
PHYSICAL REVIEW A 110, 012613 (2024)

Antisymmetry-breaking-coupling–enhanced sensing of quantum reservoirs
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We investigate the use of a single generalized dephasing qubit for sensing a quantum reservoir, where the
antisymmetry of the coupling between the qubit and its reservoir is broken. Our results indicate that, in addition to
the decay factor encoding channel, the antisymmetry breaking coupling introduces another phase factor encoding
channel. We propose an optimal measurement strategy for the generalized dephasing qubit, which enables the
practical measurement precision to reach the theoretical ultimate precision quantified by the quantum signal-
to-noise ratio (QSNR). As an application example, the generalized dephasing qubit is employed to estimate
the s-wave scattering length of an atomic Bose-Einstein condensate. It is found that the QSNR contributed
by the antisymmetry breaking coupling is at least two orders of magnitude higher than the QSNR contributed
by the antisymmetry coupling at the millisecond timescale, and the optimal relative error can achieve a scaling
∝ 1/(χt ) in long-term encoding, where χ represents the relative driving strength and t is the encoding time. Our
work opens a way for supersensitive sensing of quantum reservoirs.

DOI: 10.1103/PhysRevA.110.012613

I. INTRODUCTION

Any realistic quantum system inevitably interacts with
its surrounding quantum reservoirs, leading to quantum de-
coherence [1]. It is crucial to assess and characterize the
quantum reservoirs for both theoretical research and practical
applications such as quantum coherence protection [2,3] and
reservoir engineering [4,5]. However, for a complex quan-
tum reservoir with a large number of degrees of freedom, it
is challenging to precisely estimate various parameters that
characterize the quantum reservoir. An effective way to over-
come the challenge is the use of quantum probes [6–15]. A
quantum probe is a small and controllable quantum system
prepared in a proper initial state. When the quantum probe
interacts with the target quantum reservoir, quantum corre-
lations between them will be generated. These correlations
may make the probe sensitive to the reservoir’s fluctuations
which are induced by small changes in the parameter to be
estimated. Therefore, information about the parameter may
be extracted by performing an appropriate measurement on
the probe. In fact, the precision of this estimation has been
extensively studied using tools from the quantum parameter
estimation theory [16,17]. According to the theory, the ulti-
mate precision of any estimation procedure is limited by the
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quantum Cramér-Rao (QCR) bound, which can be quantified
by quantum Fisher information (QFI) or the corresponding
dimensionless quantum signal-to-noise ratio (QSNR) [18,19].
A larger QFI (QSNR) indicates a higher potential achievable
precision.

A single qubit (a two-level system) is the most straightfor-
ward quantum probe for estimating parameters of a quantum
reservoir, attracting much attention in recent research [20–28].
If there is no energy exchange between the qubit and its
reservoir, namely, the Hamiltonian of the qubit commutes
with the interaction Hamiltonian between the qubit and its
reservoir, the dynamical behavior of the qubit can be described
by the pure dephasing model [1,29]. The pure dephasing
model, which is exactly solvable, has been widely applied
to detect various properties of reservoirs such as measuring
ultralow temperatures [30–34], probing the cutoff frequency
of Ohmic reservoirs [35–39], estimating various coupling
strengthes [38–40], and detecting the non-Markovian prop-
erties [41–43]. The interaction Hamiltonian in the dephasing
model of a single qubit is usually taken to be [1]

ĤI = σ̂z

∑
k

(gkb̂†
k + g∗

kb̂k ), (1)

where σ̂z = |1〉〈1| − |0〉〈0| is the Pauli operator with |1〉 (|0〉)
being the upper (lower) energy level of the qubit probe, b̂k(b̂†

k )
represents the bosonic annihilation (creation) operator for the
kth reservoir mode, and gk is the coupling strength. It should
be stressed that the coupling form in Eq. (1) has antisymmetry,
meaning that the qubit in the lower energy level |0〉 has an
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opposite coupling strength with each mode of the reservoir as
compared to the qubit in the upper energy level |1〉. We notice
that this antisymmetry coupling (AC) only allows the reser-
voir’s parameter information to be encoded into the qubit’s
decay factor, resulting in a degradation of sensing precision
over time during extended encoding [44].

In this paper, we aim to fully utilize the potential of a single
dephasing qubit in estimating the parameters of a quantum
reservoir. To achieve this, we break the antisymmetry of the
coupling in Eq. (1) and assume that the qubit in each en-
ergy level couples to each mode of the reservoir in arbitrary
coupling strength. During the encoding process, we find that,
in addition to the decay factor encoding channel, this anti-
symmetry breaking coupling (ABC) leads to the reservoir’s
parameters information being encoded into the qubit’s phase
factor. As a result, the QFI for a certain reservoir’s parameter
in the generalized dephasing model is composed of two parts:
one part is the AC-contributed QFI, and the other part is the
ABC-contributed QFI. This implies that ABC may improve
the estimation precision of a single dephasing qubit for es-
timating reservoir’s parameters. Furthermore, we propose a
practical measurement scheme that enables the sensitivity of
the generalized dephasing qubit to saturate the QCR bound.

