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Fast nuclear-spin entangling gates of divalent atoms can be realized with one global laser pulse when �Z < �,
where �Z is the Zeeman-splitting-dominated frequency difference between the two clock-Rydberg transitions
of the two qubit states and � is the maximal Rabi frequency. The condition �Z < � and the sensitivity of
Rydberg-state energy to magnetic fluctuation demand the magnetic field to be weak, making the gate compatible
with large-scale atomic arrays because weaker magnetic fields can be smoother in a large qubit array. The gate
can have a high fidelity for the decoherence of Rydberg states, which limits the gate fidelity and grows with 1/�,
can be mitigated with easily attainable large �.
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I. INTRODUCTION

Quantum computing requires both scalability and ac-
curacy [1–3], for which several physical platforms have
exhibited high controllability on the single quantum level
over several tens of qubits [4–6], yet it remains prohibitive to
realize both a large-scale qubit array and universal quantum
logic gates executable with qubits in any location of a large
array.

It was recently demonstrated that hundreds of individual
neutral atoms can be assembled to a single quantum mem-
ory [7–9], but scaling a neutral-atom qubit array without
hampering its controllability is not straightforward though
atom arrays with over 1000 atoms [9], high-fidelity single-
qubit [10–13] and two-qubit [5,14,15] gates, and small-scale
quantum processors [16–18] were already demonstrated with
neutral atoms. The headache partly arises from two issues.
First, for an alkali-metal atomic qubit array as in [5,16,17,19–
32], the spatial change of magnetic field Bz in an anticipated
large-scale array with practically useful millions of qubits [33]
can result in spatial variation of the qubit frequency, which in-
evitably makes the qubits no longer identical. See Appendix A
for the details on the qubit frequency in the presence of mag-
netic field variation in a large atomic array. Second, the error
in a Rydberg-mediated entangling gate [5,16,17,19–29,31,32]
is dominated by the dephasing of the ground-Rydberg tran-
sition, radiative decay of the Rydberg state, atomic position
fluctuation, and scattering at the intermediate state (in the
case of two-photon Rydberg excitation) [5,28], all growing
with the increase of the duration of the Rydberg excitation
pulse. Effective suppression of these errors can be achieved
by using large Rydberg Rabi frequency �. For alkali-metal
atoms, unfortunately, unless a one-photon ultraviolet Rydberg
excitation is employed [23,30], an intermediate state is often
needed [5,16,17,19–22,24–29,31,32] at which the scattering
strongly limits � [5].

One solution to the above issues is encoding qubits
by nuclear spins in the clock state of alkaline-earth-like
atoms. Even in the presence of spin-orbit and hyperfine

interaction induced state mixing [34], the clock state still has
a g factor of the nuclear-spin character which renders a sensi-
tivity to the magnetic field that is three orders of magnitude
weaker than that of a hyperfine qubit, making nuclear-spin
qubits more compatible with large-scale atom arrays. More-
over, one-photon Rydberg excitation of the clock state of
an alkaline-earth-like atom with � > 2π × 10 MHz is much
easier [35] compared to that of an alkali-metal atom [36],
and thereby can potentially enhance the gate fidelity since
the intermediate state scattering is absent and Rydberg-state
decay can be suppressed with much shorter gate duration.
However, using entangling protocols designed for alkali-metal
atoms [27,37,38] with nuclear-spin qubits requires �Z �
� (e.g., the Rydberg excitation in the nuclear-spin gates
of [15,39] had �Z/� equal to 5.8 and 10.6, respectively),
where �Z is the Zeeman-splitting-dominated detuning for the
Rydberg excitation of the two nuclear-spin qubit states. Gates
in the condition �Z � � will be slow under a Gauss-scale B
field, or magnetic noise can be significant if strong B fields are
used for speeding up the gate. It is a demanding task to find
a fast gate with �Z/� < 1 when, meanwhile, the gate can be
conveniently executed by only one global laser pulse [5,15].

Here, with the qubit encoded in the clock state of an
alkaline-earth-like atom so that large � is realizable [35],
we study entangling gates realized under the condition
�Z/� < 1 via one ultraviolet laser pulse. The short gate
duration and the absence of intermediate-state scattering can
help to yield readily attainable high-fidelity gates for � over
2π × 10 MHz [35]. Importantly, a Gauss-scale B field can be
used without compromising the gate speed, and thus the gate
is compatible with a large atomic array because, in order to
have approximately the same B field throughout the whole
atomic array, the array must be placed, e.g., near the center of
an exceedingly large solenoid where the large size decreases
the B field.

The remainder of this article is organized as follows. In
Sec. II, we briefly introduce the gate. In Sec. III, we study how
fast the gate can be with a linearly polarized field when there is
a limit on the B field in a large-scale atom array. In Sec. IV, we
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FIG. 1. (a) A π -polarized ultraviolet laser sent to, as an ex-
ample, a 171Yb atom, exciting two nuclear-spin qubit states |↑〉 ≡
|(6s2) 3P0 |I = 1/2, mI = 1/2〉 and |↓〉 ≡ |(6s2) 3P0 |I = 1/2, mI =
−1/2〉 to the Rydberg states |r↑〉, |r↓〉 ≡ (6sns) 3S1 |F = 3/2, mF =
±1/2〉 with a Rabi frequency �. (b) By assuming perfect blockade
and with a pulse duration 3π/�, a CZ-like gate in Eq. (1) can be
realized by smoothly changing the phase of the laser. Shown is the
gate fidelity F and the common logarithm of the infidelity in the inset
with a corresponding optimized pulse for each �Z/�.

consider the gate fidelity when the laser field is not perfectly
polarized as desired. In Sec. V, we study the gate by using
circular laser fields and its robustness against polarization
impurity in the laser field. In Sec. VI, we show that the gate
is applicable when Rydberg interactions are both finite and
fluctuating. Section VII gives a discussion and a conclusion.
Details of the impact of magnetic fluctuation, the method of
numerical optimization, and Hamiltonians are grouped in the
Appendixes.

