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Quantum digital signatures (QDSs), which distribute and measure quantum states by key generation protocols
and then sign messages via classical data processing, are a key area of interest in quantum cryptography.
However, the practical implementation of a QDS network has many challenges, including complex interference
technical requirements, linear channel loss of quantum state transmission, and potential side-channel attacks on
detectors. Here, we propose an asynchronous measurement-device-independent (MDI) QDS protocol with asyn-
chronous two-photon interference strategy and one-time universal hashing method. The two-photon interference
approach protects our protocol against all detector side-channel attacks and relaxes the difficulty of experiment
implementation, while the asynchronous strategy effectively reduces the equivalent channel loss to its square
root. Compared to previous MDI-QDS schemes, our protocol shows several orders of magnitude performance
improvements and doubling of transmission distance when processing multibit messages. Our findings present
an efficient and practical MDI-QDS scheme, paving the way for large-scale data processing with nonrepudiation
in quantum networks.
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I. INTRODUCTION

Threatened by quantum attacks and the continually emerg-
ing algorithms, the security of current classical cryptographic
schemes is facing challenges. This is especially true in our
contemporary society where the rapid development of inter-
net and communication technologies results in an increasing
amount of data and information that needs to be collected,
stored, processed, and transmitted. Therefore, it is necessary
to develop modern cryptography to ensure the correspond-
ing basic elements of information security: confidentiality,
integrity, authenticity, and nonrepudiation [1,2].

Quantum technology, which is based on quantum me-
chanic laws, is regarded as a profoundly promising frontier in
the realm of cryptography and offers a significant approach
to ensuring information security [3,4]. As the most mature
technology in the realm of quantum technology, quantum
key distribution [5] has undergone rapid development [6,7].
However, it has had various security loopholes in detection
[8,9] until the measurement-device-independent (MDI) quan-
tum key distribution was proposed [10], which addressed all
security concerns on the detection end [11]. Despite signifi-
cant development [3,12], the key rates of most forms of MDI
protocols were still constrained by the absolute repeaterless
secret-key capacity [13–15]. Efforts have been made to break
this bound [16–19], one of which includes an alternative
variant of MDI quantum key distribution [18,19] called asyn-
chronous MDI quantum key distribution. This variant has the
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ability to asynchronously pair two successful clicks over an
extended pairing time, thereby establishing a two-photon Bell
state. As a result, the secret-key capacity is broken, leading to
a higher key rate and an increased distance. In addition, the
asynchronous MDI scheme offers the advantage of removing
the necessity for global phase tracking and phase locking. This
has been confirmed through experiments that also demon-
strated its superior rate and extended range [20–22].

Despite the fact that combined quantum key distribu-
tion with a one-time pad can ensure confidentiality against
eavesdropping, technologies safeguarding the remaining three
elements are more prevalent in today’s society [1]. Digital
signatures, which provide the integrity, authenticity, and non-
repudiation of data processing, are a suitable technique that
holds broad and promising application prospects in contem-
porary society [23–25]. However, widely used classical digital
signature schemes provide only computational security, so un-
conditionally secure classical protocols have been proposed,
trying to solve the problem [26–28]. However, they can pro-
vide information-theoretic security under only the following
two circumstances. One is the existence of an authenticated
broadcast channel and secure classical channels, which means
that more than two out of three participants are honest [29].
The other requires a trusted authority who creates and dis-
tributes keys to each participant, and this makes the protocol
vulnerable to targeted attacks against the trusted authority
or even to dishonesty or incompetence on the part of the
trusted authority [27,28]. Both of these two circumstances are
infeasible in the practical world.

Unlike classical protocols, quantum digital signatures
(QDSs) [30–33] are a kind of digital signature whose security
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relies on the secrecy and asymmetry of shared keys gener-
ated through quantum key generation protocols (KGPs) [34],
without further assumptions like an authenticated broadcast
channel or a trusted authority [26–28,30]. As a result, they
only require authenticated classical channels and insecure
quantum channels to provide information-theoretic security.
First proposed in 2001 [30], QDS faced some impractical
experimental requirements that hindered its implementation.
However, after approximately a decade of development, these
obstacles were successfully eliminated [31–33]. Efforts have
been undertaken to eliminate the reliance on secure quan-
tum channels [35,36], thereby triggering many achievements
both theoretically [37–48] and experimentally [49–57]. How-
ever, several limitations persist across all these schemes.
Protocols that employ orthogonal encoding necessitate extra
symmetrization steps, leading to the need for more se-
cure channels [36]. On the other hand, schemes that use
nonorthogonal encoding do not depend on additional KGP
channels. However, their signature rate is susceptible to the
misalignment error of the quantum channel [35,43,46]. More
importantly, these protocols can only sign one bit at a time,
which results in a low signature rate when signing multibit
documents. One-time universal hashing (OTUH) QDS repre-
sented an efficient change [2,58], which has made significant
advancement in multibit signatures from single-bit signatures.
Due to the application of universal hash functions, the sig-
nature length becomes insensitive to the document volume,
thus enhancing the signature rate significantly. This original
version is efficient, but it requires perfect keys with complete
secrecy. A recently proposed variant successfully resolved this
problem, which reduced the requirements on perfect keys by
encrypting the generator key of the hashing function [58].

