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Adiabatic bottlenecks in quantum annealing and nonequilibrium dynamics of paramagnons
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The correspondence between long-range interacting quantum spin glasses and combinatorial optimization
problems underpins the physical motivation for adiabatic quantum computing. On one hand, in disordered
(quantum) spin systems, the focus is on exact methods such as the replica trick that allow the calculation of
system quantities in the limit of infinite system and ensemble size. On the other hand, when solving a given
instance of an optimization problem, disorder-averaged quantities are of no relevance, as one is solely interested
in instance-specific, finite-size properties, in particular the optimal solution. Here, we apply the nonequilibrium
Green’s function formalism to the spin coherent-state path integral to obtain the statistical fluctuations and the
collective-excitation spectrum along the annealing path. For the example of the quantum Sherrington-Kirkpatrick
spin glass, by comparing to extensive numerically exact results, we show that this method provides access to the
instance-specific bottlenecks of the annealing protocol.
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I. INTRODUCTION

Annealing is the process of very carefully cooling down a
physical system. It is an everyday observation that, to make
particularly clear, glass-like ice cubes, one has to perform the
freezing especially slowly. Fast freezing will result in clouded
ice. Quantum annealing, in turn, is the analogous process
performed by removing transverse magnetic fields in disor-
dered quantum spin systems, a paradigmatic model of which
is the quantum Sherrington-Kirkpatrick (SK) model [1]. In
such systems, the presence of opposing interactions leads to
frustration that prevents the ground state from developing
simple (anti) ferromagnetic order. Instead, the system will
settle into a “glass phase” [2] characterized by the existence
of many low-energy states masking the true ground state [3].
Apart from the immediate scientific interest in understanding
the properties of spin glasses, their relevance stems from the
fact that many combinatorial optimization problems can be
cast into a similar form [2]. The complexity of the low-energy
landscape then translates into the difficulty of solving the
equivalent optimization problem. As the transverse magnetic
field is slowly annealed, the most difficult problems are those
undergoing a first-order quantum phase transition (QPT) [4,5]
as they cross over from the delocalized paramagnetic to the
localized spin-glass phase. At the critical point of the QPT,
the minimal gap between the instantaneous ground state and
the first excited state is the crucial quantity determining the
precise meaning of slow via the adiabatic theorem [6].

The recent experimental realizations of quantum-critical
spin-glass dynamics [8,9] can be considered a promising step
forward, yet it also shows that current experimental values
of transverse-field strengths and quantum-coherent final times
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for superconducting quantum-annealing devices are on the
order of 10 GHz and 100 ns, respectively, i.e., one can expect
final annealing times to be around 103 in units of the initial
transverse field. For hard instances of combinatorial optimiza-
tion problems, the timescale set by the inverse minigap near
the critical point will typically be much larger.

This leads us back to the “most fundamental problem”
of quantum annealing [4]: how to obtain some information
about the size, and in particular, the onset of the minigap
without solving the problem. Here, we demonstrate that the
semi-classical fluctuations around the spin mean-field intro-
duced previously [10] can serve as an indicator of the critical
point. Physically, these fluctuations describe the dynamics of
paramagnons away from equilibrium. They are obtained by
solving the equations of motion (22) of the nonequilibrium
Green’s function [11,12], which, in turn, are derived from
the Gaussian approximation of the spin coherent-state path
integral [10,11,13].

Our main result is the observation that the paramagnons
of the most frustrated spins grow systematically around the
critical point of the quantum annealing dynamics as defined
via the adiabatic theorem (Figs. 7 and 8).

To obtain numerically exact data as a comparison for our
semi-classical methods, we perform very extensive simula-
tions. Specifically, we diagonalize a large number of random
SK instances at different system sizes and retain only the
subset with the smallest minimal spectral gaps. The instances
in this subset then all contain bottlenecks of varying criticality
when annealing the transverse field. The details of these data
are provided in Appendix C. Interestingly, even within this
critical subset, there remain instances for which the adiabatic
mean-field evolution actually finds the true ground state. Our
main analysis, however, is then further restricted to those
critical instances for which the mean-field evolution fails. This
appears natural since we want to investigate problems hard
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for quantum annealing, but any instance solved via mean field
can be considered easy. Importantly, we find that the informa-
tion provided by our semi-classical approximation about the
critical point of the annealing schedule is robust: the method
works even when the mean-field algorithm fails, such that we
succeed in showing that the alignment between the critical
fluctuations and the adiabatic bottleneck is preserved also on
average (Fig. 8).

It has been shown that, on one hand, there exist exam-
ples of first-order QPTs with algebraically small minigaps,
while on the other hand, one can find rather simple models
with exponentially small minigaps [14,15]. As argued very
recently [16], it is possible to access the quantum spin-glass
phase with an annealing time that only grows as a power law
in the number of qubits if parity-changing excitations can be
avoided; a possible caveat to this hopeful perspective is that
crossing the critical point is not the same as passing through
the bulk glass phase up to the final point at zero transverse
field, which may still prove difficult. For the quantum SK
model in particular, it has been shown that its “deep glass
phase” is characterized by an Ohmic spectrum of collective
excitations [17], i.e., a gapless phase in the regime of van-
ishing transverse field. A complementary perspective on this
glass phase is provided in Ref. [18], which demonstrates the
existence of a many-body delocalization-to-localization tran-
sition as the transverse field is removed. We also note that,
based on the idea of tricriticality of the spin-glass phase and
localized and delocalized paramagnetic phases, an iterative
algorithm has been proposed [19] that extends the standard
annealing paradigm.

