
data, which are computed by the operator S−1/2, while the
third column represents the output quantum state after exe-
cuting the operator U1 in Sec. II B. In this example, the PQC
comprises L = 36 layers, and the final fidelity is at least 99%.
Here, we choose the hyperparameter t = 0.68 for executing
the unitary ei

√
St and the success probability of measuring the

ancilla to be the desired state with probability 32.51%.
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FIG. 5. An illustration of the handwritten digits obtained from
our proposed QRAM. Each column represents a specific stage of
the data-processing pipeline. The first column represents the original
four handwritten digits, providing a reference for comparison. The
second column represents the orthogonalized data, obtained through
classical computation using the operator S−1/2. The third and fourth
columns represent the output quantum states of the QRAM circuit.
Specifically, the third column represents the quantum state after per-
forming the U1 stage, and the fourth column represents the quantum
state after the whole QRAM circuit. It is worth noting that the QRAM
circuit achieves a fidelity of at least 99% when utilizing L = 36
layers of PQCs. Moveover, the success probability of obtaining the
desired state is measured to be 32.51% with a parameter value of
t = 0.68.

B. Iris data set

The dimensionality of each data point of the Iris data set
is N = 4, resulting in n = log2 N = 2 qubits. In the following
example, we choose M = 16 data points, implying that m =
log2 M = 4, thereby satisfying the case in which m > n.

Figure 6 illustrates the quantum circuit designed for load-
ing 16 Iris data points. In this approach, we employ the data
grouping method to achieve data orthogonalization. The key
step involves swapping the values of m and n. This transfor-
mation converts each set of M/N = 4 original data points into
a grouped-data (for a detailed explanation, see Appendix B).
Consequently, we obtain Mg = M/4 = 4 grouped-data points,
each with a dimension Ng = N × 4 = 16, where the subscript
g denotes “grouping.” An illustration of this grouped-data is
depicted in Fig. 7(b), where each row represents a “grouped-
data.” Subsequently, these grouped-data points are expanded
into an MN-dimensional vector for further computations.
Upon returning to Fig. 6, after the grouping process, the
“grouped-address” qubits now consist of mg = log2 Mg = 2
qubits, ranging from 1 to 2, while the “grouped-data” qubits
consist of ng = log2 Ng = 4 qubits, ranging from 3 to 6.

Now, we also look at how well the proposed QRAM circuit
performs in loading 16 Iris data points. Figure 7 provides a
clear comparison between the original input data and the out-
put quantum state of the QRAM circuit. In this example, the
PQC consists of L = 12 layers, and the final fidelity is at least

FIG. 6. The simplified quantum circuit for load 16 Iris data
points. Qubit 0 serves as the ancilla qubit, qubits 1–2 function as
the “grouped-address” qubits, and qubits 3–6 represent the “grouped-
data” qubits. However, in fact, qubits 1–4 function as the actual
address qubits, and qubits 5–6 represent the actual data qubits, which
is different with Fig. 4. Notably, the PQCs with L layers, enclosed
within blue dotted squares, operate on both the m − n actual address
qubits and the n actual data qubits. To enhance clarity, intermediate
layers of the PQCs have been omitted in the illustration.

99.8%. For the purpose of executing the unitary operation
ei

√
St , we select the hyperparameter t = 0.8, and the success

probability of measuring the ancilla qubit in the desired state
is determined to be 25.4%.

C. Numerical analysis

Now we present a comparative analysis of the experimen-
tal results derived from two distinct cases. An illustration
of this comparative analysis is depicted in Fig. 8. The fig-
ure showcases the trends of success probability and fidelity
concerning various values of t . In particular, Fig. 8(a) presents
the experimental results obtained from the handwritten digits
data set, corresponding to the case illustrated in Sec. III A.
Additionally, Fig. 8(b) displays the results from the Iris data
set, as discussed in Sec. III B. As demonstrated in Sec. II D,
the success probability for projecting the ancilla qubit onto |1〉
is directly determined by P = 1

M || sin(At )||2F . Consequently,
we can readily visualize the probability trends corresponding
to the variable t using this equation. Additionally, fidelities are
calculated straightforwardly by computing the inner product
between the final quantum state output in the numerical simu-
lations and the original classical data for different values of t .
For both experimental cases, the variable t is varied across
a range of 0–2, with 100 sampling points. Indeed, we are
particularly interested in the region where t is relatively small
and fidelity is comparatively high.