In this work, we propose a protocol named asynchronous
MDI-QDS, which delves deeply into the potential of the
OTUH method. Our protocol is carried out with the use of
the asynchronous MDI method and the OTUH method. In the
asynchronous MDI method, two participants send pulses to
a measurement node to perform single-photon interference
(SPI). Then, utilizing time multiplexing, the asynchronous
two-photon interference strategy matches two successful SPI
events in different time bins that are phase-correlated to obtain
an asynchronous two-photon Bell state, and then the key rate
is enhanced to O(

√
η) scaling, where η is the total chan-

nel transmittance between the two participants. This leads
to a significant enhancement in the signature rates and an
extension of the signature distance. In the OTUH method,
the signature is generated by the hash function described in
Appendix A operating on the multibit documents. Compared
to single-bit QDS protocols, which sign only one bit at a time
and consume resources in a linear fashion with the document
volume increasing, the signature rate of our OTHU protocol
has a great enhancement. Moreover, the success probability
of attacks from the external increases linearly as the document
volume increases, which is discussed in detail in Appendix C.
Given the OTUH method, our protocol is unconditionally se-
cure, allowing the imperfection of the secret keys distributed.
This removes the necessity for privacy amplification.

Our approach ensures that the shared keys we utilize
are immune to detector side-channel attacks. This is accom-
plished by the incorporation of the MDI concept [10]. At the

heart of our protocol lies the implementation of the asyn-
chronous two-photon interference strategy, which leads to
a significant enhancement in the signature rates and an ex-
tension of the signature distance. According to the OTUH,
our protocol is robust to the document volume and we can
attain signature rates that are several orders of magnitude
higher without the need for perfect keys when the document
volume is large, compared to the MDI signature schemes
without OTUH [37]. Furthermore, when compared to the
twin-field scheme with single-photon interference referenced
in Ref. [58], our asynchronous MDI scheme holds an advan-
tage as it does not require global phase tracking and phase
locking. This implies that our protocol is not only easier to
implement but also stands as a more practical scheme for
future quantum networks. We analyze the formation process
of shared keys, and we demonstrate the variations of H ε

min
and H εcor

max with the signature distance by simulation. During
this demonstration, we clearly reveal the formation process of
these shared keys. This is based on the existing relationship
between these quantum entropies and the unknown informa-
tion to a potential attacker. By conducting simulations and
comparisons, we have been able to demonstrate the significant
performance of our approach, as well as clearly illustrating the
formation process of the signatures utilized in our protocol.

The structure of the article is as follows. In Sec. II, we
introduce the content of our protocol, including the process
of distribution and messaging. In Sec. III, we simulate and
analyze the formation process of the shared keys during the
distribution stage, and we demonstrate the composition of
the raw key. Then we compare the performance of our asyn-
chronous MDI-QDS protocol with the MDI-QDS described
in Ref. [37] to emphasize the excellence of our protocol. In
Sec. IV, the article is concluded.

II. PROTOCOL CONTENT

A. Distribution stage

Our protocol employs the asynchronous MDI-KGP
scheme for sharing keys among participants. In the distribu-
tion stage, we assume that in this three-party procedure, the
matters of Alice-Bob and Alice-Charlie are independent and
can be executed separately. The setup is shown in Fig. 1.

1. Preparation

Consider each time slot i ∈ {1, 2, . . . , N}. Alice and Bob
each prepare a weak laser pulse |eiθa(b)

√
ka(b)〉 indepen-

dently. Here, θa(b) is a phase value derived from 2πma(b)/M,
where ma(b) ∈ {0, 1, . . . , M − 1}, and ka(b) is an intensity
chosen from the set {μa(b), νa(b), oa(b)} with the probabili-
ties pμa(b) , pνa(b) and poa(b) = 1 − pμa(b) − pνa(b) . The intensities
within this set correspond to the signal, decoy, and vacuum
state, in that order. Following this preparation phase, Alice and
Bob transmit their pulses to a measurement node, referred to
as Eve, via insecure channels. Although a similar process is
also conducted between Alice and Charlie, we focus solely on
the interaction between Alice and Bob in our discussion for
simplicity.
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FIG. 1. Schematic of the setup of the distribution stage of the
proposed QDS protocol. Everyone generates weak coherent pulses
with their own independent ultrastable lasers without mutual phase
tracking. After encoding, they will send the pluses to Eve, who will
perform the interference measurement and records successful clicks.
The encoder consists of three intensity modulators, two phase mod-
ulators, an electrically driven polarization controller, and a variable
optical attenuator. IM represents intensity modulator, PM represents
phase modulator, EPC represents electrically driven polarization con-
troller, and VOM represents variable optical attenuator. There is an
optical switch in the node of Eve that can switch and select between
different optical paths.