This work is organized as follows. In Sec. II, we first intro-
duce the quantum version of the SK model as a paradigmatic
example of a quantum spin glass, followed by the mean-
field approximation (Sec. II A) and the spin-coherent states
that allow us to define the Gaussian fluctuations around this
mean field (Sec. II C). Next, we give a brief overview of the
Schwinger-Keldysh formalism (Sec. II D) and nonequilibrium
Green’s functions (Sec. II E), which are our tools of choice to
actually compute the semi-classical dynamics in full gener-
ality. The technical part of this paper is then concluded by
a discussion of the role of frustration in our quantum spin
glasses (Sec. II B). The results are grouped into two sections,
the first of which (Sec. III A) focuses on illustrating the phys-
ical ideas leading up to our main result, which is presented in
Sec. III B. A discussion of these results (Sec. IV) concludes
this paper.

II. METHODS

We consider a classical spin glass ĤZ immersed in a trans-
verse field ĤX , where (h̄ = 1)

ĤZ = −
N∑

i=1

[
hi +

∑
j>i

Ji j σ̂
z
j

]
σ̂ z

i , ĤX = −�

N∑
i=1

σ̂ x
i . (1)

The couplings Ji j and the local magnetic fields hi are i.i.d.
standard normal random variables (see Appendix C). We set
� = 1 everywhere, i.e., we consider frequencies to be given
in units of �. The adiabatic time is confined to 0 � t � Tf ,
which makes it natural to also introduce the scaled time
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FIG. 1. Comparison between the ground-state fidelities of easy
and hard realizations of a quantum spin glass. The final ground state
of the classical SK model is denoted by |ψ0〉, the instantaneous
ground state of the adiabatic Hamiltonian in Eq. (2) by |0〉. The
dashed lines show the instantaneous spectral gaps. The hard instance
is defined by the fidelity jump across the minimal gap, which can
be interpreted as the finite-size analog of a first-order quantum phase
transition [7].

s(t ) = t/Tf , s(t ) ∈ [0, 1]. This results in the adiabatic Hamil-
tonian

Ĥ (s) = (1 − s(t ))ĤX + s(t )ĤZ . (2)

The time-dependent gap between the instantaneous ground
and first excited states will be denoted by �(s) = E1(s) −
E0(s), the minimal value of which gives the minigap � :=
�(smin), where smin is the location of the minigap along the
annealing path. We also introduce the related quantity

gα (s) = |〈α|∂sĤ (s)|0〉|
[Eα (s) − E0(s)]2 = |〈α|ĤZ − ĤX |0〉|

[Eα (s) − E0(s)]2 , (3)

which we will refer to as the adiabatic ratio. An illustration of
this can be obtained from Figs. 1 and 2, where the numerator
of Eq. (3) is plotted in the lower panel while the denominator
is given by the inverse square of the upper panel, as well as
from Fig. 7, where g1(s) is shown directly. The critical point
of the annealing dynamics will then be given by

s∗ := arg max
s∈[0,1]

gα (s), (4)

where typically α = 1 for the hardest instances. These are
almost always very similar to our example of a first-order
crossover highlighted in Figs. 1 and 2; in particular, the spike
in the numerator of g1(s) plotted the lower panel of Fig. 2
coincides characteristically with the minimal gap in the upper
panel. This defines the bottleneck according to the adiabatic
theorem [6], which demands that

ṡ(t )gα (s∗) = gα (s∗)

Tf
� 1. (5)

Bottlenecks induced by the second excited state α = 2 can be
observed if and when the numerator of g1(s) happens to vanish
around the location of the minigap.

A. Mean-field dynamics

The derivation of the mean-field approximation has been
detailed in Ref. [10]. The mean-field form of the adiabatic
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FIG. 2. The exact eigenvalue spectrum (upper panel) and the
couplings between the first two excited states and the ground state
(lower panel) as functions of time for a typical hard instance at
N = 10. To obtain the Bogoliubov spectrum (dashed lines in upper
panel), Eqs. (9) were solved up to a final time Tf = 215. The exact
and Bogoliubov spectra are generated with an economical resolu-
tion of 1/32, which results in s∗ ≈ 26/32 = 0.8125 with E1(s∗) −
E0(s∗) = 3.5 × 10−3. The final ground-state energy is E0(Tf ) =
−6.065 while mean-field converges to the third excited state with
E3(Tf ) = −5.698.

Hamiltonian (2) is given by

H (t ) = − s(t )
N∑

i=1

[
hi +

∑
j>i

Ji jn
z
j (t )

]
nz

i (t )

− (1 − s(t ))
N∑

i=1

nx
i (t ), (6)

with each of the classical spin vectors living on its own Bloch
sphere. The classical equations of motion for the spin vectors
can be derived in several ways, resulting in

∂t ni(t ) = ni(t ) × Bi(t ), (7)

where Bi(t ) = 2[1 − s(t )]êx + 2s(t )mi(t )êz, and the effective
local magnetic field is defined as

mi(t ) = hi +
N∑

j=1

Ji jn
z
j (t ). (8)

Written out explicitly in terms of components, these equa-
tions become

ṅx
i (t ) = 2s(t )mi(t )ny

i (t ),

ṅy
i (t ) = −2s(t )mi(t )nx

i (t ) + 2[1 − s(t )]nz
i (t ),

ṅz
i (t ) = −2[1 − s(t )]ny

i (t ), (9)

i.e., we have a set of 3N nonlinear ordinary differential equa-
tions. The norm of all spin vectors is conserved under this
evolution |ni(t )|2 = 1. A typical solution of Eqs. (9) for a hard
SK instance with N = 10 is shown in Fig. 3.
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FIG. 3. From top to bottom: the x and z components of the
mean fields, the corresponding complex coordinates zi, and the lo-
cal magnetization mi. Note that we do not show the y components
because of Eq. (10). The Edwards-Anderson order parameter qEA

defined in Eq. (12) is also plotted. The most critically frustrated spin
i∗ = 6, which has nx

i∗ ≈ 1 (and accordingly nz
i∗ ≈ 0) right until the

occurrence of the critical point around s ≈ 0.8, is clearly discernible.
The final time is Tf = 215.