II. A CZ-LIKE QUANTUM GATE

The CZ-like quantum logic gate in this article is realized
by phase accumulation of two-qubit nuclear-spin states in
detuned Rydberg excitation [27,37,40] under the blockade
condition [41,42]. With qubits encoded in two nuclear-spin
Zeeman substates of the clock state of an alkaline-earth-like
atom such as 171Yb [15], |↑(↓)〉 ≡ (6s6p) 3P0 |mI = ±1/2〉,
the gate maps the four computational basis states as

|↑↑〉 � eiα|↑↑〉,
|↑↓〉 � ei(α+β )/2|↑↓〉,
|↓↑〉 � ei(α+β )/2|↓↑〉,
|↓↓〉 � −eiβ |↓↓〉, (1)

which can be transformed to the canonical controlled-Z (CZ)
gate by single-qubit gates {|↑〉, |↓〉} � {e−iα/2|↑〉, e−iβ/2|↓〉}.
The two-qubit states in each atom are nearly degenerate in
a Gauss-scale magnetic field Bz, and during the excitation
to two hyperfine-Zeeman substates |r↑,↓〉 of a (6s6n) 3S1

Rydberg state with one laser field [43–46], the two nuclear-
spin states have a detuning difference �Z ≡ |�↑ − �↓|
which is approximately the Zeeman splitting �Z ≈ 2π ×
1.9B MHz/G [45] between |r↑〉 and |r↓〉 [15,39,43–46], where
�↑,↓ is the detuning of the laser field with respect to |r↑,↓〉
shown in Fig. 1(a). During the clock-Rydberg excitation,
when �↑,↓ is comparable to the Rabi frequency �, a signifi-
cant phase can arise when both �↑,↓ and � are fixed [40,46].
But this makes a simultaneous restoration of the four com-
putational basis states back to themselves impossible unless

TABLE I. N (second row) indicates the minimal gate duration
2πN/� required to realize a CZ-like gate in Eq. (1) as a function
of �Z/� when the infidelity [47] can be smaller than 10−7 when
assuming infinite Rydberg blockade interaction in the numerical
optimization [48,49] and absence of Rydberg-state decay; details for
the numerical optimization method can be found in Appendix B.
Here, �Z ≡ |�↑ − �↓| and change of ratio between �↑ and �↓ do
not alter the results here. Too small �Z does not work. For example,
�Z/� = 0.55 leads to F � 0.991 when N � 1.9, where we restrict
the value of N because the condition N > 1.9 brings no advantage
on the gate duration in units of 1/�Z compared to the cases here.

�Z
�

0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

N 1.843 1.733 1.646 1.568 1.497 1.434 1.376 1.325 1.291

multiple laser pulses are used [46], so we consider a smooth
change of laser phase when only one global laser pulse is
used [5,15,38]. A smooth change of laser frequency can also
be used, but it can lead to more population leakage via un-
desired transitions due to the polarization impurity of the
laser field. Therefore, we focus on a smooth change of laser
phase and �Z/2 = −�↑ = �↓ so that undesired transitions
due to polarization impurity of laser fields are more detuned,
as discussed later.

To study quantum gates compatible with large atom arrays,
small B field and gate time are favorable, and meanwhile
the gate fidelity must be large. In Secs. III–V, we assume
that the dipole-dipole interaction V between the two atoms
when both are in Rydberg states is infinite so that we can
theoretically investigate how fast the gate can be under a
certain B field or how small the B field can be when we fix the
gate duration. This is because when we consider the blockade
regime, V/� can be huge [33,50–58]; when we use a finite
V in the numerical simulation, a dynamical phase can arise
and its value is sensitive to V [46]; and when V is fixed,
optimal control [38,59–70] can locate a V -dependent pulse for
a high-fidelity gate, as shown in Sec. VI.

We show gate protocols either by a linearly polarized field
or by a circularly polarized field. Below, we begin with a
linearly polarized laser field which was often employed [15].

III. LIMIT OF GATE SPEED

To find a gate with a fast speed so as to have a high fidelity,
and meanwhile be compatible with a large array, we note that
the value of � for the clock-Rydberg transition can be quite
large [35], but the CZ-like gate shall be executed with an �

that has a certain ratio to �Z as indicated in Table I, and
therefore �Z is the key parameter limiting the gate speed in
the regime �Z/� < 1. In order to have a high-fidelity gate
with any atom pair in a large-scale atomic array by using
one set of lasers, the B field or �Z should be small. To
understand this, consider the qubit array with 1305 atoms in
a ∼0.2 × 0.2 mm area reported in Ref. [9]. For a practically
useful quantum computer with, e.g., a million atoms [33], we
would anticipate a scaling of the array in [9] to a larger one in
a 6 × 6 mm area. If the coil to ensure a smooth magnetic field
throughout the qubit array in Ref. [9] has a radius of 30 cm,
then we would need another coil with a radius of 9 m for
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the million-qubit atomic array to ensure a similarly smooth
magnetic field. Though it sounds crazy, it is not a forbidden
task and worthy concerning the benefits a practical quantum
computer can bring to us [71–73]. But with such a large coil,
it is, in general, not easy to generate a strong and stable B
field at the qubit array, so we can assume B smaller than, say,
10 G [5,15,17,19–28,32,39], at which �Z/2π = 19 MHz in
the case of 171Yb. This assumption is made also because
weaker B fields have a smaller fluctuation [74]. When we fix
the gate duration with a given �, there is a minimal magnetic
field below which the gate in Eq. (1) cannot be realized,
as shown in Fig. 1(b). For example, with a gate duration
of 3π/�, pulses can be found to yield a unit fidelity when
�Z/� � 0.8. On the other hand, it is desirable to implement
a gate within a short time, 2πN/� [5,15,38]. We find that the
smallest N is about 1.3 when �Z/� is 1, and when �Z/�

decreases, N grows. Moreover, a too small �Z is not suitable
for a fast gate. With a decrease of 0.05 from �Z/� = 1,
Table I shows that the smallest �Z/� is 0.6 for realizing a gate
in Eq. (1), with a gate duration of about 2.21π/�Z, which is
about 58 ns when B = 10 G. In experiments, the laser field can
have rise and fall edges. With the rise and fall edges included,
one can still realize the CZ-like gate, with one example shown
in Fig. 2. The phase profile in Fig. 2(a) is slightly different
from the corresponding one without rise and fall edges. The
example of Fig. 2 has a Rydberg superposition time 2π/�,
leading to a Rydberg-state decay error of 1.6π/(τ�Z), which
is about 4.2 × 10−4 with B = 10 G if τ = 100 µs [46], so
the decay-induced error is greatly suppressed. Besides the
suppression of the Rydberg-state decay, the fast speed sup-
presses the error from the motion-induced dephasing, too. For
example, in a recent experiment [5], a high-fidelity entangling
gate was realized with a gate duration of less than 260 ns.