2. Measurement and click filtering

For each bin, Eve conducts an interference measurement
on the received pulses and logs the successful click events.
Subsequently, she broadcasts the successful clicks along with
the corresponding detector that registered the click. Following
this, Alice and Bob publicly declare the events where they
applied the decoy intensity νa(b) to the transmitted pulse. A
click filtering process is then carried out, resulting in the dis-
carding of clicks (μa|νb) and (νa|μb). All other clicks, apart
from those discarded, are retained.

3. Coincidence pairing

Our protocol does not pair pulses sent simultaneously as
coincidences. Instead, we adopt a strategy that avoids the
need for global phase tracking and phase locking. For the
clicks we retain, we pair them with the nearest clicks within
a time interval Tc to form successful coincidences. If we fail
to find a nearest click for a given click, we discard it. Upon
successfully pairing coincidences, Alice and Bob calculate the
total intensityktot

a(b) of the two time bins they used. They also
compute the phase difference between the earlier time bin (e)
and the later time bin (l), denoted as φa(b) = θ l

a(b) − θ e
a(b). We

denote the set of coincidences [ktot
a , ktot

b ] as S[ktot
a ,ktot

b ].

4. Sifting

After computing their results, Alice and Bob announce
ktot

a(b) and φa(b). They discard any results where the total inten-
sity satisfies ktot

a(b) � μa(b) + νa(b). For the Z-basis, Alice (Bob)
extracts a bit 0 (1) if she (he) sends μa(b) in the early time bin
and oa(b) in the late time bin. Otherwise, Alice (Bob) extracts
an opposite bit.

For the X-basis, we use coincidences [2νa, 2νb] to extract
bits. Alice and Bob first calculate φab = φa − φb, which rep-
resents the phase difference between the phase difference of
Alice and Bob in the early time and the later time. They then
calculate φ = φab mod 2π . If the result is 0 or π , Alice and
Bob will extract 0 in the X-basis. If the result is 0 and both
detectors click, Bob will flip the bit. If the result is π and only
a detector clicks and the same detector clicks twice, Bob will
flip too. If the result is other values except 0 and π , we will
discard this coincidence.

5. Parameter estimation

Alice and Bob can then obtain their own raw key from the
Z-basis, which has the length of nz. The parameters sz

0, sz
11, φ

z
11

will also be computed and retained. These parameters repre-
sent the length of the bits derived from the vacuum events,
single-photon events, and the phase-error rate of the single-
photon events, respectively. The error rate of the bits in the
Z-basis Ez will also be computed. The details of the estima-
tion could be found in Appendix B. All these are useful in
postprocessing, which will help to get the length of shared
keys and the signature.

6. Error correction

After obtaining the raw key, Alice and Bob will distill it
using error correction with a correction factor of εcor [59,60].
The length of the keys will remain nz, and the unknown
information to a potential attacker will be represented as H
[58]. During this stage, there is no need to perform privacy
amplification. Subsequently, Alice randomly disturbs the or-
der of the key and announces the new order to Bob through an
authenticated channel. This will allow them both to obtain the
final key. These keys will then be divided into several strings
of n-bits, which will play an important role in the messaging
stage.

The entire distribution process will also involve both Alice
and Charlie. For the sake of simplicity, we did not previously
mention that the keys of a certain length are also distributed
between them. Once these keys have been distributed, they
will be divided into several segments, each of which will be
used for specific operations in the subsequent process.