For very slow evolution, one finds that the trajectories
following from Eqs. (9) have the property[

ny
i (t )

]2 � [
nx

i (t )
]2 + [

nz
i (t )

]2
, (10)

i.e., the Bloch vectors are (almost) confined to the x-z plane
(the real axis of the stereographic complex plane introduced
in the next section). Naturally, the trajectories may make large
excursions away from the real axis that average out approxi-
mately. In fact, this should be the case around critical points
(or more generally wherever fluctuations are large). We also
note that there is a typical separation of timescales in the dy-
namics of Eqs. (9), at least when applied to the SK model. The
x and z components perform a slow evolution as the vectors
move from the equator to either of the poles. Superimposed
on this are very fast dynamics of negligible amplitude. The y
components, in turn, usually only show the latter.

We solve Eqs. (9) numerically via the Tsitouras
algorithm [20] implemented in DIFFERENTIALEQUA-
TIONS.JL [21,22]. It is advantageous to use such an adaptive
time-stepping scheme to limit the resources needed to
simulate the considerable final times required by adiabaticity.
Note, however, that while the mean-field final times should
not be too small to ensure convergence, the mean-field
dynamics typically converges for much shorter times
than those required by Eq. (5). This can be understood
by considering the Bogoliubov or paramagnon spectrum
indicated with the dashed lines in the upper panel of Fig. 2:
the minimal gap of the instantaneous collective-excitation
spectrum is much bigger than the exact one. Accordingly,
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x

z

FIG. 4. A graphical illustration of the concept of a highly frus-
trated spin. When looking at the example trajectories provided in
Fig. 3, we see that the most frustrated spin (i∗ = 3) stays in the
equatorial plane until the critical point is reached, while the other
spins (except another rather frustrated individual) start converging to
nz

i = ±1 much earlier. The effective magnetic field mi∗ felt by that
spin stays close to zero during the entire evolution.

throughout this work, we typically use final times on the
order of Tf = 215 (in inverse units of the transverse field
�) with numerical tolerances between 10−6 and 10−8. With
an eye to our remark about the separation of timescales
above, if the only goal is to find a solution bitstring, an
efficient way to solve the adiabatic dynamics is to use less
strict tolerances, which will usually work well because
the low precision will only affect the small-amplitude fast
dynamics. In the other direction, the evaluation of the
Gaussian fluctuations, introduced below in Sec. II C, along
the mean-field trajectories can require greater precision when
crossing the critical point.

B. Maximally frustrated spins

As described vividly by Mézard, Parisi, and Virasoro in
the introduction to Ref. [1], frustration is an important and
ubiquitous phenomenon. Also in the present context, the tug
of opposing forces can have dramatic consequences, leading
to strongly frustrated spins that cannot “decide” whether to
point to the north or south pole of their Bloch spheres. We
illustrate this in Fig. 4, where one spin fluctuates between
the hemispheres around the equator. For our random data
set detailed in Appendix C, this can be observed to be quite
characteristic of hard instances going through a critical point
or the finite-size analog of a first-order phase transition, the
onset of which finally forces the frustrated spin either north or
south.

To capture this phenomenon quantitatively, we introduce
the local order parameter

qi(s) := nz
i (s)2, (11)

from which the classical Edwards-Anderson (EA) order pa-
rameter [1] follows by summation as

qEA(s) = 1

N

N∑
i=1

qi(s), (12)

an example of which is plotted in Fig. 3. The EA order param-
eter can be thought of as indicating the degree of localization
of the system. Analogously, the amount of frustration of a
given spin can be determined via the cumulative local order

parameter

Q(i) =
∫ 1

0
ds qi(s). (13)

We remark that, alternatively, it is also possible to integrate
the effective magnetic field, which yields comparable results;
yet another option is to track how the ground-state energy
E0(Tf ) at final time changes upon flipping each spin: the most
frustrated spin will typically have the lowest change in energy.
Here, we will use Eq. (13) to define the maximally frustrated
spin as

i∗ := arg min
i∈{1,...,N}

Q(i). (14)

As we demonstrate below, focusing on this spin allows us
to approximately infer the onset of the critical region of the
annealing protocol with much higher precision as compared
to aggregate quantities involving all spins.

C. Gaussian fluctuations

The Gaussian action functional for the semi-classical fluc-
tuations around the mean-field trajectories can be defined as

S[η, η̄] = 1

2

∫ T

0
dt (η̄ η)

(
i∂t − A B

B† −i∂t − Ā

)(
η

η̄

)
.