To demonstrate the benefits of employing a generalized
dephasing qubit for sensing quantum reservoirs, we propose
a system comprising an impurity qubit immersed in an atomic
Bose-Einstein condensate (BEC) to simulate the generalized
dephasing model. We utilize the dephasing qubit to estimate
the s-wave scattering length of the BEC, which is a crucial
parameter in ultracold gases [45]. To independently quantify
the sensing precision irrespective of its values, we employ
the dimensionless QSNR instead of QFI for consideration.
We investigate the dynamical behaviors of the AC-contributed
QSNR and the ABC-contributed QSNR separately. Our find-
ings reveal that the ABC-contributed QSNR is at least two
orders of magnitude higher than the AC-contributed QSNR
at the millisecond timescale. Moreover, the optimal relative
error can achieve a scaling ∝ 1/(χt ) in long-term encoding,
indicating that ABC allows the relative driving strength (RDS)
χ and the encoding time t to be utilized as resources for
enhancing the sensing precision. Consequently, one can con-
clude that ABC makes it possible to achieve supersensitive
sensing of quantum reservoirs.

II. GENERALIZED DEPHASING MODEL

The Hamiltonian of the generalized dephasing model in
this paper is given as

Ĥ = ω0

2
σ̂z +

∑
k

ωkb̂†
kb̂k +

∑
i=0,1

|i〉〈i|
∑

k

(gkib̂
†
k + g∗

kib̂k ),

(2)

where ω0 is level splitting and ωk is the frequency of the kth
reservoir mode. The third term on the right side of the above
equation is the interaction Hamiltonian, where gk0(1) is the
coupling strength between the qubit in state |0〉 (|1〉) and the
kth reservoir mode. Hereafter we set h̄ = 1.

Using the relations |1〉〈1| = (I + σ̂z )/2 and |0〉〈0| =
(I − σ̂z )/2 and omitting the constant term, the interaction

Hamiltonian

ĤI =
∑
i=0,1

|i〉〈i|
∑

k

(gkib̂
†
k + g∗

kib̂k ) (3)

is rewritten as

ĤI = σ̂z

∑
k

(gkb̂†
k + g∗

kb̂k ) +
∑

k

(ξkb̂†
k + ξ ∗

k b̂k ), (4)

where gk is coupling strength between the Pauli operator σ̂z

of the qubit and the kth reservoir mode and the second term is
effective driving term for the harmonic oscillator modes with
ξk being the driving strength of the kth reservoir mode. There
exist following relationships between gk, ξk, gk0, and gk1:

gk = gk1 − gk0

2
, (5a)

ξk = gk1 + gk0

2
. (5b)

It is clearly observed from Eq. (5b) that setting gk0 = −gk1

for all modes will cause the interaction Hamiltonian (4) to
degenerate into the interaction Hamiltonian (1). In this paper,
the coupling of the qubit in the lower energy level having
an opposite coupling strength with each mode of the reser-
voir as compared to the qubit in the upper energy level, i.e.,
gk0 = −gk1 is referred to as AC. In the generalized depasing
model we consider, the antisymmetry is broken (gk0 �= −gk1),
resulting in the extra effective driving term in Eq. (4).

Next, we investigate how the quantum state of the qubit
evolves over time under the generalized dephasing model. The
initial state of the whole system is assumed to be a product
state

ρ̂tot (0) = ρ̂s(0) ⊗ ρ̂B(0), (6)

where ρ̂s(0) = |ψ〉〈ψ | with |ψ〉 = 1/
√

2(|0〉 + |1〉) being a
pure state of the probe and ρ̂B(0) = ∏

k(1 − e−βωk )e−βωk b̂†
k b̂k

is a thermal state of the reservoir, where β = 1/kBT with T
and kB being the temperature and the Boltzmann constant.
Then the evolution state of the qubit probe is given as

ρ̂s(t ) = 1

2

(
1 e−i	(t )e−
(t )

ei	(t )e−
(t ) 1

)
, (7)

where the decay factor 
(t ) is


(t ) =
∑

k

4|gk|2 (1 − cos ωkt )

ω2
k

coth

(
βωk

2

)
, (8)

and the phase factor 	(t ) has the following expression:

	(t ) = ω0t −
∑

k

4Re

[
ξkg∗

k

ωk

]
t

+
∑

k

4Im

[
ξkg∗

k

ω2
k

(
1 − e−iωkt

)]
. (9)

The derivation of the time-dependent state ρ̂s(t ), as given in
Eq. (7), is provided in detail in Appendix A. In the generalized
dephasing model, the reservoir’s parameter information can
be encoded both in the decay factor (8) and in the phase
factor (9). However, for the dephasing model with AC which
is commonly employed in the study of quantum sensing of
reservoirs, only the decay factor encodes reservoir parameters
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due to the absence of an effective driving term (ξk = 0).
The ABC in the generalized dephasing model introduces an
additional phase factor encoding channel.