IV. POLARIZATION IMPURITY OF LASER FIELDS

The laser field can have impure polarization, lead-
ing to unwanted transitions, as in Fig. 2, so that the
gate map in Eq. (1) becomes a 4 × 4 matrix where
the relevant [75] diagonal elements give the gate map
diag{aeiα, bei(α+β )/2, bei(α+β )/2,−cei(β+ε)}, with a, b, c < 1
and ε a residual phase. The gate map becomes U =
diag{a, b, b,−ceiε} with single-qubit gates, where the differ-
ence from the ideal gate U = diag{1, 1, 1,−1} derived from
Eq. (1) by single-qubit gates can be characterized by the
fidelity [47]

F = [|Tr(Û †Û )|2 + Tr(Û †Û Û†Û )]/20. (2)

We consider the power ratio between the π , σ+, and σ−
polarized fields as 1 : ς0ς/(1 + ς ) : ς0/(1 + ς ), where ς0 is
the intensity ratio of the wrong field to the desired field, and
characterize the rates for the undesired transitions denoted by
the dashed and dotted arrows in Fig. 3 with angular momen-
tum selection rules [76], based on which we have simulated
the gate fidelity shown in Fig. 4. Two features appear in Fig. 4.
First, F is still large in the presence of polarization impurity,
and F > 0.999 when ς0 < 0.0004. So, the gate can attain
a high fidelity in practical implementation, for the intensity
ratio of the wrong field to the desired field can be as small as
10−4, as in the experiment of Ref. [77]. Second, the fidelity

FIG. 2. State dynamics for the CZ-like gate by π -polarized laser
field with �Z

�
= 0.8, �↓ = −�↑ = �Z/2. (a) The amplitude and

phase of �(t ). (b)–(d) The population (solid curve) and phase
(dashed curve) of the ground-state component of the wave function
when the input states are |↑↑〉, |↑↓〉, and |↓↓〉, respectively; the state
dynamics for |↓↑〉 is similar to that of |↑↓〉. Rydberg-state decay
and blockade leakage are ignored here. The Rydberg superposition
time is about 2π/� averaged over the four input states. Here the gate
duration is 10% longer than 2πN/� where N = 1.497, for we have
added a rise and fall edge of �(t ), each of duration πN/(10�); the
counterpart to this figure without the rise and fall edges is shown in
Appendix C. Since the simultaneous modulation of laser intensity
and phase may be more challenging compared to the modulation of
either intensity or phase, here the phase of the rise and fall edge is
constant.

shows an unequal dependence on the ratios of the σ+ and the
σ− polarized fields, and it appears that the error is smaller
if the wrong polarization is mainly σ+. This is because, as
shown in Figs. 2(b)–2(d), the final phase in the input state
|↑↑〉 has a more pronounced value for determining the final
π phase of the gate map. The σ− transition can induce an
undesired transition from |↑〉 to |r↓〉, which does more harm to
the dynamics of |↑〉 compared to the σ+ transition that induces
an undesired transition from |↑〉 to |r+〉 because the detuning
�Z/2 for |↑〉 → |r↓〉 is three times smaller than the detuning
−3�Z/2 for |↑〉 → |r+〉.

It is, in principle, feasible to suppress the gate errors from
the polarization impurity of the laser fields. The impure polar-
ization of a laser field is mainly from the misalignment of its
propagation direction and the quantization axis that is usually
specified by a magnetic field [77], both being fixed during
the gate sequence. So the laser-polarization impurity can be
determined [77–79]. Therefore, with a certain set of ς0 and
ς , it is, in principle, possible to find optimal pulses [38,59–
70] for maximizing the gate fidelity. But even without doing
so, Fig. 4 indicates that our gate protocol based on an easily
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FIG. 3. Schematic of polarization impurity in the laser field for
the gate realized with a π -polarized field. Thicker arrows indicate the
desired transitions, while thinner arrows show transitions induced by
unwanted σ±-polarized laser fields. Fields of both the correct and
wrong polarization have a common frequency so that they are tuned
to a virtual level, denoted by the dashed line. The Zeeman splitting
between |↑〉 and |↓〉 is negligible. The detunings are �↑,↓ at |r↑,↓〉,
and �↑ − �Z and �↓ + �Z at |r±〉, respectively. The numerical
results in this article are with �↓ = −�↑ = �Z/2 so that |r±〉 are
both more detuned to suppress the unwanted transitions.

attainable linearly polarized laser can yield high fidelity be-
cause ς0 can be made as small as 10−4 in the experiment of
Ref. [77]. Given the fact that the polarization purity in [77]
was achieved many years ago with circularly polarized fields,
it is reasonable to assume that technology has been advancing
and a higher purity is possible with the gate here since linear
polarization is easier to prepare.

V. GATE WITH RIGHT-HAND POLARIZED LASER FIELD

We then study gates by a circularly polarized laser field.
A circularly polarized field is more involved to prepare, but
supposing that in the near future it will be possible to prepare
a circularly polarized field with very high purity, it is worthy
to consider whether there is any advantage to realize the gate
with, e.g., σ+-polarized laser fields. By using a right-hand po-
larized field, the desired transitions for the two-qubit states are
schematically shown in Fig. 5, where the difference between
the magnitudes of the two Rabi frequencies arises from the

FIG. 4. Fidelity of the gate by linearly polarized laser fields with
the pulse in Fig. 2(a) when there is polarization impurity in the laser
characterized by the power ratio ς0 ∈ [10−4, 10−2] and ς ∈ [0.1, 10],
where ς0 is the intensity ratio of the wrong field to the desired field
and ς is the intensity ratio of the σ+ to the σ− polarized fields. Here,
F > 0.999 with ς0 < 4 × 10−4, F > 0.99 with ς0 < 3 × 10−3, and
the maximal and minimal F are 0.9999 and 0.9712 with (ς0, ς ) equal
to (10−4, 10) and (0.01,0.1), respectively.

FIG. 5. A right-hand polarized ultraviolet laser exciting
|↑〉 ≡ |(6s2) 3P0 |I = 1/2, mI = 1/2〉 and |↓〉 ≡ |(6s2) 3P0 |I =
1/2, mI = −1/2〉 to |r+〉 ≡ (6sns) 3S1 |F = 3/2, mF = 3/2〉, |r↑〉 ≡
(6sns) 3S1 |F = 3/2, mF = 1/2〉 with a Rabi frequency � and
�/

√
3, respectively, where the arrow for the transition |↑〉 ↔ |r+〉

being thicker compared to that for |↓〉 ↔ |r↑〉 indicates a difference
of factor

√
3 in their Rabi frequencies due to angular momentum

conservation. Dashed and dotted arrows indicate transitions by laser
fields of wrong polarization.

angular momentum selection rule [76], as listed in Eq. (D1).
Table II shows the approximate minimal gate duration 2πN/�

required to realize a CZ-like gate in Eq. (1) as a function of
�Z/�. Here, due to the long search time for each case, we did
not use the step 0.001 for searching N as in Table I, but instead
used 0.1. Another reason for this is that with a smaller step of
0.1, Table II shows that the minimal N does not decrease when
�Z/� grows as in Table I. This appears because the case in
Sec. III and the case here are quite different in that the two
nuclear-spin states are excited with equal Rabi frequencies
in Sec. III. But here, the two nuclear-spin qubit states have
different Rabi frequencies, as indicated in Fig. 5. Similar to
Sec. III, we find that when we change the �↑ to �↓ ratio, the
results on the gate speed in Table II stay the same.