(15)

More details on this derivation can be found in Appendix A
and in Ref. [10]. Note that the expression for the semi-
classical inverse propagator of the spin mean-field was first
given in Ref. [13]. In terms of Cartesian coordinates on the
Bloch sphere, the components of the inverse propagator in
Eq. (15) are given by Bii(t ) = 0 and

Aii(t ) = 2[1 − s(t )]nx
i (t )

1 + (σ∗)in
z
i (t )

+ 2s(t )(σ∗)imi(t ), (16)

where σ∗ = {sign[nz
1(Tf )], . . . , sign[nz

N (Tf )]}T is the “solu-
tion” bitstring obtained from the mean-field dynamics and
determines the Bloch-sphere pole from which the stere-
ographic projection of each spin is performed. For the
off-diagonal elements, one obtains

Ai j (t ) = −s(t ) Ji jn
+
i (t )n−

j (t ),

Bi j (t ) = s(t ) Ji jn
+
i (t )n+

j (t ), (17)

where n±
i (t ) = (σ∗)in

x
i (t ) ± iny

i (t ), which shows that A = A†

is Hermitian and B = BT is symmetric.
The Gaussian fluctuations are bosonic and thus implicitly

define creation and annihilation operators η̂
†
i , η̂i for quasipar-

ticles one may imagine as paramagnons. In terms of these
operators, we can introduce the so-called greater and lesser
Green’s functions [23,24]

G>
i j (t, t ′) = −i〈η̂i (t )η̂†

j (t
′)〉, (18a)

G<
i j (t, t ′) = −i〈η̂†

j (t
′)η̂i (t )〉. (18b)

The diagonals of these two matrices have an intuitive meaning
at equal times, i.e., for t ′ → t (see also Fig. 5). By letting
iG>

ii (t, t ) = Ni + 1 and iG<
ii (t, t ) = Ni, we can interpret Ni

as the number of paramagnons (for a bosonic light field, this

012611-4



ADIABATIC BOTTLENECKS IN QUANTUM ANNEALING … PHYSICAL REVIEW A 110, 012611 (2024)

FIG. 5. Illustration of the two-time structure of the spectral func-
tion ρ(t, t ′). While the times t and t ′ are defined along the borders of
the temporal square shown in gray, the so-called Wigner coordinates
T = (t + t ′)/2 and τ = t − t ′ are defined on the diagonals of the
square. The statistical dynamics occurs along the forward time T ,
while the Fourier transform of the relative time τ encodes the spectral
properties. A corresponding example of ρ(T, ω) is shown in Fig. 6.

would just be the number of photons). The only difference be-
tween the on-site greater and lesser Green’s function at equal
times is then given by the zero-point contribution to G>

ii (t, t ).
By inspecting Eq. (15), we see that the corresponding anoma-
lous Green’s function proportional to 〈η̂i (t )η̂ j (t

′)〉 will also
appear in the description of the problem. For completeness,
note that the time-dependent Bogoliubov Hamiltonian corre-
sponding to Eq. (15) can be written as

Ĥ (t ) = 1

2

N∑
i, j=1

[Ai j (t )η̂†
i η̂ j + Aji(t )η̂†

j η̂i

+ Bi j (t )η̂†
i η̂

†
j + B̄ ji(t )η̂i η̂ j ]. (19)

D. Schwinger-Keldysh formalism

The previous discussions of the fluctuations [10,13] have
been limited to the corresponding scattering problem, where
one is interested in computing the transition amplitude be-
tween an initial and a final state. The final state introduces
a second boundary condition, which has to be handled
carefully [13]. Here, we generalize the formalism to the
Schwinger-Keldysh contour [11,12,25], which removes the
final condition and allows for a description of the full nonequi-
librium dynamics of the semi-classical system along the
annealing path.

The nonequilibrium partition function is formally obtained
by the well-known “doubling” of degrees of freedom, i.e.,

Z ∼
∫

Dη+Dη̄+Dη−Dη̄− exp {iS[η+, η̄+] − iS[η−, η̄−]},
(20)

where the minus sign in the exponent originates from the
reversal of time on the “backwards” branch of the Schwinger-
Keldysh contour. In terms of the contour spinor fields in

Eq. (20), we may then compactly define all relevant Green’s
functions as

G>(t, t ′) = −i

〈(
η−(t )

η̄−(t )

)
(η̄+(t ′) η+(t ′))

〉
, (21a)

G<(t, t ′) = −i

〈(
η+(t )

η̄+(t )

)
(η̄−(t ′) η−(t ′))

〉
. (21b)

Finally, in analogy to the equations given previously [10],
the equations of motion for the greater and lesser Green’s
functions then read

[iσ3
−→
∂t − H(t )]G≷(t, t ′) = 0, (22a)

G≷(t, t ′)[−iσ3
←−
∂t ′ − H(t ′)] = 0, (22b)

where

H(t ) =
(

A(t ) B(t )
B†(t ) Ā(t )

)
, σ3 =

(
1

−1

)
. (23)

E. Statistical and spectral functions

Instead of working with Green’s functions defined by
Eqs. (18) or (21), respectively, it is conventional to transform
to the following equivalent linear combinations:

F(t, t ′) = [G>(t, t ′) + G<(t, t ′)]σ3,

ρ(t, t ′) = [G>(t, t ′) − G<(t, t ′)]σ3.
(24)

We will refer to F(t, t ′) as the statistical function, while
ρ(t, t ′) is the so-called spectral function. Similarly to our
above discussion of the equal-time functions, it now follows
that iFii(t, t ) = 2Ni + 1 is directly related to the paramagnon
number. The spectral function, in turn, has the property
ρ(t, t ) = −i1, the origin of which lies in the bosonic commu-
tation relation. An illustration of the behavior of this function
away from the equal-time diagonal is provided in Fig. 5. The
equation of motion of the statistical function can be derived
easily by combining Eqs. (22) to yield

i∂T F(T, 0) = [σ3H(T ), F(T, 0)], (25)

with initial condition F(T, 0) = −iσ3. Note that while
Eq. (25) is superficially equivalent to Eq. (59) of Ref. [10],
the mathematical problem is not identical: the latter formally
belongs to a boundary-value problem, while Eq. (25) together
with the initial condition amounts to a standard 2N × 2N
initial-value problem.