III. OPTIMAL MEASUREMENT FOR THE GENERALIZED
DEPHASING MODEL

In the quantum parameter estimation theory, the estimation
precision of a parameter λ of interest is restricted to the QCR
bound

δλ � 1√
νF Q

λ

, (10)

where δλ is the mean square error, ν represents the number
of repeated experiments, and F Q

λ denotes QFI with respect
to the parameter λ. The QFI represents theoretically ultimate
precision for single measurement, which can be obtained from
the quantum state of the system, and more specifically, from
its eigenvalues and eigenvectors. Any qubit state in the Bloch
sphere representation can be written as ρ̂ = 1/2(Î + w · σ̂ ),
where Î is 2 × 2 identity matrix, w = (wx,wy,wz )T is the
real Bloch vector, and σ̂ = (σ̂x, σ̂y, σ̂z ) represents the Pauli
matrices. The eigenvalues of the density operator ρ can be
given as (1 ± w)/2, where w is the length of the Bloch vector.
The length w = 1 for the pure state and w < 1 for the mixed
state. In the Bloch sphere representation the QFI with respect
to the estimated parameter λ can be given as follows [18,19]:

F Q
λ =

{
|∂λw|2, w = 1,

|∂λw|2 + (w · ∂λw)2

1−w2 , w < 1,
(11)

where ∂λ denotes the derivative with respect to the estimated
parameter λ. Therefore, to obtain the QFI of the evolution
state ρ̂S (t ) in Eq. (7), the Bloch vector of ρ̂S (t ) is given as

w = (cos 	e−
, sin 	e−
, 0), (12)

with the length w = e−
 . By substituting the Bloch vector in
Eq. (12) into the Eq. (11), the concrete expression of the QFI
of the evolution state in Eq. (7) is obtained

F Q
λ = (∂λ
)2

e2
 − 1
+ e−2
 (∂λ	)2. (13)

The QFI (13) contains of two terms. The first term is the
QFI of the pure dephasing model with AC, which has been
extensively studied [31–35]. Therefore, we can say that the
QFI of the second term is contributed by the ABC. In this
paper, the first term is called AC-contributed QFI labeled as

F ‖
λ = (∂λ
)2

e2
 − 1
, (14)

and the second term is called ABC-contributed QFI denoted
as

F ⊥
λ = e−2
 (∂λ	)2. (15)

Now we introduce an optimal measurement scheme for the
generalized dephasing model, which enables the sensitivity of
the qubit sensor to saturate the QCR bound. For a two-level

system, the Fisher information associated with the measure-
ment can be presented as [30]

Fλ = 1

〈�X̂ 2〉

(
∂〈X̂ 〉
∂λ

)2

, (16)

where 〈X̂ 〉 and 〈�X̂ 2〉 are the mean and variance of the mea-
sured observable. For an unbiased estimator, the error obeys

δλ � 1/
√

νFλ � 1/

√
νF Q

λ , which indicates the QFI is the
upper bound of the Fisher information associated with the
measurement X̂ , i.e.,

F Q
λ = max

X̂
Fλ(X̂ ) = Fλ(�̂), (17)

with �̂ being the optimal measurement. Finding the optimal
measurement �̂ to spur practical precision to reach the the-
oretically ultimate precision is of particular importance and
challenge in quantum metrology. For this reason, we introduce
a measurement with an measurement angle θ

X̂θ = cos θσ̂x + sin θσ̂y, (18)

where the angle θ is chosen by the measurer. Then the Fisher
information associated with the measurement X̂θ reads

Fλ(X̂θ ) = [(∂λ	) sin(θ − 	) − (∂λ
) cos(θ − 	)]2

e2
 − cos2(θ − 	)
. (19)

It is found that when the angle θ is chosen to be the phase
factor 	, the Fisher information is equal to the AC-contributed
QFI F ‖

λ , and when the angle θ is chosen to be 	 + π/2, the
Fisher information is equal to the ABC-contributed QFI F ⊥

λ ,
i.e.,

Fλ(X̂θ=	) = F ‖
λ , Fλ(X̂θ=	+ π

2
) = F ⊥

λ . (20)

It is further found that when the angle θ is set to be 	 + ϕ,
where ϕ satisfies the following equation:

tan ϕ = (e−2
 − 1)∂λ	

∂λ

, (21)

the Fisher information is equal to the QFI

Fλ(X̂θ=	+ϕ ) = F Q
λ . (22)

See Appendix B for the detailed verification process. Equa-
tion (22) demonstrates that the measurement X̂θ=	+ϕ does
become the optimal measurement �, which enables the sensi-
tivity of the generalized dephasing qubit sensor to saturate the
QCR bound. From Eq. (21), we see that the optimal measure-
ment depends on the true value of the parameter. Therefore,
measures require some prior information about the parameter
λ, for which a larger sample is required. Meanwhile, the
optimal measurement is time dependent, thus precise time
control is necessary to achieve the predetermined optimal
measurement precision.