The success probability (depicted by the blue solid line)
shows fluctuations with peaks and valleys. This pattern aligns
with the mathematical properties of the square of the sine
function. Conversely, predicting the fidelity trend solely from
theoretical analysis presents a challenge. However, exper-
imental observations from both figures indicate that the
fidelity, depicted by the red dashed line, typically decreases
as t increases, especially when t is relatively small.
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FIG. 7. An illustration of the Iris data points obtained from our proposed QRAM. The label of the subfigure represents a specific stage
of the data-processing pipeline from (a) to (f): (a) The original 16 Iris data points; each has dimension 4 (in a row). (b) The 4 grouped Iris
data points; each “grouped-data” has dimension 16 (in a row). It is essential to understand that, for example, the first row in (b) is derived by
consolidating the data from the first four rows in (a). (c) The orthogonalized data, obtained through classical computation using the operator
S−1/2. (d) The quantum state after performing the U1 stage. (e) The output of the QRAM storing the grouped Iris data points. (f) The final
output of our proposed QRAM. Eventual outcome shows that the QRAM circuit achieves a fidelity of at least 99.8% when utilizing L = 12
layers of PQCs. Moveover, the success probability of obtaining the desired state is measured to be 25.4% with a parameter value of t = 0.8.

Recall that the primary goal of our experiments is to
achieve higher success probability while maintaining high
fidelity. Therefore, by considering the trends illustrated in
Fig. 8, an optimal choice for the value of t can be determined.
For example, in Fig. 8(a), when the fidelity exceeds 0.99, the
probability increases with the increment of t , leading us to
choose t = 0.68 as demonstrated in Sec. III A. Conversely,
in Fig. 8(b), when the fidelity surpasses 0.99, the probability
initially increases with t but then begins to decrease again. As
a result, we opt for the value of t = 0.8, which corresponds
to the first peak of the success probability, as illustrated in
Sec. III B.

D. Noisy analysis

Our experimental design investigated the capability of a
quantum circuit to represent an ensemble of random target
states across various qubit counts. The noise experiments were
conducted following the methodology outlined in Ref. [25].
We considered six cases: n = 3 and m = 2, n = 4 and m = 2,
n = 4 and m = 3, n = 5 and m = 2, n = 5 and m = 3, and
n = 6 and m = 2. Three different types of noise were ex-
plored: phase damping, amplitude damping, and depolarizing
channels, with noise levels γ ∈ {0.001, 0.01, 0.05, 0.1}.

To introduce noise into the quantum circuit, we utilized
PENNYLANE’s noise gate, following the approach described
in Ref. [25]. Specifically, noise channels were added after
each two-qubit or multiqubit gate in a layer of the circuit.

Additionally, we employed the reoptimization technique de-
scribed in Ref. [25]. First, the circuit was optimized in a
noiseless environment to determine the optimal parameters for
the ideal case. These parameters were then used to evaluate
the fidelity using the noisy circuit (non-reoptimized). Sub-
sequently, starting from these noiseless optimum parameters,
the circuit was reoptimized with the noise channels included
(reoptimized).

The experimental results are presented in Fig. 9, where
each row represents a specific problem size (i.e., identical n
and m), and each column represents a specific noise type (i.e.,
phase damping, amplitude damping, and depolarizing chan-
nels). Solid lines represent the fidelity after reoptimization,
while dashed lines represent the fidelity without reoptimiza-
tion. Different colors of lines correspond to different gamma
values.