Furthermore, the solution of the full nonequilibrium dy-
namics, as developed here, requires two further equations of
motion, one for the statistical and one for the spectral function.
The first can be derived from Eq. (22a) by adding the respec-
tive equations for G> and G<; it is not relevant here since
we only require the equal-time dynamics F(T, 0) = F(t, t ),
which, in the Gaussian case, decouples from the dynamics
away from the forward time diagonal t = t ′ (s. Fig. 5). The
remaining equation of motion for the spectral function can
also be derived straightforwardly from Eqs. (22) and reads

i∂τρ(T, τ ) = 1

2
σ3H

(
T + τ

2

)
ρ(T, τ )

+ 1

2
ρ(T, τ )σ3H

(
T − τ

2

)
, (26)

012611-5



TIM BODE AND FRANK K. WILHELM PHYSICAL REVIEW A 110, 012611 (2024)

0.0 0.2 0.4 0.6 0.8 1.0
s

0.00

0.05

0.10

0.15
−I

m
G

< ii
(s

,s
)

i = 6

0

1

|T
r
ρ
(s

,ω
)|

s = 1/2

0.0 0.2 0.4 0.6 0.8 1.0
ω

0

1

|T
r
ρ
(s

,ω
)|

s = s∗

FIG. 6. The statistical fluctuations (left) and the collective-excitation spectrum (right) as functions of time. The final relative time for the
spectral evolution shown on the right is τ f = 211. The forward-time slices are taken at s = 1/2 and s∗ = T/Tf = 26/32 = 0.8125, where
Tf = 215 as before. Note that we do not expect perfect agreement between the spectral and Bogoliubov frequencies, which are indicated by the
vertical dashed lines.

with initial conditions ρ(T, 0) = −iσ3 for all T . Again, it is
only in the Gaussian approximation that this equation decou-
ples from the general dynamics on the full two-time square.

Looking to Fig. 5, we see that Eq. (25) describes the evolu-
tion along the physical forward-time diagonal T = (t + t ′)/2,
while Eq. (26) models the spectral dynamics in the orthog-
onal relative-time direction τ = t − t ′. Fourier transforming
ρ(T, τ ) in the second argument provides the nonequilibrium
collective-excitation spectrum as a function of T . An example
of this is plotted in Fig. 6.

III. RESULTS

To illustrate the physical concepts necessary for under-
standing our main result in Fig. 8, we will first focus on a
single, hard SK instance at N = 10. All the quantities shown
in Figs. 1–7 are evaluated for this instance, which is chosen
from the bulk of the small-minigap instances at N = 10, i.e.,
it is neither the hardest nor the easiest as measured by the

FIG. 7. The adiabatic ratio g1(s) (left axis) compared to the
localization susceptibility of the maximally frustrated spin i∗ = 6
(right axis). The contribution from g2 is negligible. The two peaks
are almost perfectly aligned with the peak of the adiabatic ratio g1,
illustrating that the semi-classical fluctuations are capable of detect-
ing critical points. The inset shows the performance of quantum
annealing when simulated via second-order Trotterization [26].

maximum of g1(s). This illustration is then extended by a sta-
tistical analysis of disorder-averaged quantities in Sec. III B.

A. Illustration: Details of a hard instance

The exact ground-state fidelity of the exemplary instance
to be considered in this section is shown in Fig. 1, while the
exact spectrum is given in Fig. 2. The critical point is located
around s∗ ≈ 0.8, where the spectral gap between the ground
and first excited state becomes minimal, which is accompa-
nied by a characteristic peak in the numerator of Eq. (3). The
corresponding adiabatic ratios g1,2(s) are obtained by dividing
the the curves in the lower by those in the upper panel of
Fig. 2. A proper plot of g1(s) is provided in Fig. 7, from which
we glance an adiabatic bottleneck [6] on the order of

max
s∈[0,1]

g1(s) ∼ 6 × 104. (27)

With an eye to the current hardware parameters quoted in
the Introduction, obtaining the true solution to this instance
should prove a challenge without further counterdiabatic mea-
sures [27,28]. We also remark that the mean-field evolution
applied to this example instance does not find the true solution
but instead converges to only the third excited state, i.e., all
conclusions we can draw from the semi-classical approxima-
tion derived from these mean fields are not conditioned on
successful adiabatic mean-field dynamics.

The details of the adiabatic mean-field dynamics according
to Eqs. (9) are shown in Fig. 3. The upper two panels show
the evolution of the components nx,z

i (s); note that we do not
show ny

i (s) because of Eq. (10). The complex coordinate zi(s),
which is important in the coordinate transformation defined
by Eq. (A4), is shown in the third panel. The last panel
illustrates the effective local magnetization Eq. (8). For all
of these quantities, the critical spin determined via Eq. (13)
is highlighted in red. Clearly, it is the spin for which the
transition from the delocalized to the localized regime, i.e., in
the mean-field sense from nx

i ≈ 1, nz
i ≈ 0 to nx

i ≈ 0, |nz
i | ≈ 1

happens last, and more importantly, roughly around the point
where the ground-state fidelity of Fig. 1 starts to shoot up. By
extension, the same will be true for our local order parameter
qi(s) defined in Eq. (11). Looking beyond the maximally
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FIG. 8. The disorder-averaged localization susceptibilities χi∗ (s) from Eq. (29) evaluated for each maximally frustrated spin i∗. The critical
points s∗ are determined from g1(s) via Eq. (4) separately for each instance; then the corresponding localization susceptibilities are shifted.
The disorder average is taken after this transformation. The effective ensemble sizes for the disorder averages are given in Table I.

frustrated spin, we see that the same is true, to a lesser degree,
for another group of three spins. Relatedly, the corresponding
complex coordinate zi, which provides the scale factor be-
tween the Gaussian fluctuations ηi and the fluctuations in the
stereographic plane δzi, is also much larger (relatively) than
for the rapidly localizing spins. For this reason, we define the
new quantity

〈δzi(s)δz̄i(s)〉 := (1 + |zi(s)|2)
2 i

2
(Fii(s, s) − 1), (28)

which one could call the scaled local fluctuations and which
should provide a more accurate picture of the actual fluctua-
tions of the trajectories on the Bloch sphere.