As for the limit of gate speed under a certain magnetic field,
Table II shows that the gate can be realized with �Z/� =
0.45, where the gate duration is 1.8π/�Z. But there is an-
other case with �Z/� = 0.5 where the gate duration is also
1.8π/�Z, which is about 47 ns when B = 10 G. Such a fast
speed is competitive with that in superconducting qubits, as
reviewed in [58].

Laser fields can have impure polarization. So we examine
the robustness to uncertainties in laser polarization when the
gate is executed by a circularly polarized laser field. We label
the power ratio between σ+, π , and σ− polarized fields by
1 : ς0ς/(1 + ς ) : ς0/(1 + ς ), where ς0 is the intensity ratio
of the wrong field to the desired field, and ς is the ratio

TABLE II. Gate speed by using a right-hand polarized ultravi-
olet laser as in Fig. 5 when assuming infinite Rydberg blockade
interaction in the numerical optimization [48,49] and absence of
Rydberg-state decay. N (second row) indicates the approximately
minimal gate duration 2πN/� required to realize a CZ-like gate in
Eq. (1) as a function of �Z/� when the infidelity [47] can be smaller
than 10−7. Here, N is approximate because a step of 0.1 was taken
in the numerical search for the minimal N , instead of 0.001 as in
Table I.

�Z
�

0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

N 2.0 1.8 2.1 1.8 1.6 1.5 1.5 1.4 1.4 1.5 1.5 1.5
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FIG. 6. Fidelity of the gate by σ+-polarized laser field with the
pulse in Fig. 12(a) when there is polarization impurity in the laser
characterized by ς0 ∈ [10−4, 10−2] and ς ∈ [0.1, 10], where ς0 is the
intensity ratio of the wrong field to the desired field and ς is the
intensity ratio of the π to the σ− polarized fields. Here, F > 0.999
with ς0 < 1.7 × 10−3 and F > 0.994 for all data shown here. The
maximal and minimal F are at the lower-left and upper-right corners.

of the π to σ− polarized fields. The rates for the undesired
transitions denoted by the dashed and dotted arrows in Fig. 5
are given in Appendix D. With the optimized phase profile
shown in Appendix D for a gate with �Z/� = 0.5 and a finite
rise and fall edge of the laser field for practical consideration,
we have simulated the gate fidelity with realizable polarization
purity, shown in Fig. 6. The smallest gate fidelity in Fig. 6 is
0.99405 with (ς0, ς ) = (0.01, 10). F decreases slowly when
ς increases, but it is marginal. Fortunately, 1 − F in Fig. 6
is smaller than 5.8 × 10−5 for an experimentally accessible
polarization impurity, ς0 � 10−4 [77]. These indicate that the
gate can have high fidelity with affordable laser-polarization
purity.

A comparison between Figs. 4 and 6 shows that using a cir-
cularly polarized laser field is more likely to yield high-fidelity
gates when there is polarization impurity. This is because, for
the result in Fig. 6 which is based on the laser configuration
of Fig. 5, the Rydberg state that contributes most to the wrong
excitation is |r↓〉 with a detuning that is three times larger than
the detuning at |r↑〉, while the undesired Rydberg-excited state
|r−〉 is detuned from the laser that is five times larger than
the detunings at the targeted Rydberg states |r↑〉 and |r+〉. In
comparison, there are two undesired Rydberg-excited states
|r±〉 with a detuning that is three times the detuning at the
two targeted Rydberg states in Fig. 3, which indicates a larger
probability of wrong Rydberg excitation. However, laser fields
of circular polarization may be challenging to prepare and
may result in lower laser power which can compromise the
gate speed. Therefore, it depends on laboratory resources re-
garding which type of laser polarization should be used for the
gate.

VI. GATES WITH FINITE RYDBERG INTERACTIONS

The gate can still attain a high fidelity when V is both finite
and fluctuating. When V is finite, as shown in Eqs. (B1)–(B3)
in Appendix B with a linearly polarized field, |αβ〉 can be
excited to two-atom Rydberg states, leading to extra phase
accumulations; this is similar for gates with a σ+-polarized
laser field. Because the extra phase can partially arise from

FIG. 7. Numerical gate error due to the finiteness of Rydberg
interaction V . Shown is the common logarithm of infidelity of the
gate as a function of V/� with a corresponding optimal pulse. Here,
we did not start numerical optimization from the random initial
phase of �(t ), but each data point here with a certain V was found
by optimizing the phase of �(t ) obtained with infinite V , i.e., by
optimizing the phase profile shown in Fig. 12(a). Inset: The zoom-in
around V/� = 2 where relatively high-fidelity gates can be realized
due to the antiblockade effect.

the dynamical phase accumulation ∼V t2Ryd [41], with t2Ryd

the time for the two-qubit state to be in the two-atom Rydberg
state, there will be gate error due to the fluctuation of V . This
means that when V does not fluctuate, there will be a possi-
bility to realize accurate gates with V ∼ � [37,40], but it also
means that the gate fidelity can be small when V fluctuates
since different V not only directly results in different dynami-
cal phases, but also leads to different probabilities of two-atom
Rydberg excitation so that t2Ryd fluctuates. Fortunately, when
V � �, the two-atom Rydberg state is barely populated due
to the Rydberg blockade mechanism [50,58] so that the gate
error due to the fluctuating V is small thanks to a negligible
t2Ryd.