Based on the experimental findings, we draw the following
conclusions:

(i) Noiseless Conditions: increasing the number of layers
results in fidelity improvements surpassing 0.99, with fidelity
levels exceeding 0.99 for n = 3, m = 2 with 8 layers; n =
4, m = 2 with 11 layers; n = 4, m = 3 with 18 layers; n =
5, m = 2 with 18 layers; n = 5, m = 3 with 34 layers; and
n = 6, m = 2 with 34 layers.

We can fit a polynomial function to model the relationship
between the number of qubits (x) and the required number of
layers (y) to achieve high fidelity. Using polynomial fitting,
the relationship can be expressed as y = poly(x). Current data
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FIG. 8. The variation trends of success probability and fidelity
with different values of t . Part (a) presents the experimental results
on the handwritten digits data set, while (b) shows the results on the
Iris data set. The thick red dashed line represents the trend of the
fidelity, while the thick blue solid line showcases the variation of
the success probability. For clarity, the thin black dashed line indi-
cates the Frobenius norm value of sin(At ), while the thin green solid
line represents a reference line for fidelity at 0.99.

suggest that a cubic polynomial provides a reasonable fit.
However, whether this model holds for higher qubit counts
requires further experimentation. Nonetheless, the existing
results indicate the potential for resource prediction in the first
stage. In the second stage, the resources required for quantum
gates are determined by the preparation of the unitary ei

√
St .

The gate count and depth depend on the simulation tech-
nique used. Reference [26] proposed an effective method for
Hamiltonian simulation by utilizing quantum signal process-
ing (QSP). This strategy involves carefully reducing overhead
costs at each step to run a complete QSP protocol on noisy
quantum hardware. By implementing a polynomial approxi-
mation of the time evolution operator, this method provides

a viable approach for efficiently preparing ei
√

St even in the
presence of noise.

(ii) Noise Impact on Fidelity and Layer Count Optimiza-
tion: The introduction of noise prompts fidelity enhancement
to a certain extent by necessitating a reduction in the number
of layers. For example, in a noiseless scenario, for n = 3, m =
2, increasing the layer count from 8 to 11 may yield a slight
fidelity increase. However, in the presence of noise (e.g., with
γ = 0.001 for depolarizing channels), it is observed that with
eight layers, the fidelity peaks. Subsequently, increasing the
layer count results in fidelity degradation. Similar phenomena
are also observable in other problem sizes, especially pro-
nounced in the case of depolarizing channels.

(iii) Reoptimization Impact on Fidelity with Noise: Main-
taining a constant layer count, reoptimization exerts minimal
influence on fidelity enhancement, as evidenced by instances
in which the solid line surpasses the dashed line. From the
conclusion above in (ii), it is evident that reducing the layer
count during reoptimization has a more pronounced effect on
fidelity improvement.

(iv) Fidelity Decline with Qubit and Layer Expansion: At
equivalent noise levels (with equal γ ), fidelity experiences
a rapid decline with increasing qubit and layer counts. This
trend is observable across different problem sizes depicted by
various subgraphs, which reflect varying n and m.

(v) Fidelity Variation Across Noise Types and Noise Lev-
els: Different types of noise exert distinct impacts on fidelity,
with phase damping demonstrating the least effect and depo-
larizing noise exhibiting the strongest influence. Specifically,
despite fidelity decreasing with all three types of noise, fidelity
is highest under phase damping, followed by amplitude damp-
ing, and lowest under depolarizing noise, when considering
the same noise level (with equal γ ). This trend is evident
when comparing lines of the same color (e.g., blue) across
subgraphs representing identical problem sizes (n and m).

Moreover, fidelity remains relatively high at lower qubit
counts when γ is set to 0.001. However, fidelity significantly
degrades with higher γ values, such as 0.01, 0.05, and 0.1.

(vi) Comparative Analysis of Configurations: In configura-
tions with the same total qubit count (i.e., m + n), such as n =
5, m = 3 and n = 6, m = 2, n = 4, m = 3 and n = 5, m =
2, fidelity exhibits some variability at lower layer counts.
Specifically, configurations like n = 6, m = 2 and n = 5, m =
2 demonstrate higher fidelity compared to n = 5, m = 3 and
n = 4, m = 3 when the layer count is low. However, as the
layer count increases, the performance of these configurations
converges, resulting in similar fidelity outcomes. This phe-
nomenon is observable by comparing subgraphs in the same
column (i.e., the same noise type) for configurations with the
same total qubit count.