IV. QUANTUM SENSING TO AN ATOMIC
BOSE-EINSTEIN CONDENSATE

A. Quantum simulation of the generalized dephasing model

In this subsection we propose a system involving an im-
purity qubit immersed in a three-dimensional homogeneous
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atomic BEC to simulate the generalized dephasing model. The
qubit probe is confined in a harmonic trap VA(r) = mAω2

Ar2/2
that is independent of the internal states, where mA is the mass
of the impurity and ωA is the trap frequency. For ωA � kBT ,
the spatial wave function of the qubit is the ground state
of VA(r), i.e., ϕA(r) = π−3/4�

−3/2
A exp[−r2/(2�2

A)] with �A =√
1/(mAωA). The Hamiltonian of the qubit is

ĤA = �A

2
σ̂z, (23)

where �A is level splitting between the lower (|0〉) and upper
(|1〉) energy levels. The Hamiltonian of the BEC is given as

ĤB =
∫

drψ̂†(r)

(
− h̄2∇2

r

2mB
+ V (r) − μ

)
ψ̂ (r)

+ 1

2
gB

∫
drψ̂†(r)ψ̂†(r)ψ̂ (r)ψ̂ (r), (24)

where ψ̂ (r) and ψ̂†(r) are the field creation and an-
nihilation operators, satisfying the bosonic commutative
relations [ψ̂ (r), ψ̂†(r′)] = δ(r − r′) and [ψ̂ (r), ψ̂ (r′)] =
[ψ̂†(r), ψ̂†(r′)] = 0, μ is chemical potential, the contact in-
teraction strength

gB = 4πaB

mB
, (25)

with aB being the s-wave scattering length between one con-
densate atom and another and mB being the mass of the
condensate atom. Here we consider V (r) is a very shallow
spherical harmonic potential that the condensate can be taken
as a homogeneous condensate. Then the field operator can be
written as

ψ̂ (r) = √
n + δψ̂ (r), (26)

where n is the density of the condensed part and δψ̂ (r) is the
field operator of small noncondensed part. One can expand
δψ̂ (r) as plane waves and perform Bogoliubov transformation

δψ̂ (r) = 1√
V

∑
k

(ukb̂k − vkb̂†
−k )eik·r, (27)

where V is the volume of the BEC, b̂k(b̂†
k) is the bosonic

annihilation (creation) operator satisfying the bosonic com-
mutative relations. Here uk and vk are the Bogoliubov trans-
formation coefficients with the forms uk = 1/2(

√
ωk/Ek +√

Ek/ωk ), vk = 1/2(
√

ωk/Ek − √
Ek/ωk ), where the kinetic

energy Ek = k2/(2mB) and Bogoliubov excitation energy ωk
reads

ωk =
√

E2
k + 2ngBEk. (28)

By substituting Eqs. (26) and (27) into the Hamiltonian (24)
and omitting the constant term and the higher-order terms of
δψ̂ (r), the Hamiltonian of the BEC is diagonalized as [46]

ĤB =
∑

k

ωkb̂†
kb̂k. (29)

Let us consider the interaction Hamiltonian between the
qubit probe and the BEC. For the qubit-BEC coupling, we as-
sume that the qubit undergoes spin-dependent s-wave elastic

collisions with the BEC [6,7,30,42]. The qubit-BEC interac-
tion Hamiltonian is represented as

ĤI =
⎛
⎝∑

i=0,1

gi|i〉〈i|
⎞
⎠∫

dr|ϕA(r)|2ψ̂†(r)ψ̂ (r), (30)

where

gi = 2πai

mAB
(31)

is the coupling strength of the qubit-BEC interaction with ai

being the s-wave scattering length between one condensate
atom and the impurity qubit in state |i〉 and mAB being the
reduced mass mAB = mAmB/(mA + mB). Since the interaction
Hamiltonian (30) commutes with the Hamiltonian of the qubit
in Eq. (23), the dynamical behavior of the qubit is described
by the pure dephasing model. Substituting Eqs. (26) and (27)
into the interaction Hamiltonian (30) and omitting the con-
stant term and the second-order term of δψ̂ (r), we obtain

ĤI = �

2
σz + σz

∑
k

gk(b̂k + b̂†
k ) +

∑
k

ξk(b̂k + b̂†
k ), (32)

where � = n(g1 − g2), the coupling strength gk, and the driv-
ing strength ξk are given as

gk =
√

n(g1 − g0)√
V

√
Ek

ωk
e

−k2�2
A

4 , (33a)

ξk =
√

n(g1 + g0)√
V

√
Ek

ωk
e

−k2�2
A

4 . (33b)

Let �A + � = ω0, the total Hamiltonian is

Ĥ = ω0

2
σ̂z +

∑
k

ωkb̂†
kb̂k + σz

∑
k

gk(b̂k + b̂†
k )

+
∑

k

ξk(b̂k + b̂†
k ), (34)

which confirms that the proposed system successfully simu-
lates the generalized dephasing model. In fact, the generalized
dephasing model has been used to study the dephasing dynam-
ics of an impurity qubit in an atomic BEC reservoir [7,41,42].
It is emphasized that the ratio of the driving strength ξk in
Eq. (33b) to the coupling strength gk in Eq. (33a) is a physical
quantity that is independent of k. We refer to this ratio as the
RDS χ with following form:

χ = ξk

gk
= a1 + a0

a1 − a0
. (35)

The above equation shows the RDS χ can be widely adjusted
by changing the s-wave scattering lengths a0 and a1 via Fesh-
bach resonance [47].