B. Messaging stage

In this section, we demonstrate the key aspect of the pro-
tocol, which is to perfectly correlate the bits among three
parties, as described in Ref. [58]. This requires an asymmetric
key relationship among the three parties. We use one-time al-
most XOR universal2 (AXU) hashing, specifically, the Linear
Feedback Shift Register (LFSR) -based Toeplitz hashing, to
generate the protocol’s signature. The strings of length nz on
the sides of Alice, Bob, and Charlie have already been divided
into segments of length n. These segments are denoted as
{Xa, Xb, Xc,Ya,Yb,Yc, Za, Zb, Zc}, each of which has a length
of n. The subscripts {a, b, c} indicate that the string belongs to
Alice, Bob, or Charlie, respectively. These strings satisfy the
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FIG. 2. Schematic of the implementation of the messaging stage of the proposed QDS protocol. It is carried out between three participants,
which communicate with each other through authenticated classical channels. First, Alice uses the strings {Ya, pa} to generate an LFSR-based
Toeplitz hashing matrix Hnm, and then uses the hashing function to encrypt the document, getting the digest. Then she uses Za and the digest to
obtain the signature through one-time pad (OTP), and she encrypts pa with Xa, getting p. After this she sends {Doc, Sig, p} to Bob. On realizing
the information from Alice, Bob will communicate with Charlie and he will use the LFSR-based Toeplitz hashing matrix Hnm generated from
KXb and pb to encrypt the document to get the actual digest. Meanwhile, he uses KZb and the signature to get the excepted digest. Comparing
the two digests, he will decide whether to accept the signature and inform the result to Charlie. If Bob accepts the signature, he will inform the
result to Charlie. Then, Charlie will perform a similar verification process to that of Bob to verify the validity of the signature.

equations

Xa = Xb ⊕ Xc,

Ya = Yb ⊕ Yc,

Za = Zb ⊕ Zc.

We will use these strings to execute the protocol between the
three parties. And the schematic of the messaging stage is
shown in Fig. 2.

1. Signing of Alice

Alice holds a set of n-bit long strings {Xa,Ya, Za}. First,
she uses a quantum random number generator to produce an
n-bit long random string, which is called pa. This string is
used to create a monic irreducible polynomial p(x) of order
n in GF(2). Second, Alice uses the bit string Ya and the irre-
ducible polynomial (quantum random number pa) to generate
a random linear feedback shift register-based (LFSR-based)
Toeplitz matrix Hnm, which has n rows and m columns. She
applies this matrix to the m-bit document Doc, resulting in
an n-bit hash value Dig = Hnm · Doc. Third, Alice encrypts
Dig using Za to obtain the final signature Sig = Dig ⊕ Za.
In addition, Alice encrypts pa by Xa to get P = pa ⊕ Xa.
Fourth, Alice transmits the set {Sig,P, Doc} to Bob through
an authenticated classical channel.

2. Verification of Bob

Upon receiving the signal from Alice, Bob transmits
{Sig,P, Doc} and {Xb,Yb, Zb} to Charlie. After receiv-
ing the signal from Bob, Charlie transfers {Xc,Yc, Zc}
to Bob. At this point, Bob has the set of strings
{Sig,P, Doc, Xb,Yb, Zb, Xc,Yc, Zc}, which will be used to per-
form the verification stage. All data are transmitted through
an authenticated channel. First, Bob generates the new strings
{KXb = Xb ⊕ Xc, KYb = Yb ⊕ Yc, KZb = Zb ⊕ Zc} via XOR op-
eration. Second, using KXb and KZb , Bob obtains pb and the
expected digest via XOR decryption. Then, with KYb , Bob
uses it and pb to form an LFSR-based Toeplitz matrix, and
obtains the actual digest via a hash operation with the matrix.
Third, Bob accepts the signature if the actual digest equals
the expected digest, and then informs Charlie of this result. If
the two digests are not identical, he will reject the signature
and announce the protocol’s abortion. The signature will be
established if Bob accepts it, and the establishment of the
signature does not require consideration of Charlie, who plays
the role of a notary.

3. Verification of Charlie

If Charlie receives a successful signal from Bob, he
will perform the verification stage just like Bob. At this
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point, Charlie has the same set of strings as Bob, which
is {Sig,P, Doc, Xb,Yb, Zb, Xc,Yc, Zc}. First, Charlie generates
the new strings {KXc = Xb ⊕ Xc, KYc = Yb ⊕ Yc, KZc = Zb ⊕
Zc} via the XOR operation. Second, He exploits KXc and KZc

to obtain the expected digest and string pc via XOR decryp-
tion. Then, Using KYc , he obtains the actual digest via a hash
operation like Bob. Third, if the two digests are identical, he
will accept the protocol; otherwise, he will reject it.

Under this framework, various AXU hash functions could
be employed to play a major role. In our protocol, we specif-
ically exploit the LFSR-based Toeplitz hashing, which is a
fantastic function that can map a document of any length to
a fixed length.