For our current example, the total EA order parameter from
Eq. (12), plotted in blue in the second panel, does not show a
very distinct increase around the critical point, which is due
to the fact that the already localized spins have the largest
contributions. This underlines the usefulness of focusing on
the critical spin. Finally, consider the effective magnetization
shown in the last panel of Fig. 3. Intriguingly, we perceive
that our critical spin is completely frustrated during the entire
evolution, an observation that we found repeated throughout
the full data set described in Appendix C. For this reason, we
refer to the critical spin as maximally frustrated.

Having discussed the mean-field quantities, we now move
to the semi-classical approximation and consider the results
of Eqs. (25) and (26), which are presented in Fig. 6. The
most important result is that the local statistical fluctuations
of the maximally frustrated spin, quantified via G<

ii evaluated
at equal times s = s′ in the left panel, are largest with a
peak quite close to the critical point. Again, this is a typical
observation for hard instances and not an accidental fea-
ture of our current example. To complete the picture of the
nonequilibrium dynamics, the right panels of Fig. 6 show the
spectral function after Fourier transform in its second argu-

ment, to which one could also refer as the collective-excitation
spectrum. The vertical dashed lines repeat the instantaneous
Bogoliubov spectrum from the upper panel of Fig. 2. Note that
one should not expect perfect agreement between the latter
and the nonequilibrium spectral function, the less so the more
the dynamics departs from adiabaticity. It is also important to
remark that the line width of this Fourier transform is dictated
by the length of the available time intervals in the direction of
τ = t − t ′ (cf. Fig. 5), which is maximal for t = t ′ = Tf /2 but
very short both early and late in the annealing protocol.

Intuitively, the observation that the critical peak in Fig. 6 is
slightly early suggests to consider the quantity

χi(s) := qi(s)〈δzi(s)δz̄i(s)〉, (29)

to which we will refer as the localization susceptibility. It
provides a joint measure of how localized and susceptible
to fluctuations the maximally frustrated spin is at any given
time. The resulting curve for our current example is presented
in Fig. 7 alongside the adiabatic ratio g1(s) as defined in
Eq. (3). The peaks of the two quantities are almost perfectly
aligned, which we consider a promising counterexample to
the statement that mean-field dynamics cannot address the
above-quoted “fundamental problem” of quantum annealing.
To substantiate this observation, we provide disorder-averaged
statistics in the next section (see Fig. 8).

To briefly comment on the inset of Fig. 7, which shows the
outcomes of numerically exact simulations of the evolution
under Eq. (2) for various final times Tf , we see that the ground
state only begins to become visible around Tf ∼ 104, in agree-
ment with the expectation from the adiabatic theorem [6].

Regarding the role of the qi(s) factor in Eq. (29), it
is helpful to also consider the additional results presented
in Appendix B, where we apply our method to Maximum
2-Satisfiability (Max. 2-Sat.). While the most frustrated mean-
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FIG. 9. Max. 2-Sat. mean-field trajectories for N = 10 and
Tf = 216.

field trajectory of our present example does localize to one of
the Bloch-sphere poles at the end of the evolution, this is not
always the case, as can be seen from Fig. 9. For this hard Max.
2-Sat. instance, while we find that qi∗ (1) = 0, i.e., the most
frustrated spin does not localize eventually, our definition of
the localization susceptibility remains unaltered and leads to
the result shown in Fig. 10.

B. Main result: Disorder-averaged statistics

To go beyond the anecdotal evidence presented in the pre-
vious section, we now extend the analysis to an extended data
set of small-minigap instances, the details of which are set out
in Appendix C. The system and ensemble sizes of this data set
are summarized in Table II. These instances are obtained by
computing the numerically exact spectrum and retaining only
those that have a minigap � < �small = 10−2. As mentioned
in the Introduction, even among these instances there occur
not a few that are solved exactly by adiabatic mean-field
dynamics. We emphasize that we exclude these instances from
the following analysis because the whole point is to devise an
approximate method applicable to hard instances that cannot
be solved in mean-field. The resulting effective ensemble sizes
are given in Table I. These remaining instances span a range
of criticality as quantified by the peak of the corresponding
adiabatic ratios.

For each instance in these ensembles, we determine the
critical point s∗ according to Eq. (3) and then plot the cor-
responding maximally frustrated localization susceptibility
against s − s∗, i.e., χi∗ (s) must peak around the origin in order
to have its maximum coincide with the adiabatic bottleneck.

0.0 0.2 0.4 0.6 0.8 1.0
s

100
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|〈α
| Ĥ
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−

Ĥ
X
|0〉

|/(
E

α
−

E
0
)2

α = 1

0.0

0.5

1.0

1.5

q i
∗(

s)
〈δz

i ∗
(s

)δ
z̄ i

∗(
s)
〉

×10−3

i∗ = 6

FIG. 10. Max. 2-Sat. localization susceptibility for N = 10 and
Tf = 216.

TABLE I. Effective ensemble sizes and average Hamming
distances to the optimal solution after excluding small-minigap in-
stances solved by adiabatic mean-field evolution.