As a common feature of optimal-control-based Rydberg
gates [38,59–70], near-unit fidelity is theoretically possible
when V is finite and fixed. To examine this, we take, as an
example, the implementation with a σ+-polarized laser field.
Shown in Fig. 7 is the common logarithm of infidelity of the
gate as a function of V/� with optimized phases of �(t ).
Figure 7 shows that the gate can have a high fidelity F = 1 −
3.7 × 10−5 when V/� = 1.9. The high-fidelity gates around
V/� = 2 highlighted in the inset of Fig. 7 are due to the
antiblockade effect [58], i.e., accurate CZ-like gates can be
realized by exploring the relation between detuning and am-
plitude of the laser field, Rydberg interaction, and pulse
duration, as studied in, e.g., Refs. [37,40,80]. Besides being
useful in quantum logic gates, Rydberg antiblockade is also
useful for generating a Greenberger-Horne-Zeilinger (GHZ)
state, as explored in Ref. [81]. The position fluctuation of
the qubits can cause fluctuation of V , which can lead to extra
errors in the gate. To characterize the gate performance with
fluctuating V , we choose, as an example, V = 50�, where the
pulse profile and state dynamics of typical input states of the
gate are shown in Fig. 8 when V is fixed at 50�. The condition
V = 50� should be experimentally feasible by placing two
atoms near enough, as in Ref. [5] where a large interaction
with V ≈ 98� was used in a high-fidelity entangling gate, and
V/2π over 1 GHz was used in experimental CZ gates [16].
The gate fidelity in Fig. 8 is relatively large, with log10(1 −
F ) = −8.56, so that we can treat the gate map of the case in
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FIG. 8. State dynamics for the CZ-like gate with a finite Rydberg
interaction V = 50�, �Z

�
= 0.5, and σ+-polarized laser field, where

the laser is tuned at the middle of the gap between |r+〉 and |r↑〉.
(a)–(d) show similar quantities as in Fig. 2. The final population of
the ground-state wave functions in (b)–(d) is 1, and their phases are
φ↑↑ = 1.990577, φ↑↓ = −2.983394, and φ↓↓ = 1.467505, respec-
tively. As in Fig. 2, here the gate duration is 10% longer than 2πN/�

where N = 1.8, for we have added a rise and fall edge of �(t ), each
of duration πN/(10�). We note that the phase profile in (a) here is
quite close to that in Fig. 12(a), where V/� = ∞ is assumed.

Fig. 8 as the target, i.e., U = diag{eiφ↑↑ , eiφ↑↓ , eiφ↑↓ , eiφ↓↓} with
φ↑↑, φ↑↓, and φ↓↓ given in the caption of Fig. 8, and char-
acterize the gate map U = diag{aeiφ′

↑↑ , beiφ′
↑↓ , beiφ′

↑↓ , ceiφ′
↓↓ }

realized with a fluctuating V by the fidelity in Eq. (2). We
consider the average,

F =
∫

F (V )dV/

∫
dV, (3)

where the integration is over V ∈ 50�[1 − ε, 1 + ε]. Here,
we use a uniform distribution of V in the fluctuating region,
for in the numerics it can lead to a larger gate error compared
to a Gaussian distribution so that we can estimate a lower
bound for the gate fidelity. The results with ε ∈ [0, 0.4] are
given in Fig. 9, which shows that the gate error is smaller
than 10−4 (10−5) when ε < 0.22 (0.023). When we consider
strong V , it usually means that it is of the dipole-dipole
character, namely, it is nearer to the scaling V ∝ L−3 [58,75],
with L the atomic separation, and therefore ε < 0.22 (0.023)
is satisfied when the fluctuation of L is within 7% (0.8%).
With the feasibility to cool atoms to the motional ground state
in optical traps which can significantly suppress the position
fluctuation of the qubits [5], the relatively slow increase of
gate error when ε increases as in Fig. 9 means that high-
fidelity nuclear-spin gates are realizable.

VII. DISCUSSION AND CONCLUSION

We have studied a fast CZ-like gate with nuclear spins in
a weak magnetic field by taking 171Yb as an example, for

FIG. 9. Gate error from the fluctuation of V in the nuclear-
spin gate (scaled by 104) of Eq. (3) averaged by uniformly
varying the Rydberg interaction V in 50�[1 − ε, 1 + ε]. Each V
results in a gate map U different from the desired gate map,
diag{eiφ↑↑ , eiφ↑↓ , eiφ↑↓ , eiφ↓↓ }, where φ↑↑, φ↑↓, and φ↓↓ are given in
the caption of Fig. 8. Note that one pulse is used for the simulation
here, i.e., the pulse that yields a high-fidelity gate when the interac-
tion is exactly 50 �.

it has the simplest nuclear spin, I = 1/2, which allows rela-
tively easier manipulation in experiments [82–84]. Besides,
the clock state of 171Yb possessing only two nuclear-spin
Zeeman substates results in that no other nuclear-spin states
exist for the population to leak to [85], as shown in Fig. 3. For
atoms with larger I , the theory is applicable by strong Stark
shifts to shift away nearby nuclear-spin Zeeman substates as
in [86] so as to suppress population leakage.

In summary, a global laser pulse with a smooth modulation
of phase can induce a CZ-like gate between two atoms in
their nuclear-spin qubit states when �Z < �, where �Z is
the Zeeman-splitting-dominated frequency difference for the
clock-Rydberg transitions of the two nuclear-spin qubit states
and � is the maximal Rabi frequency. The minimal �Z is
about 0.6� (0.45�) for realizing such a gate via linearly
(circularly) polarized laser fields where the gate duration is
about 2.2π/�Z (1.8π/�Z), which sets the speed limit for the
gate in an anticipated practically useful quantum computer
based on large-scale nuclear-spin memories under a weak B
field. The gate can attain a high fidelity with lasers of experi-
mentally affordable polarization purity [77–79] and with finite
and fluctuating Rydberg interactions.
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APPENDIX A: MAGNITUDES OF MAGNETIC FIELDS
IN EXPERIMENTS AND MAGNETIC SENSITIVITY

OF ATOMIC QUBITS

The gate in this article is of intimate relevance to the recent
advancement of Rydberg-mediated gates. A B field that is
weak, typically smaller than 10 G as in [5], is prerequisite for
high-fidelity Rydberg-mediated entanglement because weaker
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B fields have smaller fluctuation [74]. The energy of the Ryd-
berg atom is sensitive to the magnetic field, and a fluctuation
as small as 0.025 G can add an extra dephasing rate over
2π × 12 MHz to the Rydberg state [87]. In experiments of
Rydberg-mediated entanglement, the magnitude of the mag-
netic field was 3.7 [20,21], 9 [19], 1.5 [22,25], 4.8 [23], 3 [24],
7.5 [26], 6 [28], 4.6 [30], 7 [32], 8.5 [5,17,27], and 16 G [16],
with hyperfine qubits of alkali-metal atoms (the value of the
B field was not explicitly indicated in some Refs. [29,31]),
and 4.11 [39] and 5 G [15] for nuclear-spin qubits of 171Yb.
Exceptions such as 71 [14,35] or 55 [74] G used for entangling
nuclear-spin-free 88Sr atoms exist, but note that the qubits
in [14,35,74] have qubit frequency of hundreds of THz, which
is 5 (11) orders of magnitude larger than that of a hyperfine
(nuclear-spin) qubit. Even in [14,35,74], a tenfold reduction
of the B field was applied when Rydberg excitation was in-
volved so as to reduce the field fluctuation. These point to
the likeliness that the fast nuclear-spin gate with only one
pulse shown in this article can be useful for realizing quantum
devices based on nuclear-spin memories which have several
prominent strengths [88].