In conclusion, our study highlights how noise influences
quantum circuit performance across diverse configurations.
This analysis of fidelity trends offers insights into optimiz-
ing circuits for practical applications, contributing to ongoing
efforts to enhance quantum computing technologies.

IV. CONCLUSION

In this work, we present a QRAM framework that approx-
imately loads a set of classical data into a compact quantum
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FIG. 9. Fidelity for different noise types, noise levels, and layer counts. Each column represents the fidelity for a specific noise type: the
first column represents fidelity under phase damping noise, the second column represents fidelity under amplitude damping noise, and the third
column represents fidelity under depolarizing channel noise. Each row represents a different problem size. For example, the first row represents
the case in which the data qubit number is n = 3 and the address qubit number is m = 2. Other rows follow similarly. The lines with different
colors represent different noise levels: red for γ = 0, blue for γ = 0.001, green for γ = 0.01, yellow for γ = 0.05, and purple for γ = 0.1.
The solid lines represent results with reoptimization, while the dashed lines represent results without reoptimization.
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circuit. The QRAM process entails a classical preprocessing
step to orthogonalize the classical data, followed by loading
these orthogonalized data using a parametrized quantum cir-
cuit. Subsequently, a set of controlled unitaries is employed
to transform the quantum state into the desired target state,
effectively loading the original data with their indices in the
quantum superposition. With the support of classical comput-
ing, the proposed QRAM framework gives a potentially viable
quantum-classical approach in the near-term NISQ era.

To demonstrate that the proposed QRAM circuit is prac-
tical for approximately loading multiple classical data, we
illustrate numerical simulations on the handwritten digits and
Iris data set. As clearly shown in Sec. III, a poly(m, n)-depth
quantum circuit can efficiently approximate the loading of
multiple data into a quantum superposition using amplitude
encoding.

We remind the reader that the overall framework for load-
ing the orthogonalized data into a quantum superposition and
reverting the orthogonalized data to the original ones is not
restricted to our proposed approach discussed in the main
text, as there are alternative ways to construct U1 and U2.
For instance, one can design U1 without using PQCs and
variational optimizations, since we can explicitly write down
the unitary matrix for classical data (there is no issue of
“exponentially” large Hilbert space as in simulating a genuine
quantum system). As for U2, one may consider other tech-
niques to generate a linear combination of unitaries to realize
the nonunitary transformation. As exposed in our analysis and
numerical demonstrations, there is no reason that the success
probability of the state preparation will diminish with the sizes
of data. Additionally, a range of quantum circuit compressing
algorithms may also help us to further reduce the depth of the
QRAM circuit [27–31].

Our experiments highlight the significant impact of noise
on quantum circuit performance. While increasing the layer
count improves fidelity under noiseless conditions, reducing
the layer count during reoptimization has a more pronounced
effect on fidelity improvement under noisy conditions. Cur-
rently, as the circuit depth increases, fidelity decreases rapidly
with higher noise levels, indicating a low tolerance to
noise. However, with advancements in quantum hardware
and algorithm optimizations, we believe there is poten-
tial to further advance the practical applications of these
algorithms.

Our method defies the previously established mainstream
theoretical conclusion on the subject of loading quantum data
as we heavily leverage classical preprocessing to significantly
reduce the reliance on quantum resources to the bare mini-
mum. We believe this work can efficiently enable the loading
of many nontrivial data sets into quantum circuits and facili-
tate the development of quantum algorithms, such as quantum
machine learning.
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APPENDIX A: RELATED WORKS

Various QRAM structures have been proposed, and we
summarize them as follows.