B. Estimating the s-wave scattering length aB of the BEC

In this subsection, we will demonstrate the advantages of
the generalized dephasing model in quantum sensing of quan-
tum reservoirs. To illustrate, we employ the impurity qubit to
estimate the s-wave scattering length aB of the BEC, a crucial
parameter in ultracold gases [45]. The initial state of the impu-
rity qubit and BEC is prepared to be the state in Eq. (6). Under

012613-4



ANTISYMMETRY-BREAKING-COUPLING–ENHANCED … PHYSICAL REVIEW A 110, 012613 (2024)

FIG. 1. Dynamical behaviors of the decay factor 
 in (a) and the
phase factor 	 in (b) for the s-wave scattering lengths aB = 0.5aRb

(blue solid line), aB = aRb (red dashed line), and aB = 2aRb (black
dotted line). The RDS is taken as χ = 1.

the control of the Hamiltonian (34), the evolution state of the
impurity qubit must be the state in Eq. (7). Substituting gk in
Eq. (33a) and ξk in Eq. (33b) into the decay factor in Eq. (8)
and the phase factor in Eq. (9), then using the continuum
limit

∑
k → V

(2π )3

∫ 2π

0 dϕ
∫ π

0 sin θdθ
∫ ∞

0 k2dk, we obtain the
decay factor


(t ) = P
∫ ∞

0
k2 Ek(1 − cos ωkt )

ω3
k

e
−k2�2

A
2 dk, (36)

and the phase factor

	(t ) = χP
∫ ∞

0
k2 Ek(sin ωkt − ωkt )

ω3
k

e
−k2�2

A
2 dk, (37)

where we consider the zero temperature reservoir and the
parameter P = 2n(g1 − g0)2/π2.

We present numerical results based on Eqs. (36) and (37)
after determining reasonable parameter values. We consider a
23Na impurity atom is immersed in a 87Rb BEC with density
n = 1020 m−3. The impurity atom is trapped in an optical
lattice with trapped characteristic length �A = 45 nm. The dif-
ference between the spin-dependent s-wave scattering lengths
is taken to be a1 − a0 = 2.9 nm. The s-wave scattering length

aB of the BEC is restricted by the condition
√

na3
B � 1. As a

consequence, the scattering length has to satisfy the inequality
aB < 3aRb, where aRb = 5.3 nm [41,48].

The dynamical behaviors of the decay factor 
 and the
phase factor 	 for different s-wave scattering lengths aB =
0.5aRb (blue solid line), aB = aRb (red dashed line), and aB =
2aRb (black dotted line) are depicted in Figs. 1(a) and 1(b),
respectively. The decay factors for the three s-wave scattering
lengths increase with time from zero and eventually reach
different stationary values and the phase factors decease with
time, as shown in Figs. 1(a) and 1(b). Moreover, the decay
factor differences caused by changing aB tend to stabilize
over time, but the phase factor differences caused by changing
aB become larger with time. The stationary value 
(∞) for
the s-wave scattering length aB = 0.5aRb is 0.14, the off-
diagonal element ρ10(t ) of the density matrix ρ̂s(t ) in Eq. (7)
will maintain a stable nonzero value |ρ10(∞)| = 1/2e−
(∞) =
0.43. This means that the quantum coherence of the qubit in
the BEC reservoir can be preserved at |ρ10(∞)|/|ρ10(0)| =

87%. We can see that increasing s-wave scattering length is
beneficial for preserving quantum coherence. The preserva-
tion of quantum coherence of a qubit in the BEC reservoir was
addressed in previous studies [7,41,48]. Now we introduce the
spectral density function to understand the phenomenon of
maintaining quantum coherence. The spectral density func-
tion is defined as J (ω) = ∑

k 4|gk|2δ(ω − ωk ). Then the
decay factor in Eq. (36) can be rewritten as


(t ) =
∫ ∞

0
J (ω)

1 − cos ωt

ω2
dω. (38)

It is known that the dynamical behavior of the decay factor

(t ) depends on the specific form of the spectral density
function J (ω) [1]. For example, when the spectral density
function is a super-Ohmic spectrum, i.e., J (ω) ∝ ωs with s >

1, the decay factor will approach a finite positive value over
time, leading to the phenomenon of coherence preservation in
dephasing qubits [29,38]. In our proposed system, according
to the coupling strength gk in Eq. (33a), the spectral density
function is given as

J (ω) = Q
k(ω)4

ω

(
dω

dk
|k=k(ω)

)−1

e− 1
2 �2

Ak(ω)2
, (39)

where the parameter Q = n(g1 − g2)2/(π2mB) and k(ω) is
obtained from the following dispersion relation:

ω ≡ ωk = k
√

k2 + 16πnaB

2mB
. (40)

Different from Ohmic-family spectrum which is phenomeno-
logically given, the specific form of this spectral density
in Eq. (39) depends on the dispersion relation of the BEC
in Eq. (40), and is independent of the ABC. For example,
when the wave vector k � 4

√
πnaB, the dispersion relation

is that of a phonon ω = csk with the velocity of sound cs =
2
√

πnaB/mB. In this case, with k(ω) = ω/cs, the spectral
density function can be approximated as a super-Ohmic spec-
trum J (ω) ∝ ω3. In short, the structure of the spectral density
function, as determined by the dispersion relation of the BEC,
leads to the phenomenon of maintaining quantum coherence.