From the description above, we know that in order to
sign a message of m-bits length, Alice should distribute six
bit strings Xb,Yb, Zc to Bob, and Xa,Yc, Zc to Charlie. The
subscript indicates the participant performing the KGP with
Alice, where b represents Bob and c represents Charlie. We set
the fixed length of strings as n. With each channel generating
three strings, and the length nZ of the raw key distributed in
each channel, we could calculate the signature rate [58]:

Rsig = nz

3n
. (1)

III. SIMULATION AND DISCUSSION

During the distribution stage, we have performed the pa-
rameter estimation and error correction. After the distribution
stage, the unknown information to a possible attacker H could
be expressed with the smooth min-entropy and the smooth
max-entropy as

H � H ε
min − H εcor

max, (2)

in which the H ε
min and the H εcor

max could be separately expressed
as

H ε
min � sz

0 + sz
11

[
1 − H

(
φz

11

)] − 2log2

(
2

ε′ε̂

)
, (3)

H εcor
max = nz f H (Ez ) + log2

(
2

εcor

)
, (4)

where f is the error correction efficiency, sz
0 is the number of

vacuum events, sz
11 is the number of single-photon pairs event,

φz
11 represents the number of the phase error rate of single-

photon pairs, and Ez is the bit error rate of Z-basis during the
distribution stage. The function is the binary Shannon entropy
function, which could be expressed as

H (x) = −xlog2x − (1 − x)log2(1 − x). (5)

Using these two entropies, we could get the length of H:

H � sz
0 + sz

11

[
1 − H

(
φz

11

)] − nz f H (Ez )

− 2log2

(
2

ε′ε̂

)
− log2

(
2

εcor

)
, (6)

of which the details will be introduced in Appendix D, which
involves the details of these smooth entropies.

To delve deeper into the dimensionality of H, we sepa-
rately examined the two key components, H ε

min and H εcor
max. This

included an analysis of the variations in their numerical values

TABLE I. This table contains the parameters of the simulation
we set, in which ηd and pd represent the detection efficiency and
the dark count rate of the detectors we use. f is the error correction
efficiency. ed represents the misalignment error rate, and α f is the
attenuation coefficient of the fiber. The parameter ε is the value of
the variables ε′, ε̂, and εcor. F is the system clock frequency.

ηd pd f α f ed ε F

80% 2.5 × 10−10 1.1 0.16 0.04 1 × 10−10 1 GHz

and the changes in the percentage they represent in the raw key
nz. In this context, we set the N to 1012, which represents the
total number of transmitted pulse pairs. The parameters of the
simulation we set could be found in Table I.

By simulating the implementation of the distribution stage
with these parameters, we are able to observe the variation
of the absolute values of the smooth min- and max-entropies,
H ε

min and H εcor
max with respect to distance l . H ε

min represents the
maximum length of a bit string that can be computed from
the raw key before error correction, which is ε-closing to a
perfectly uniform string. This string is independent of the side
information eavesdropped by Eve. H εcor

max represents the amount
of information consumed in error correction.

The shaded area between two curves represents the un-
known information H. As can be seen in Fig. 3, with the
increase in the distance, the absolute value of H ε

min and H εcor
max

decreased by a similar slope. However, since this is a semilog-
arithmic plot with the y-axis on a logarithmic scale, H was
decreasing exponentially. Towards the end of Fig. 3, the length
of H experienced a sharp decrease, corresponding to the drop-
off of the rates of the KGP process. As the attenuation of
signals increases to a significant degree, the total amount of
information that can be transmitted decreases substantially.
Concurrently, the influence of noise becomes increasingly
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FIG. 3. The schematic of the variation of the smooth entropies
H ε

min and H εcor
max with distance l and the colored area as the legend

represents H, the portion ultimately unknown to a possible attacker.
Obtained by simulating the distribution stage with the parameters in
Table I.
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min and H εcor
max with distance l . Obtained by simulat-

ing the distribution stage with the parameters in Table I. The colored
area as the legend refers to the percentage of H.

significant. This results in the observed drop-off. This process
could be seen more intuitively in Fig. 4.

In Fig. 4, we illustrate the variation of the percentage of
the smooth min-entropy H ε

min and the smooth max-entropy
H εcor

max occupied in the raw key with respect to distance l . The
percentage of the smooth min-entropy H ε

min shows a slight
decrease, but overall, it remains almost unchanged before
410 km, and the percentage of the smooth max-entropy H εcor

max
shows a very slight increase, with almost no change before
410 km as well. After 410 km the percentage of H ε

min under-
goes a sharp decrease. This is primarily due to the reduced
number of pulses that reach this distance, coupled with the in-
creasingly pronounced impact of noise. The combined sum of
these two entropies was notably less than 1. This is attributed
to the constant need to discard a certain amount of information
before error correction, specifically (1 − H ε

min), to maintain
security against potential external threats.

Given the relationship between entropy and information
[61], we apply this principle within quantum systems as well
as hybrid classical-quantum systems to generate keys and
estimate signature length, thereby ensuring security. This is
precisely where QDS protocols distinguish themselves from
classical ones, as well as in the characteristic of not requiring
assumptions of an authenticated broadcast channel or a trusted
authority [26–28].