N 8 10 12 14 16 18

Ensemble 2171 2169 1939 1050 250 110
Avg. Hamming distance 5.98 7.02 7.87 9.12 10.00 11.04

Importantly, we perform the disorder average of the random
realizations of the SK spin glass after this transformation. The
results are shown in Fig. 8: except for the smallest systems
at N = 8, the average localization susceptibility does indeed
peak at the origin, which confirms that χi∗ (s) contains statis-
tically relevant information about the onset of the adiabatic
bottleneck. Note that if one only considers the local EA order
parameter Eq. (11), the averaged agreement with the peak of
the adiabatic ratio is worse than when taking the product with
the maximally frustrated localization susceptibility. The same
is true if considering only the average of the latter. We remark
that, while the alignment between localization susceptibility
and adiabatic bottleneck is not always as ideal as in Fig. 7,
there is almost always good agreement (as is necessary to
obtain the significant average agreement observed in Fig. 8).

IV. DISCUSSION AND CONCLUSION

We developed the theory of the nonequilibrium dynamics
of the semi-classical spin coherent-state path integral, as en-
capsulated by Eqs. (9) and (22). This has allowed us to study
the instance-specific onset of the adiabatic bottleneck for the
quantum SK model via critical fluctuations. Our main result,
Fig. 8, provides numerical evidence that this is statistically
robust and not dependent on the system size.

It seems clear that there are many instances where the mini-
gap with the first excited state is so small that one cannot hope
of mitigating it practically in the near future. However, insofar
as a bulk glass phase with a “soft” excitation spectrum [17]
can be considered universal for long-range interacting spin
glasses, there is the real possibility of doing even worse by
scattering into higher excited states. This was indeed the case
for our example instance above, and it seems to become more
likely at larger N (as indicated by Fig. 11 in Appendix C).
A minimal intermediate goal could therefore be to mitigate
these higher excitations, a goal for which the knowledge of
the critical fluctuations, as presented in this work, appears to
be very helpful.

An interesting direction for future investigation is the
question of the connection of our methods to chaos and en-
tanglement growth in quantum many-body systems [29,30].
Another question relates to the role of (semi-) classical chaos
in the mean-field and fluctuation dynamics: one can imagine
a situation where the onset of classical chaos prevents the
mean fields from converging to a properly localized final
result. While this would render adiabatic mean-field evolution
meaningless as a method to solve combinatorial optimization
problems, it appears likely that this would also be accompa-
nied by a divergence of critical fluctuations, which, from our
perspective, would still be useful in the sense of detecting the
onset of criticality.
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FIG. 11. The energy E∗ of the mean-field solution in comparison to the ground- and excited-state energies E0, 1 for the small-minigap
instances from (a) N = 8 to (f) N = 18. The exact solution (i.e., E∗ − E0 ≈ 0) is recovered for {384, 412, 368, 247, 60, 27} instances,
respectively, with the total ensemble sizes given in Table II. Contrary to this, for the large-minigap instances, the exact solution is recovered in
all cases.

We finally remark that there are immediate implications
of our work for annealing-schedule design along the lines of
Ref. [27]. This should be combined with an exploration of the
applicability of our method to hard instances of other typical
combinatorial optimization problems such as maximum satis-
fiability [31,32].
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APPENDIX A: GAUSSIAN FLUCTUATIONS

As shown in Refs. [10,13], the Gaussian spin coherent-
state path integral for the fluctuations around the mean-field
can be understood via stereographic projection, which is de-

fined as the map P : C → S2, z �→ (nx, ny, nz )T from the
complex plane to the sphere, where for a single spin one finds

nx ± iny = 2z

1 + |z|2 , nz = ±(1 − |z|2)

1 + |z|2 . (A1)

The inverse map S2 → C reads

z = nx ± iny

1 ± nz
. (A2)

This projects the north pole (0, 0, 1) [south pole (0, 0,−1)]
to the origin of C while the south pole (north pole) goes to
infinity (the equator becomes the unit circle |z| = 1). Note that
the corresponding path-integral measure is not flat, but rather
proportional to ∫

dzdz̄

(1 + zz̄)2
. (A3)

The fluctuations δzi of each spin are now defined in this
complex representation, i.e., as the deviations of the true tra-
jectories z′

i from the mean fields zi, such that z′
i = zi + δzi.
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TABLE II. The SK data set with small minigaps � < �small =
10−2.

N 8 10 12 14 16 18

Ensemble 2555 2581 2307 1297 310 137

Next, by observing the identity

δzi = (1 + |zi|2)ηi + O
(
η2

i

)
, (A4)

via a change of variables [13] from δzi to ηi it is then possible
to obtain a Gaussian path integral with a flat measure

A ∼
∫

DηDη̄ exp {iS[η, η̄]}, (A5)

where S is defined in Eq. (15).

APPENDIX B: MAXIMUM 2-SATISFIABILITY

Here we present supplementary results for a hard instance
from the maximum-2-satisfiability data set of Ref. [32], where
the mean-field method converges to an excited state. Notably,
the most frustrated spin in Fig. 9 does not localize at the end
of the evolution.

This does not render our definition of the localization sus-
ceptibility useless, however, as is confirmed by Fig. 10. While
we only show one example here to illustrate this point, we
confirmed that these results are robust by considering other
instances.