The results in Ref. [89] indicated that the temporal fluc-
tuation of the magnetic field can be suppressed nearly
completely, and therefore only the spatial fluctuation of
the magnetic field or the freely flying atoms experienc-
ing different fields matters. In experiments with alkali-metal
atoms [5,16,17,19–29,31,32], the spatial change of magnetic
field Bz in a large-scale qubit array consisting of millions
of atomic qubits can result in a spatial change of frequency
separation of the two-qubit states that is large compared to
the Rabi frequency of single-qubit Raman transitions, which
was lower [5] or much lower [12,13] than 2π × 1 MHz
in high-fidelity implementations. Encoding the qubit states
by the two mF = 0 states [5,11] of two hyperfine levels
of the ground state of an alkali-metal atom incurs smaller
magnetic fluctuation, but there is a field-dependent term,
∼(μBB)2/(2h̄Ehfs) [76], in the frequency separation of the
two qubits where μB, h̄, and Ehfs are the Bohr magneton,
reduced Planck constant, and hyperfine splitting, respectively.
This term brought no trouble in the published experiments,
but cannot be ignored in an anticipated large-scale array with
practically useful millions of qubits [33] because the spatial
extent of the qubit array can be quite large, especially due
to the fact that most qubit arrays are in a two-dimensional
space [7–9].

APPENDIX B: NUMERICAL OPTIMIZATION METHOD

We detail the numerical optimization method used in this
article. Because the method used here is similar to that in
Ref. [38], and also because the CZ-gate model of Ref. [38]
is simpler, we outline the numerical optimization for the CZ
gate in Ref. [38]. By showing the details, we hope that readers
can easily write a code to cope with similar gate protocols and
employ it for further study.

The time-optimal CZ gate in Ref. [38] based on qubits
encoded in the hyperfine ground states of alkali-metal atoms
can be numerically studied as follows. For the input states
{|00〉, |01〉, |10〉, |11〉}, the ground-Rydberg excitation |1〉 ↔
|r〉 with a Rabi frequency � means that |00〉 stays intact in

the rotating frame, while |01〉 and |10〉 experience similar
time dynamics, so that we can study the time dynamics for
the input states |01〉 and |11〉 for realizing the CZ-like gate.
For |01〉, the Hamiltonian is Ĥ01 = �(t )|0r〉〈01|/2 + H.c.; for
|11〉, the Hamiltonian is Ĥ11 = �(t ) |1r〉+|r1〉√

2
〈11|/√2 + H.c.

In the numerical optimization, we consider the Hamiltonian
Ĥalkali = Ĥ01 + Ĥ11. This Hamiltonian will be used to evaluate
the time-evolution operator Û where the off-diagonal matrix
elements give information on the input-output matrix of the
CZ-like gate. At the end of the gate pulse, the input states
|01〉 and |11〉 are expected to become eiφ01 |01〉 and eiφ11 |1〉,
where φ01 and φ11 are to be numerically located so as to yield
a CZ-like gate.

With the Hamiltonian at hand, the optimization is straight-
forward: (1) Set up the gate duration Tgate in units of 2π/�,
where � is the maximal value of �(t ); divide the gate du-
ration into ϒ equal intervals with index i = 0, 1, · · · ϒ − 1,
where ϒ is a large integer; set up the value of �(t ) at each
time interval (or, equivalently, time step) according to the
specific laboratory requirement. For the time-optimal CZ gate
in Ref. [38], �(t ) = �. (2) Use random numbers as input
phase ϕi for the phase of �(t ) at each time step i. (3) Use
random numbers as input values of φ01 and φ11. (4) Set up a
target for the optimization, such as the gate fidelity F being
larger than a certain value. (5) Tabulate the time-evolution
operator Û (i → i + 1) for each i, its Hermitian conjugate,
and its derivative Û ′(i → i + 1) with respect to the phase,
where Û (i → i + 1) can be calculated following Ref. [48] and
the derivative of Û (i → i + 1) can be calculated following
Ref. [49]. With these operators, the input-output matrix of the
gate can be extracted using Û (0 → ϒ − 1) ≡ �ϒ−2

i=0 Û (i →
i + 1). (6) Use a similar way as Eq. (13) of Ref. [48] to
update ϕi at each time step, where “similar” as Eq. (13) of
Ref. [48] emphasizes that in Ref. [48], the amplitude of the
Hamiltonian is updated, but here we update the phase of the
Rabi frequency. The small time step, i.e., ε in Eq. (13) of
Ref. [48], can be set as, e.g., 0.01. This step is as follows in
the numerical realization: Calculate the derivative of F with
respect to ϕi by using appropriate off-diagonal matrix ele-
ments in Û (0 → i)Û ′(i → i + 1)Û (i + 1 → ϒ − 1), where
the derivative plays the role of the derivative of Eq. (13) of
Ref. [48]. In experiments, there can be rise and fall edges in
the laser field. In Fig. 2, the phase of the laser field is fixed
at the rise and fall edges; to cope with this, we can initially
set the phase equal at the rise and fall edges, and update
the phase at the rise steps together, and similarly at the fall
time steps, so as to get a pulse profile as in Fig. 2(a). (7)
After all the phases ϕi are updated, use a similar method as
in step (6) to update φ01 and φ11. (8) Check if the target has
reached a value of desire or if the number of iteration has been
reached. Typically, we can set F � 1 − 10−7 and a very large
iteration number as a threshold to stop. When the search has
finished without reaching the desired F , it possibly means that
the used value for Tgate is too small. Alternatively, one can
use the above steps for different Tgate to calculate Figs. 1(b)
and 1(c) of Ref. [38]. By using the above steps, less than
one hour’s search on an i7 computer yielded a phase profile
shown in Fig. 10(a) with F > 1 − 10−8, where the population
and phase dynamics for the input states |01〉 and |11〉 are
shown in Figs. 10(b) and 10(c), respectively. In experimental
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FIG. 10. State dynamics for the time-optimal CZ-like gate pro-
posed in Ref. [38], where the qubit is encoded in, e.g., two hyperfine
ground states |0〉 and |1〉, and |1〉 is excited to a Rydberg state
with a Rabi frequency �(t ) which has a constant amplitude, but a
time-dependent phase. The gate duration is Tgate ≈ 7.612/�. (a) The
phase of the Rydberg Rabi frequency. (b),(c) The population (solid
curve) and phase (dashed curve) of the ground-state component of
the wave function when the input states are |01〉 and |11〉, respec-
tively. Rydberg-state decay and blockade leakage are ignored here.
The final phases of the ground-state wave function are approximately
(b) 2.177 967 and (c) 1.214 375 rad. The state dynamics for the input
state |10〉 is similar to that of |01〉. The Rydberg superposition time
is about 0.94π/� averaged over the four input states.

implementation, it is not necessary to set the initial phase of
the laser field to the value of Fig. 10(a), but we only need to
change the phase so that arg[�(t )] − arg[�(0)] is equal the
corresponding arg[�(t )] − arg[�(0)] shown in Fig. 10(a).