To showcase the superior performance of our protocol,
we conducted simulations comparing our protocol with the
MDI-QDS [37]. For reasonable comparison, we use the best
known MDI-KGP method to distribute quantum states used
for MDI-QDS [37], i.e., a four-intensity decoy-state proto-
col with the double-scanning method [62]. These simulations
were performed under varying data sizes N of 1012, 1013, and
1014, with the document message size capped at 103 bits. The
results of this simulation could be seen in Fig. 5.

In this simulation, it is demonstrated that the maximum
signature distance of the proposed protocol is extended
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FIG. 5. Comparison of signature rates of our proposed asyn-
chronous MDI-QDS protocol and the MDI-QDS described in
Ref. [37] under different data size N of 1012, 1013, and 1014. The
message is assumed to be 103 bits. Security bound of the signatures is
10−10. Other parameters of this simulation are consistent with those
in Table I.

by approximately two times compared to MDI-QDS. The
substantial improvement observed can be attributed to the
implementation of the asynchronous two-photon interference
strategy. During the distribution stage, we asynchronously
pair two successful clicks within a long pairing time.
These asynchronous pairs are then used to generate the
key for messaging and signature. This approach aids in
breaking through the secret-key capacity barrier without the
need for global phase locking [21] during the distribution
stage. As a result, the distribution distance of the distri-
bution stage is approximately doubled compared to the
MDI-QDS.

As depicted in Fig. 5, when compared to the MDI-QDS
[37] that does not incorporate OTUH, the signature rates of
our proposed asynchronous MDI-QDS protocol are enhanced
by six to seven orders of magnitude. The observed enhance-
ment is derived from the advantages of our OTUH scheme, of
which the details concerning the secure information in the raw
key, denoted as H, have been thoroughly discussed in Sec. III.
Our OTUH scheme is capable of projecting a document con-
taining a large volume of information to an adjustable hash
value. Consequently, our protocol is not sensitive to the size
of the document and can perform more effectively when han-
dling documents of larger sizes.

IV. CONCLUSION

On the whole, we propose an asynchronous MDI-QDS
protocol with OTUH, which could achieve a higher signa-
ture rate and longer signature distance than other schemes.
In our paper, we delve into the composition of the raw key
and explore the relationship between its various components,
entropy, and information. This analysis provides a compre-
hensive understanding of the formation process of the shared
keys in our QDS protocol and offers profound insights into
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the OTUH-QDS process. By simulating and comparing our
proposed protocol with the MDI-QDS described in [37], it
turns out that our protocol has significant improvements in
terms of signature rates and distance due to the applications
of OTUH and the asynchronous two-photon interference strat-
egy. By employing the asynchronous two-photon interference
strategy [18], the maximum signature distance can be signif-
icantly extended, potentially up to twice the distance without
the asynchronous two-photon interference strategy, because
of the reduced channel loss. With OTUH employed, our pro-
tocol has strong robustness against the document volume.
This makes our protocol have a significant performance when
handling extensive documents, especially several orders of
magnitude higher compared to the MDI-QDS without OTUH.
Furthermore, our protocol does not need global phase track-
ing and phase locking compared to the twin-field scheme
with single-photon interference referenced in Ref. [58], thus
making our protocol more practical and easier to implement.
The feasibility of the asynchronous distribution scheme has
been experimentally qualified [21], which means that the re-
alization of our proposed protocol is easier and not far from
reality.
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APPENDIX A: LFSR-BASED TOEPLITZ HASH FUNCTION

An (m, n)-family H of hash functions is a collection of
functions that map the set of binary strings of length m into
the set of binary strings of length n [63]. The LFSR-based
Toeplitz hash function can be expressed as

hp,s(M ) = HnmM, (A1)

which can map the binary string M of length m to a bi-
nary string hp,s(M ) of length n, and the LFSR-based Toeplitz
matrix Hnm is a matrix of size n by m constructed from an
irreducible polynomial p(x) over GF(2) of degree n and an
initial state s.

The m-bits message M can be represented as
(M0, M1, . . . , Mm−1)T ; the initial state s can be denoted
as (Sn, Sn−1, . . . , S1)T , and p(x) is an irreducible polynomial
over GF(2) of degree n, which can be expressed as
p(x) = xn + pn−1xn−1 + · · · + p1x + p0. This polynomial
is obviously characterized by its coefficients of the
order of x from 0 to n − 1, so we could rewrite it as
p = (pn−1, pn−2, . . . , p1, p0)T . The matrix Hnm could be
constructed from s and p as follows [58,63]:

First, we need to define an n-by-n matrix W which is solely
determined by the p,

W =

⎛
⎜⎜⎜⎜⎝

pn−1 pn−2 · · · p1 p0

1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0

⎞
⎟⎟⎟⎟⎠. (A2)

From the definition of the matrix W , we could find that
p(x) is the characteristic polynomial of the matrix W . Then
according to Hamilton-Cayley theorem, p(W ) = 0 [64].