1. Bucket-brigade QRAM

The “bucket-brigade” architecture uses a binary tree struc-
ture to encode M N-dimensional vectors into M leaf nodes
(memory cells), where a three-level system “qutrit” is intro-
duced to facilitate the routing of accessing leaves, yielding
only O(m) quantum switch activations [2]. Several propos-
als for experimental implementations of the bucket-brigade
QRAM using photonic or acoustic systems have been put
forth [7–9]. The follow-up papers [10,11] also proposed a
circuit-based implementation of the bucket-brigade QRAM,
and they presented a number of different circuit families that
perform the task of a QRAM. They also discussed whether
all the components are required to be error-corrected for
maintaining a high-fidelity operation. Results showed that
the fault-tolerant components might not be necessary for
algorithms that require only polynomial queries to the mem-
ory (such as the quantum linear system algorithm [32,33]),
but might be necessary for superpolynomial query algo-
rithms (such as Grover’s search [34], which is widely used
as a subroutine in various quantum algorithms) [10]. Ref-
erence [12] proved that a noise-resilient QRAM can be
implemented with realistically noisy devices. Specifically, the
bucket-brigade architecture can be used to perform high-
fidelity queries of large memories without the need for
quantum error correction, provided physical error rates are
sufficiently low.

In addition, a quantum walk is introduced to implement
the bucket-brigade QRAM [13,14]. Reference [13] provides
a bucket-brigade QRAM scheme based on a quantum walk,
which requires only O(m) steps to access and retrieve O(M )
data in the form of quantum superposition states. In this
scheme, the bucket is represented as a quantum walker dis-
tinguished by le f t and right chirality, and quantum motion
is executed on a full binary tree to transport the bucket to the
specified memory cells. However, it still requires all O(Mm)
qutrits to be installed for the routing scheme. Reference [14]
physically implement a bucket-brigade QRAM using a mul-
tiparticle continuous-time quantum walk with two internal
states. Data with address information are dual-rail encoded
into quantum walkers. This bucket-brigade QRAM processes
M n-qubit data in a quantum circuit of depth O(m log(m + n))
and requires O(m + n) qubits and O(M(m + n)) quantum
gate resources, which is more efficient than the conventional
bucket-brigade QRAM, which requires O(M + n) qubits and
O(m2 + mn) steps.

Still, it was questioned whether the bucket-brigade QRAM
provides a genuine quantum advantage if we take into account
all the required resources [35].

2. Circuit-based QRAM

In numerous quantum algorithms, QRAM is commonly
utilized as the first step to load classical data, which are then
fed into the subsequent circuit. Therefore, it is desirable to
directly implement a QRAM in a quantum circuit model.
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Möttönen et al. introduced a method to efficiently im-
plement an amplitude encoding using uniformly controlled
rotations, which costs 2m+n+2 − 4(m + n) − 4 CNOT gates and
2m+n+2 − 5 one-qubit elementary rotations to reconstruct the
(m + n)-qubit QRAM-like model [6].

In recent years, Ref. [15] presented a circuit-based QRAM
termed a flip-flop QRAM (FF-QRAM) to construct a quantum
database of classical information. The FF-QRAM stores the
data one by one, such that the complexity of constructing
data is in O(n) qubits and O(Mn) steps, where M repre-
sents the number of classical data. Each datum is executed
in three stages: flip, register, and flop. The flip stage is to
set all the bits pertaining to a particular address and data
point to 1 by a classically controlled Pauli-X gate, and the
flop is the inverse of the flip. The midstage register is ap-
plied to store the angle of the data by the n-qubit controlled
rotation CnR(θ). Reference [16] proposed a strategy to load
continuous data without postselection in O(Mn) time. This
method is inspired by the probabilistic quantum memory
and FF-QRAM that completes the generalized amplitude
encoding.

A range of circuit-based data-loading approaches can also
be extended to implement QRAM [36–39]. The quantum re-
source consumption, whether in terms of qubits or quantum
gates, is at least O(MN ) for data-loading of m + n qubits.