To quantify the sensing precision of the s-wave scattering
length aB independently of its values, we introduce the dimen-
sionless QSNR

QaB = a2
BF Q

aB
, (41)

along with the AC-contributed QSNR Q‖
aB

= a2
BF ‖

aB
and the

ABC-contributed QSNR Q⊥
aB

= a2
BF ⊥

aB
. From the QCR bound

in Eq. (10), the optimal relative error and the QSNR has the
relation

(δaB)min

aB
= 1√

νQaB

, (42)

which indicates the QSNR quantifies the ultimate precision of
quantum sensing. Figures 2(a) and 2(b) plot the dynamical
behaviors of the AC-contributed QSNR Q‖

aB
and the ABC-

contributed QSNR Q⊥
aB

for different s-wave scattering lengths
aB = 0.5aRb (blue solid line), aB = aRb (red dashed line), and
aB = 2aRb (black dotted line). All AC-contributed QSNRs in
Fig. 2(a) increase from zero to different steady values with
time, while all ABC-contributed QSNRs in Fig. 2(b) increase
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FIG. 2. Time dependence of the AC-contributed QSNR Q‖
aB

in
(a) and the ABC-contributed QSNR Q⊥

aB
in (b) for the s-wave scatter-

ing lengths aB = 0.5aRb (blue solid line), aB = aRb (red dashed line),
and aB = 2aRb (black dotted line). The RDS is taken as χ = 1.

continuously over time. In particular, it is observed that at
the millisecond timescale, the ABC-contributed QSNR is at
least two orders of magnitude higher than the AC-contributed
QSNR for the same s-wave scattering length aB. This demon-
strates that the phase factor encoding channel caused by the
ABC greatly enhances the ultimate precision of quantum
sensing for the s-wave scattering length aB. We also need to
emphasize that the dynamical behaviors where the QSNR Q‖

aB

remains unchanged over time and the QSNR Q⊥
aB

increases
with time both require the preservation of quantum coherence
in the qubit.

To further explore the relationship of the ABC-contributed
QSNRQ⊥

aB
with the encoding time t and the RDS χ , we define

such a ratio

η = Q⊥
aB

(χt )2
. (43)

The dynamical behaviors of the ratio η in Eq. (43) are pre-
sented in Fig. 3 for different s-wave scattering lengths aB =
0.5aRb (blue solid line), aB = aRb (red dashed line), and aB =
2aRb (black dotted line). As observed, all ratios increase with
time to distinct stable values, with the ratio corresponding
to a smaller s-wave scattering length aB exhibiting a smaller

FIG. 3. The ratio η as a function of time t for the s-wave scatter-
ing lengths aB = 0.5aRb (blue solid line), aB = aRb (red dashed line),
and aB = 2aRb (black dotted line).

FIG. 4. The optimal ratio η∗ as a function of the dimensionless
s-wave scattering length of the BEC aB/aRb.

stable value. In fact, such similar dynamical behaviors are still
presented for other s-wave scattering lengths. This implies
that there exists an optimal ratio η∗ that is independent of
the encoding time t and positively correlated with the s-wave
scattering length aB in long-term encoding. The relationship
between the optimal ratio η∗ and the dimensionless s-wave
scattering length aB/aRb is depicted in Fig. 4, which shows
that η∗ increases as aB increases.

In long-term encoding, due to Q⊥
aB

� Q‖
aB

, the QSNR QaB

can be approximated as

QaB ≈ Q⊥
aB

= η∗(χt )2, (44)

thus the optimal relative error has following simple expres-
sion:

(δaB)min

aB
= 1√

νη∗χt
. (45)

Equation (45) illustrates that encoding time t serves as a re-
source to augment the ultimate precision of quantum sensing
for the s-wave scattering length aB. Additionally, it demon-
strates that increasing the RDS χ in Eq. (35) can also enhance
the ultimate precision.

Finally, considering the complexity of the optimal mea-
surement to better demonstrate the superiority of ABC in
parameter estimation, we investigate the ratio of the Fisher
information associated with the measurement σ̂x for the pure
dephasing model with ABC to the one for the pure dephasing
model with AC

R = FaB (σ̂x )

F ‖
aB

, (46)

where FaB (σ̂x ) is given as

FaB (σ̂x ) = [cos 	(∂aB
) + sin 	(∂aB	)]2

e2
 − cos2 	
. (47)

Here it should be noted that, for the pure dephasing model
with AC, the AC-contributed QFI F ‖

aB
is equivalent to

the Fisher information associated with the measurement
σ̂x [31–35]. The ratio R > 1 means that the ABC can enhance
the precision of estimating aB through the measurement σ̂x,
and the larger the value of R, the more significant the effect
of enhancing precision. Figure 5 shows the dynamic behavior
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FIG. 5. The ratio R as a function of time t for the s-wave scatter-
ing lengths aB = aRb.

of the ratio R oscillating over time, which is attributed to
the presence of trigonometric functions involving the time-
dependent phase factor 	 in the Fisher information (47).
Moreover, the local peaks for each oscillation constantly in-
crease with time, as the absolute value of ∂aB	 in Eq. (47)
grows with time. Therefore, we can conclude that the ABC
can effectively enhance the precision of the s-wave scattering
length estimation, attained by the measurement of σ̂x, for the
majority of the time.