The optimization method used here is similar to the one
presented above, except that the Hamiltonian is different and
three out of the four input states accumulate phases that
need to be searched. The Hamiltonian for the gate by a π -
polarized laser field is as follows. For the input state |↑↑〉, the
Hamiltonian is

Ĥ↑↑ =

⎛
⎜⎜⎜⎜⎜⎜⎝

V + 2δ+
�↑π

2
�↑π

2 0
�∗

↑π

2 δ+ 0 �↑π

2
�∗

↑π

2 0 δ+
�↑π

2

0
�∗

↑π

2

�∗
↑π

2 0

⎞
⎟⎟⎟⎟⎟⎟⎠

(B1)

in the basis of

{|r↑r↑〉, |r↑↑〉, |↑r↑〉, |↑↑〉},
where V is the Rydberg interaction, δ± = −�±, and
�↑π (�↓π ) is the Rabi frequency for |↑〉 (|↓〉), with the sub-
script π indicating transitions induced by a π -polarized laser

field. For |↓↓〉, the Hamiltonian is

Ĥ↓↓ =

⎛
⎜⎜⎜⎜⎜⎜⎝

V + 2δ−
�↓π

2
�↓π

2 0
�∗

↓π

2 δ− 0 �↓π

2
�∗

↓π

2 0 δ−
�↓π

2

0
�∗

↓π

2

�∗
↓π

2 0

⎞
⎟⎟⎟⎟⎟⎟⎠

(B2)

in the basis of

{|r↓r↓〉, |r↓↓〉, |↓r↓〉, |↓↓〉}.
For |↑↓〉, the Hamiltonian is

Ĥ↑↓ =

⎛
⎜⎜⎜⎜⎜⎜⎝

V + δ+ + δ−
�↓π

2
�↑π

2 0
�∗

↓π

2 δ+ 0 �↑π

2
�∗

↑π

2 0 δ−
�↓π

2

0
�∗

↑π

2

�∗
↓π

2 0

⎞
⎟⎟⎟⎟⎟⎟⎠

(B3)

in the basis of

{|r↑r↓〉, |r↑↓〉, |↑r↓〉, |↑↓〉},
while for |↓↑〉, the Hamiltonian is similar to that in Eq. (B3).
To have larger detuning so as to have less Rydberg population,
we tune the laser field to a virtual level at the middle of the gap
between |r↑〉 and |r↓〉 so that δ+ = −δ− = �Z/2. In the limit
of large V , |r↑r↑〉 and |↓↓〉 are barely populated, so that a
2 × 2 matrix can be used for either Eq. (B1) or Eq. (B2) in the
numerical optimization considering the many-body enhance-
ment of the excitation. This means that in the large-V limit, a
7 × 7 matrix can be used in the numerical optimization, while
the code leading to Fig. 10 only needs a 4 × 4 matrix. Due
to the larger Hilbert space, the search for the phase profile
is slower than that shown in Fig. 10(a). In this case, external
computational resources can be helpful.

APPENDIX C: PULSES WITHOUT RISE AND FALL EDGES

Section III shows a numerical example of the gate when
there are finite rise and fall edges in the strength of the laser
field. The ramp of the laser field can be quite quick [5].
Therefore, in principle, the gate time can be made quite near
to the value shown in Table I for a given B field. Then, it is
worthy to study the state dynamics by assuming no rise and
fall times in the laser field. Figure 11 shows the state dynamics
for the CZ-like gate with �Z

�
= 0.8, �↓ = −�↑ = �Z/2 and

an exact gate duration 2πN/� when N = 1.497. Compared
to Fig. 2, the phase of the Rabi frequency is smoother, but the
state dynamics only shows a marginal difference.

APPENDIX D: HAMILTONIANS WITH
LASER-POLARIZATION IMPURITY

With π -polarized laser fields, the gate would have unit
fidelity when V is infinite. But shown in Fig. 3 are unwanted
transitions from the undesired σ±-polarized laser fields. As in
Sec. IV, we suppose that the power ratio of the wrong polar-
ization in the laser field is ς0, and further use ς to denote the
power ratio of the σ+ to the σ− field. Although ς0 = 10−4 is
possible [77], we keep ς0 as an unknown parameter and study
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FIG. 11. State dynamics for the CZ-like gate with �Z
�

=
0.8, �↓ = −�↑ = �Z/2 and gate time 2πN/� where N = 1.497.
(a) The phase of the laser field. (b)–(d) The population (solid curve)
and phase (dashed curve) of the ground-state component of the wave
function when the input states are |↑↑〉, |↑↓〉, |↓↓〉, respectively.
Rydberg-state decay and blockade leakage are ignored here. The
final phases are approximately (b) −1.551 073, (c) 2.518 265, and
(d) −2.837 097 rad. The Rydberg superposition time is about 2π/�

averaged over the four input states. The counterpart to this figure,
with an example of rise and fall edge, is shown in Fig. 2.

the gate fidelity with various ς0. Then, the Rabi frequencies
for all possible transitions are given as

|↑〉 → |r↑〉, Rabi frequency: �↑π = �(t ),

|↓〉 → |r↓〉, Rabi frequency: �↓π = �(t ),

|↑〉 → |r+〉, Rabi frequency: �↑+ =
√

3√
2

√
ς0ς

ς + 1
�(t ),

|↓〉 → |r↑〉, Rabi frequency: �↓+ = 1√
2

√
ς0ς

ς + 1
�(t ),

|↑〉 → |r↓〉, Rabi frequency: �↑− = 1√
2

√
ς0

ς + 1
�(t ),

|↓〉 → |r−〉, Rabi frequency: �↓− =
√

3√
2

√
ς0

ς + 1
�(t ),

(D1)