APPENDIX C: SHERRINGTON-KIRKPATRICK DATA SET

Here we give a detailed overview of the data set of ran-
dom SK instances used in the main text. Table II shows the
ensemble sizes for the different spin numbers for the instance
set with small minimal gaps, where the cutoff for the minigap
size was �small = 10−2. We generate instances of size N + 1
with problem Hamiltonians

ĤP = − 1√
N + 1

∑
i< j�N+1

Ji j σ̂
z
i σ̂ z

j , (C1)

where the couplings Ji j are i.i.d. standard normal random vari-
ables, i.e., with zero mean 〈Ji j〉 = 0 and variance 〈J2

i j〉 = 1.
Then we fix nz

N+1 = 1 to ensure the symmetry breaking neces-
sary for the application of the mean-field approximation [10].
This transforms ĤP to ĤZ as defined in Eq. (1). Note that,
however, the classical ground state of ĤZ is identical to one of
the ground states of ĤP. From diagonalizing 20 × 103 random
instances at N = 8, we obtained 462 small-minigap instances.
This can be compared with the roughly 2000 random instances
we had to diagonalize at N = 18 to find about 140 small-
minigap instances. The percentage of hard instances thus
increased from about 2.3% at N = 8 to around 7% at N = 18,

TABLE III. The SK data set with large minigaps � > �large(N ).

N 8 10 12 14 16 18

Ensemble 500 500 500 500 50 20
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FIG. 12. (Left) Ensemble-averaged minigaps for the two data
sets at N = 8. (Right) Ensemble-averaged sum over the statistical
fluctuations for a final time Tf = 32 000 with �t = 2−11. Observe
that there is a small secondary peak in the fluctuations at the location
of the minigap.

in agreement with the expectations for the SK model. We also
retained a set of random instances with large minigaps while
searching for these hard instances. The respective ensembles
were summarized in Table III. As the cost of obtaining the
true spectrum obviously becomes prohibitive very quickly as a
function of N , even the observed rise in hard instances cannot
remedy the shrinking in ensemble sizes detailed in Table II.
Note, however, that we observed a gradual improvement of
our main result in Fig. 8 as we slowly increased the ensemble
sizes of the larger values of N , i.e., we have good reason to
believe that our findings are robust and would indeed improve
as more instances are added.

Below, we present plots contrasting the two data sets
by means of the ensemble-averaged exact minigaps (ob-
tained from ARPACK’s largest-magnitude eigenvalues [33]),
the instantaneous Bogoliubov spectra and the statistical
fluctuations. Overall, the magnitude of the fluctuations is
found to correlate well with the size of the minigap. The
minigap location, however, is not clearly deducible from the
aggregate fluctuations Tr F. Even so, the fact that the magni-
tude of the statistical fluctuations correlates so strongly with
the size of the minigap can be considered a side result as it
confirms the usefulness of the semi-classical approximation
to judge the quality of the mean-field solutions. If the bit-
string returned by the mean field is accompanied by small
fluctuations, one can be fairly certain that it represents a good
solution. This is corroborated by our finding that the adiabatic
mean-field dynamics always returns the true ground state
when applied to the large-minigap subset of our data. Looking
to the left panels of Figs. 12–17, this can also be understood to
result from the fact that the true minigap is virtually identical
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FIG. 13. (Left) Ensemble-averaged minigaps for the two data
sets at N = 10. (Right) Ensemble-averaged sum over the statistical
fluctuations for the same parameters as in Fig. 12.
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FIG. 14. (Left) Ensemble-averaged minigaps for the two data
sets at N = 12. (Right) Ensemble-averaged sum over the statistical
fluctuations for the same parameters as in Fig. 12.
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FIG. 15. (Left) Ensemble-averaged minigaps for the two data
sets at N = 14. (Right) Ensemble-averaged sum over the statistical
fluctuations for the same parameters as in Fig. 12.
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FIG. 16. (Left) Ensemble-averaged minigaps for the two data
sets at N = 16. (Right) Ensemble-averaged sum over the statistical
fluctuations for the same parameters as in Fig. 12.
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FIG. 17. (Left) Ensemble-averaged minigaps for the two data
sets at N = 18. (Right) Ensemble-averaged sum over the statistical
fluctuations for the same parameters as in Fig. 12.
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FIG. 18. Minigap size � versus location smin at N = 8. The cut-
off �large ∼ 0.75 is visible on the right.
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FIG. 19. Minigap size � versus location smin at N = 10. The
cutoff �large ∼ 0.6 is visible on the right.
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FIG. 20. Minigap size � versus location smin at N = 12. The
cutoff �large ∼ 0.6 is visible on the right.
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FIG. 22. Minigap size � versus location smin at N = 16. The
cutoff �large ∼ 0.5 is visible on the right.

to the approximate one given by the Bogoliubov spectrum.
Note the heights of the fluctuation peaks increase as we go
from Figs. 12–17. This also holds for those corresponding to
the large-minigap data; however, this is related to the different
cutoffs �large indicated in the right panels of Figs. 18–23. In
summary, we believe that the mean-field dynamics in combi-
nation with the semi-classical fluctuations could be thought of
as a “first-order diagnostic” tool that can be used in practice
to assess the difficulty of a given problem instance.

The present data also furnish a more detailed under-
standing of why the mean-field approximate optimization
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FIG. 23. Minigap size � versus location smin at N = 18. The cut-
off �large ∼ 0.5 is visible on the right.

algorithm [10] scales so well for the SK model. While the
fraction of instances for which the true solution is recovered
seems to increase systematically (see Fig. 11), the scatter to
higher excited states also goes up. Now it is known that, as
N → ∞, the spectral weight of the SK model accumulates
close to E0(Tf ) [17]. In this way, even though the mean-field
algorithm converges to excited states, the absolute distance
in energy may still go down asymptotically, simply because
more and more almost degenerate states appear close to the
true ground state.
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