V. CONCLUSION

In conclusion, we studied the utilization of a single gen-
eralized dephasing qubit for sensing of a quantum reservoir.
In the generalized dephasing model, the antisymmetry of
coupling between the qubit and its reservoir is broken. Our
findings revealed that, in addition to the decay factor encod-
ing channel, the ABC introduces another encoding channel,
namely, the phase factor encoding channel. We employed the
QFI to quantify the ultimate precision of quantum sensing
and discovered that the QFI associated with the generalized
dephasing qubit consists of the AC-contributed QFI and the
ABC-contributed QFI. Furthermore, we proposed an optimal
measurement scheme for the generalized dephasing qubit,
which enables the practical measurement precision to reach
the theoretical ultimate precision.

To demonstrate the benefits of employing a generalized
dephasing qubit for quantum reservoir sensing, we proposed
a system comprising an impurity qubit immersed in an atomic
BEC to simulate the generalized dephasing model. We utilized
the impurity qubit to estimate the s-wave scattering length
of the BEC. To independently quantify the sensing precision
irrespective of its values, the dimensionless QSNR instead
of QFI was employed for analysis. We separately exam-
ined the dynamical behaviors of AC-contributed QSNR and
ABC-contributed QSNR. Our results indicated that the ABC-
contributed QSNR is at least two orders of magnitude higher
than the AC-contributed QSNR at the millisecond timescale.
Additionally, the ABC-contributed QSNR increases contin-
uously with time, while the AC-contributed QSNR remains
constant during long-term encoding. Notably, we discovered

that the optimal relative error can achieve a scaling ∝ 1/(χt )
during extended encoding. This means that extending the en-
coding time t and increasing the RDS χ can enhance sensing
of the s-wave scattering length of the BEC. Finally, we studied
the dynamics of the ratio R, which is defined as the Fisher
information associated with the measurement σ̂x under pure
dephasing model with ABC to the one under pure dephasing
model with AC. It was found that the ABC can also effectively
improve the precision of the s-wave scattering length estima-
tion, attained by the measurement of σ̂x, for the majority of
the time.

The generalized dephasing model can also be well used for
the sensing of other quantum reservoirs such as Ohmic-family
reservoirs [35–39]. It is worth noting that the ABC enables
the encoding of key parameters of the Ohmic-family spectral
density, such as the cutoff frequency and reservoir coupling
strength, into the phase factor of the generalized dephasing
qubit. Our work opens a way for supersensitive sensing of
quantum reservoirs.
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APPENDIX A: DERIVATION OF EVOLUTION STATE
OF THE QUBIT IN THE GENERALIZED DEPHASING

MODEL

We first introduce a unitary transformation

Û = exp

[∑
k

(
α̂kb̂†

k − α̂
†
kb̂k

)] ≡ �kÛk(α̂k ), (A1)

where Ûk(α̂k ) = exp(α̂kb̂†
k − α̂

†
kb̂k ) is the kth mode unitary

transformation operator with

α̂k = gkσ̂z + ξk

ωk
. (A2)

Using the relation exp(Â)B̂ exp(−Â) = B̂ + [Â, B̂] +
[Â,[Â,B̂]]

2! + · · ·, we obtain

Ûk(α̂k )b̂†
kb̂kÛ †

k (α̂k ) = b̂†
kb̂k − α̂kb̂†

k − α̂
†
kb̂k

+ α̂kα̂
†
k + α̂

†
kα̂k, (A3)

Ûk(α̂k )(gkb̂†
k + g∗

kb̂k )Û †
k (α̂k ) = (gkb̂†

k + g∗
kb̂k )

− (gkα̂
†
k + g∗

kα̂k ). (A4)
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Then we perform the unitary transformation Û on the
Hamiltonian (2) of the main text and obtain

Ĥ ′ = Û ĤÛ † = 1

2
ω0σ̂z +

∑
k

ωkb̂†
kb̂k

+
∑

k

[ωk(α̂kα̂
†
k + α̂

†
kα̂k ) − σ̂z(gkα̂

†
k + g∗

kα̂k )

−(ξkα̂
†
k + ξ ∗

k α̂k )]. (A5)

By simplifying the above equation and omitting the con-
stant term, we obtain

Ĥ ′ = 1

2
�σ̂z +

∑
k

ωkb̂†
kb̂k, (A6)

where

� = ω0 −
∑

k

4Re

[
ξkg∗

k

ωk

]
. (A7)

The evolution state of the qubit probe is represented as

ρ̂s(t ) = TrB[e−iĤt ρ̂s(0) ⊗ ρ̂B(0)eiĤt ]

≡ TrB[Û †e−iĤ ′tÛ ρ̂s(0) ⊗ ρ̂B(0)Û †eiĤ ′tÛ ]. (A8)

According to the above equation, we can easily prove the
diagonal elements unchanged. The off-diagonal elements are
given as