3. PQC-based QRAM

With the growing emphasis on the application of
parametrized quantum circuits (PQCs) in quantum machine
learning during the noisy intermediate-scale quantum (NISQ)
era [40,41], the recent emergence of research has focused on
investigating the implementation of an approximate circuit-
based QRAM [17–19]. Reference [17] introduces a novel
approach for encoding classical data into quantum states ap-
proximately using a trainable entangling quantum generative
adversarial network (EQ-GAN) circuit. The EQ-GAN em-
ploys entangling operations between the generator output and
true quantum data to converge to the Nash equilibrium. How-
ever, the EQ-GAN solely generates synthetic data, rather than
processing the addressable data. Similar to EQ-GAN QRAM,
Ref. [18] proposed a trainable PQC-based QRAM. It takes
address lines as input and gives out the corresponding data
in these address lines as the output. Although it has been
noted that a faster convergence can be achieved by loading
images from QRAM and transmitting them to a QNN, the
proposed architecture is limited to sequential access of data
and does not scale efficiently for large data sets. In Ref. [19],
we introduce a novel Hamiltonian-based data-loading (HDL)
protocol that achieves high-fidelity data loading using only a
shallow PQC without ancilla qubits. The HDL first identifies
a Hamiltonian Ĥ whose unique ground state |ψ〉 represents
the normalized data in the form of amplitude encoding.
Then the target state is reconstructed with a PQC by uti-
lizing methods like a variational quantum eigensolver to
minimize energy. We explore the possibility of construct-
ing a circuit-based QRAM to load multiple data with the
HDL protocol.

It is noteworthy that the circuit-based QRAM or PQC-
based QRAM structure resembles the implementation of

FIG. 10. An illustration of the data grouping method. Here, xi

represents the original data, where i ranges from 0 to M − 1. The
grouping operation combines M/N data points into one grouped-
data, such as grouping x0 and x1 into a grouped-data xg0. Following
this operation, the newly grouped-data points are rolled into a vector,
which will be encoded into the quantum state in later stages, as
discussed in Sec. II. Notably, the sequence of rolling, whether before
or after grouping, does not impact the final quantum state generated.

data access through quantum circuits instead of relying on
routing to physical storage devices. As a consequence, in
quantum algorithms, this type of QRAM serves more as a
subroutine that necessitates reexecution upon each utilization.
Furthermore, compared with the circuit-based QRAM, which
requires exponential resource consumption, the PQC-based
methods transfer a huge portion of the computational costs
to classical calculations, which is expected to reduce quantum
resources to a polynomial level. Once we have learned the
shallow circuit, we can repeatedly load classical data into
various quantum algorithm tasks.

APPENDIX B: DATA GROUPING METHOD

In this Appendix, we delve deeper into the data group-
ing method. In the case when m > n, we can simply swap
the roles of m and n, as explained in Sec. II A. To en-
hance clarity, we provide an illustrative example of the
grouping method in Fig. 10, where M = 8 and N = 4. The
grouping operation combines M/N = 2 data points into one
grouped-data, resulting in Mg = 4 grouped-data points and
Ng = 8 dimension for each grouped-data. Specifically, in this
context, �log2 Mg� = 2 represents the number of “grouped-
address” qubits and �log2 Ng� = 3 represents the number of
“grouped-data” qubits. The grouped-data set is then rolled
into an M × N = Mg × Ng = 32-dimensional vector, which
will be processed in subsequent stages, as discussed in
Sec. II.

As depicted in Fig. 10, the order of rolling, whether
before or after grouping, does not impact the final quan-
tum state generated. The grouping method affects only the
intermediate calculation process: constructing the matrix S
based on the newly grouped-data and the orthogonalized
grouped-data derived from S. Therefore, upon completing
the entire process, we obtain optimized quantum circuits
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capable of generating the desired quantum state that stores
the original data along with their corresponding address
indices.

Certainly, our proposed method is not confined to the strat-
egy of swapping m and n. We have the flexibility to adjust

the number of data points within each group as a factor of
M, denoted as c. In this scenario, we have Mg = M/c and
Ng = N × c. Importantly, this strategy only alters the circuits
of U1 and U2, but it does not affect the final quantum state
generated in the end.
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