Applying this matrix W to the vector s, we could get s1 =
(Sn+1, Sn, . . . , S2)T , where Sn+1 = p · s. We could see that the
function of the matrix W is to shift down each element of the
vector s and prepend a new element p · s.

Repeating this operation m − 1 times and denoting the
vector s as s0, we can get a set of vectors {s0, s1, . . . , sm−1}
satisfying

si+1 = W · si, (A3)

Since s0 = s, we could express each element of this set
with W and s as

si = W i · s (0 � i � m − 1). (A4)

So we could get an n-by-m matrix (s0, s1, . . . , sm−1), which
has the ability to map an m-bits vector to an n-bits vector. This
matrix is the LFSR-based Toeplitz matrix Hnm we want,

Hnm = (s0, s1, . . . , sm−1). (A5)

We we can rewrite the function as

hp,s(M ) = Hnm · M

= (s0, s1, . . . , sm−1) ·

⎛
⎜⎜⎝

M0

M1
...

Mm−1

⎞
⎟⎟⎠

= MW (W ) · s, (A6)

in which we have

MW (M ) = Mm−1 · W m−1 + Mm−2 · W m−2 + · · ·
+ M1 · W + M0. (A7)

So, if p(x)|MW (x), MW (W ) will be equal to 0, and then
hp,s(M ) = 0.

APPENDIX B: CALCULATION OF PARAMETERS

According to Eq. (1), to calculate the signature rate Rsig,
we need to calculate the length of raw key nz and the length of
the signature n after the distribution stage.

For the purpose of calculating these two parameters, there
exist some parameters we need to estimate during the distribu-
tion stage, which includes the lower bound of vacuum events
and single-photon pairs in the Z basis sz

0 and sz
11; the upper

bound of the phase error rate φ
z
11; the length of the raw key nz;

and the bit error rate in the Z basis Ez.
The overline and the underline represent the Chernoff

bounds of the variables, which could be introduced as below
[21,65]:

Let x represent the observed value and x∗ represent the
expected value, and we have the upper and lower bounds of
the observed value [21,65]:

x = OU (x∗) = x∗ + β

2
+

√
2βx∗ + β2

4
(B1)

and

x = OL(x∗) = x∗ −
√

2βx∗, (B2)
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and the upper and lower bounds of the expected value:

x∗ = x + β +
√

2βx + β2 (B3)

and

x∗ = max

{
x − β

2
−

√
2βx + β2

4
, 0

}
, (B4)

where β = ln ε−1.
Furthermore, the random sampling theorem will also be

applied in our calculation, which is given as below [21,65]:

χ � λ + γU (n, k, λ, ε), (B5)

where

γU (n, k, λ, ε) =
(1−2λ)AG

n+k +
√

A2G2

(n+k)2 + 4λ(1 − λ)G

2 + 2 A2G
(n+k)2

, (B6)

in which

A = max{n, k}, (B7)

and

G = n + k

nk
ln

(
n + k

2πnkλ(1 − λ)ε2

)
. (B8)

When Alice and Bob send intensities ka and kb with phase
difference θ , the gain corresponding to only detector L and R
click can be represented as below [21]:

qθ,L
(ka|kb) = yR

(ka|kb)e
ηR

d

√
ηakaηbkb cos θ

× (
1 − yL

(ka|kb)e
−ηL

d

√
ηakaηbkb cos θ

)
, (B9)

qθ,R
(ka|kb) = yL

(ka|kb)e
−ηL

d

√
ηakaηbkb cos θ

× (
1 − yR

(ka|kb)e
ηR

d

√
ηakaηbkb cos θ

)
, (B10)

in which ηa(b) = 10− αla(b)
10 , and

yL(R)
(ka|kb) = (

1 − pL(R)
d

) · e− η
L(R)
d (ηaka+ηbkb )

2 , (B11)

where η
L(R)
d and pL(R)

d represent the detection efficiency and
the dark count rate of the detector DL(R), respectively. The
overall gain q(ka|kb) can be expressed as

q(ka|kb) = 1

2π

∫ 2π

0

(
qθ,L

(ka|kb) + qθ,R
(ka|kb)

)
dθ

= yL
(ka|kb)I0

(
ηL

d

√
ηakaηbkb

) + yR
(ka|kb)I0

(
ηR

d

√
ηakaηbkb

)
− 2yL

(ka|kb)y
R
(ka|kb) · I0[(ηL − ηR)

√
ηakaηbkb], (B12)

where I0(x) refers to the zero-order modified Bessel function
of the first kind.