FIG. 12. State dynamics for the CZ-like gate with �Z
�

= 0.5 and
σ+-polarized laser field, where the laser is tuned at the middle of
the gap between |r+〉 and |r↑〉. (a) The amplitude and phase of �(t ).
(b)–(d) The population (solid curve) and phase (dashed curve) of
the ground-state component of the wave function when the input
states are |↑↑〉, |↑↓〉, and |↓↓〉, respectively; the state dynamics for
|↓↑〉 is similar to that of |↑↓〉. Rydberg-state decay and blockade
leakage are ignored here. The final phases of the ground-state wave
functions are (b) 2.052763, (c) −2.910787, and (d) 1.550441 rad.
The Rydberg superposition time is about 2.2π/� averaged over the
four input states. As in Fig. 2, here the gate duration is 10% more
than 2πN/� where N = 1.8 for we have added a rise and fall edge
of �(t ), each of duration πN/(10�), and the rise and fall edge of
the laser field has constant phases because, in real experiments, the
simultaneous modulation of laser intensity and phase may be more
challenging compared to the modulation of either intensity or phase.
We note that the shape of the rise and fall edges can be set according
to real laboratory conditions, which does not alter the numerical
optimization as outlined in Appendix B, namely, an optimal phase
profile of �(t ) can be located according to specific shapes of the rise
and fall edges or, more generally, according to the time dependence
of the magnitude of �(t ).

where, for brevity, we have not shown the time dependence
in the Rabi frequencies. The unwanted transitions will lead to
transitions between ground and single-Rydberg-excited states,
so that all four computational basis states are finally con-
nected. There are 36 basis states for the two atoms, but in
the regime of strong blockade, two-atom Rydberg states are
not excited, so that we consider a Hamiltonian Ĥ with the
following 20 basis states, where the texts in the brackets
indicate the character of the basis states that are shown:

{|↑r+〉, |↑r↑〉, |↑r↓〉, |↑r−〉, |↓r+〉, |↓r↑〉, |↓r↓〉, |↓r−〉, [control (target) atom is in the ground (Rydberg) state]

|r+↑〉, |r↑↑〉, |r↓↑〉, |r−↑〉, |r+↓〉, |r↑↓〉, |r↓↓〉, |r−↓〉, [control (target) atom is in the Rydberg (ground) state]

|↑↑〉, |↓↑〉, |↑↓〉, |↓↓〉}, (both atoms are in the ground state)
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and 2Ĥ is given by⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

δ+ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 �↑+ 0 0 0

0 δ↑ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 �↑π 0 �↓+ 0

0 0 δ↓ 0 0 0 0 0 0 0 0 0 0 0 0 0 �↑− 0 �↓π 0

0 0 0 δ− 0 0 0 0 0 0 0 0 0 0 0 0 0 0 �↓− 0

0 0 0 0 δ+ 0 0 0 0 0 0 0 0 0 0 0 0 �↑+ 0 0

0 0 0 0 0 δ↑ 0 0 0 0 0 0 0 0 0 0 0 �↑π 0 �↓+
0 0 0 0 0 0 δ↓ 0 0 0 0 0 0 0 0 0 0 �↑− 0 �↓π

0 0 0 0 0 0 0 δ− 0 0 0 0 0 0 0 0 0 0 0 �↓−
0 0 0 0 0 0 0 0 δ+ 0 0 0 0 0 0 0 �↑+ 0 0 0

0 0 0 0 0 0 0 0 0 δ↑ 0 0 0 0 0 0 �↑π �↓+ 0 0

0 0 0 0 0 0 0 0 0 0 δ↓ 0 0 0 0 0 �↑− �↓π 0 0

0 0 0 0 0 0 0 0 0 0 0 δ− 0 0 0 0 0 �↓− 0 0

0 0 0 0 0 0 0 0 0 0 0 0 δ+ 0 0 0 0 0 �↑+ 0

0 0 0 0 0 0 0 0 0 0 0 0 0 δ↑ 0 0 0 0 �↑π �↓+
0 0 0 0 0 0 0 0 0 0 0 0 0 0 δ↓ 0 0 0 �↑− �↓π

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 δ− 0 0 0 �↓−
�∗

↑+ �∗
↑π �∗

↑− 0 0 0 0 0 �∗
↑+ �∗

↑π �∗
↑− 0 0 0 0 0 0 0 0 0

0 0 0 0 �∗
↑+ �∗

↑π �∗
↑− 0 0 �∗

↓+ �∗
↓π �∗

↓− 0 0 0 0 0 0 0 0

0 �∗
↓+ �∗

↓π �∗
↓− 0 0 0 0 0 0 0 0 �∗

↑+ �∗
↑π �∗

↑− 0 0 0 0 0

0 0 0 0 0 �∗
↓+ �∗

↓π �∗
↓− 0 0 0 0 0 �∗

↓+ �∗
↓π �∗

↓− 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (D2)

where {δ+, δ↑, δ↓, δ−} ≡ −2{�↑ − �Z,�↑,�↓,�↓ + �Z}. With the above Hamiltonian, we have simulated the gate fidelity
with ς ∈ [0.1, 10] and ς0 ∈ [0.0001, 0.01], with the results shown in Fig. 4.

We continue to examine how robust the gate is against uncertainties in laser polarization when the gate is executed by a
σ+-polarized laser field, with an example shown in Fig. 12 when the laser is perfectly polarized. We label the power ratio
between the σ+-, π -, and σ−-polarized fields by 1 : ς0ς/(1 + ς ) : ς0/(1 + ς ), where ς0 is the intensity ratio of the wrong field
to the desired field, and ς is the ratio of the π - to the σ−-polarized fields. Then,

|↑〉 → |r↑〉, Rabi frequency: �↑π =
√

2√
3

√
ς0ς

ς + 1
�(t ),

|↓〉 → |r↓〉, Rabi frequency: �↓π =
√

2√
3

√
ς0ς

ς + 1
�(t ),

|↑〉 → |r+〉, Rabi frequency: �↑+ = �(t ),

|↓〉 → |r↑〉, Rabi frequency: �↓+ = 1√
3
�(t ),

|↑〉 → |r↓〉, Rabi frequency: �↑− = 1√
3

√
ς0

ς + 1
�(t ),

|↓〉 → |r−〉, Rabi frequency: �↓− =
√

ς0

ς + 1
�(t ), (D3)

and in Eq. (D2), the diagonal terms are given via {δ+, δ↑, δ↓, δ−} ≡ 2{�Z,−�Z,−3�Z,−5�Z} so as to have larger detunings
to more effectively avoid Rydberg superposition time and undesired Rydberg excitation.
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