ρs,10(t ) = ρs,01(t )∗ = 〈1|ρ̂s(t )|0〉 = 1
2 e−i�t fB(t ). (A9)

Here fB(t ) is a reservoir-dependent function with the follow-
ing expression:

fB(t ) =
∏

k

TrB[D̂†
k(αk,0)eitωk b̂†

k b̂k D̂k(αk,0)D̂†
k(αk,1)

× e−itωk b̂†
k b̂k D̂k(αk,1)ρ̂B,k(0)], (A10)

where D̂k(αk ) = exp(αkb̂†
k − α∗

kb̂k ) is the kth mode Glauber
displacement operator with αk,1 = (ξk + gk )/ωk, αk,0 =
(ξk − gk )/ωk and ρ̂B,k(0) = (1 − e−βωk )e−βωk b̂†

k b̂k is a thermal
state of the kth mode. Using the following relations:

D̂(α)D̂(β ) = D̂(α + β ) exp[iIm(αβ∗)],

exp(xb̂†b̂)D̂(α) exp(−xb̂†b̂) = D̂(αex ), (A11)

we obtain

fB(t ) = e−i�(t )e−
(t ), (A12)

where the decaying function is

e−
(t ) =
∏

k

TrB[D̂k[(αk,1 − αk,0)(1 − eiωkt )]ρ̂B,k(0)]

= exp

[
−

∑
k

4|gk|2 (1 − cos ωkt )

ω2
k

coth

(
βωk

2

)]
,

(A13)

and the phase factor is given as

�(t ) =
∑

k

Im[αk,0(αk,0 − αk,1)∗e−iωkt

+α∗
k,1(αk,1 − αk,0)eiωkt + 2αk,0α

∗
k,1]

=
∑

k

4Im

[
ξkg∗

k

ω2
k

(
1 − e−iωkt

)]
. (A14)

APPENDIX B: DERIVATION OF THE FISHER
INFORMATION ASSOCIATED
WITH THE MEASUREMENTS

The evolution state in Eq. (7) of the main text is rewritten
as

ρ̂S (t ) = 1
2 (I + e−
(t ) cos 	σ̂x + e−
(t ) sin 	σ̂y). (B1)

We introduce a measurement operator

X̂θ = cos θσ̂x + sin θσ̂y. (B2)

The mean and the variance of this measurement operator in
quantum state (B1) are given as

〈X̂θ 〉 = e−
 cos(θ − 	),
〈
�X̂ 2

θ

〉 = 1 − e−2
 cos2(θ − 	).

(B3)

Here it is important to emphasize that the angle θ is chosen
by the measurer and is not a function of the parameter λ to
be estimated. Then the Fisher information associated with the
measurement X̂θ reads

Fλ(X̂θ ) = (∂λ〈X̂θ 〉)2〈
�X̂ 2

θ

〉
= [(∂λ	) sin(θ − 	) − (∂λ
) cos(θ − 	)]2

e2
 − cos2(θ − 	)
. (B4)

(i) According to the Fisher information in Eq. (B4), if one
chooses the measurement angle θ = 	, the Fisher information
equals to AC-contributed QFI, i.e.,

Fλ(X̂θ=	) = (∂λ
)2

e2
 − 1
= F ‖

λ . (B5)

(ii) If one chooses the measurement angle θ = 	 + π/2,
the Fisher information equals to ABC-contributed QFI, i.e.,

Fλ(X̂θ=	+ π
2

) = e−2
 (∂λ	)2 = F ⊥
λ . (B6)

(iii) We will look for an optimal measurement angle θopt

that makes the Fisher information Fλ(X̂θ=θopt ) equal to the
QFI F Q

λ . We assume that the optimal measurement angle
can be expressed as θopt = 	 + ϕ. According to the Fisher
information in Eq. (B4), the Fisher information Fλ(X̂θ=	+ϕ )
reads

Fλ(X̂θ=	+ϕ ) = sin2 ϕ(∂λ	)2 + cos2 ϕ(∂λ
)2 − 2 sin ϕ cos ϕ(∂λ	)(∂λ
)

e2
 − cos2 ϕ
. (B7)

012613-8



ANTISYMMETRY-BREAKING-COUPLING–ENHANCED … PHYSICAL REVIEW A 110, 012613 (2024)

If X̂θ=	+ϕ is the optimal measurement �̂, it has to satisfy Fλ(X̂θ=	+ π
2

) = F Q
λ , i.e.,

sin2 ϕ(∂λ	)2 + cos2 ϕ(∂λ
)2 − 2 sin ϕ cos ϕ(∂λ	)(∂λ
)

e2
 − cos2 ϕ
= (∂λ
)2

e2
 − 1
+ e−2
 (∂λ	)2. (B8)

By simplifying the above equation, we obtain

a tan2 ϕ + b tan ϕ + c = 0, (B9)

where a = (∂λ
)2/(1 − e−2
 ), b = 2(∂λ	)(∂λ
), and c = (1 − e−2
 )(∂λ	)2. By solving Eq. (B9), we obtain

tan ϕ = (e−2
 − 1)∂λ	

∂λ

. (B10)
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