Denote the probability of having a click event as qtot. Click
filtering applied, qtot could be expressed as

qtot =
∑
ka,kb

pka pkbq(ka|kb) − pμa pνbq(μa|νb) − pνa pμbq(νa|μb).

(B13)

The probability of at least one click event occurring follow-
ing a given time bin with a click event within the time interval
Tc could be expressed as [21]

qTc = 1 − (1 − qtot )
NTc , (B14)

where NTc = FTc is the number of time bins within the time
interval Tc, and F is the system clock frequency, which can be
found in Table I. Therefore, the total number of valid success-
ful pairing results and the average of the pairing interval could
be obtained:

ntot = Nqtot

1 + 1/qTc

, (B15)

Tmean = 1 − NTc qtot
(
1
/

qTc − 1
)

Fqtot
. (B16)

Having calculated these parameters above, n[ktot
a ,ktot

a ], the
total number of set S[ktot

a ,ktot
a ] could be obtained [21]. But this

formula is inapplicable to the set S[2νa,2νb]. The total number
of set S[ktot

a ,ktot
a ](ktot

a(b) �= 2νa(b) ) and S[2νa,2νb] could be expressed,
respectively, as follows:

n[ktot
a ,ktot

a ]

= ntot ×
∑

ke
a+kl

a=ktot
a

∑
ke

b+kl
b=ktot

b

pke
a
pke

b
q(ke

a|ke
b )

qtot

pkl
a
pkl

b
q(kl

a|kl
b)

qtot
,

(B17)

n[2νa,2νb] = ntot

Mπ
·
∫ 2π

0

(
pνa pνbq

θ
(νa|νb)

qtot

pνa pνbq
θ
(νa|νb)

qtot

)
dθ.

(B18)

Furthermore, the total number of errors in the Z basis and the
X basis can be written as follows:

m[μa,μb] = ntot ·
( pμe

a
pμe

b
q(μe

a|μe
b) pol

a
pol

b
q(ol

a|ol
b)

q2
tot

+
poe

a
poe

b
q(oe

a|oe
b) pμl

a
pμl

b
q(μl

a|μl
b)

q2
tot

)
, (B19)

m[2νa,2νb] = ntot

Mπ
·
∫ 2π

0

{
(1 − ed ) ×

[
p2

νa
p2

νb
qθ,L

(νa|νb)q
θ+δ,R
(νa|νb)

q2
tot

+ p2
νa

p2
νb

qθ,R
(νa|νb)q

θ+δ,L
(νa|νb)

q2
tot

]

+ed ·
[

p2
νa

p2
νb

qθ,L
(νa|νb)q

θ+δ,L
(νa|νb)

q2
tot

× p2
νa

p2
νb

qθ,R
(νa|νb)q

θ+δ,R
(νa|νb)

q2
tot

]}
dθ, (B20)

where ed represents the misalignment error rate, which can be
found in Table I. Then we could estimate the parameters we
want.

(i) sz
0: sz

0 is the lower bound of the observed value of the
total number of vacuum components in the Z basis, which
means that Alice sends a vacuum state in the Z basis. The
lower bound of the expected value of the total number of
vacuum components in the Z basis, sz∗

0 , could be expressed
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as [21]

sz∗
0 = e−μa p[μa,μb]

p[oa,μb]
n∗

[oa,μb], (B21)

where

p[ktot
a ,ktot

b ] =
∑

ke
a+kl

a=ktot
a

∑
ke

b+kl
b=ktot

b

pke
a
pke

b

ps

pkl
a
pkl

b

ps
(B22)

and

ps = 1 − pμa pνb − pνa pμb . (B23)

According to Eqs. (B21), (B22), (B23), and (B2), the lower
bound of the observed value of the total number of vacuum
components in the Z basis sz

0 = OL(sz∗
0 ) could be obtained.

(ii) sz
11: sz

11 is the lower bound of the observed value of the
number of single-photon pairs in the Z basis, which means
that both Alice and Bob send a single-photon state in the Z
basis. The lower bound of the expected value of the number
of single-photon pairs in the Z basis, sz∗

11, could be expressed
as [21]

sz∗
11 � e−μa−μb p[μa,μb]

νaνb(μ′ − ν ′)

{
μaμbμ

′
(

eνa+νb
n∗

[νa,νb]

p[νa,νb]

−eνb
n∗

[oa,νb]

p[oa,νb]
− eνa

n∗
[νa,ob]

p[νa,ob]
+ n∗

[oa,ob]

p[oa,ob]

)

−νaνbν
′
(

eμa+μb
n∗

[μa,μb]

p[μa,μb]

−eμb
n∗

[oa,μb]

p[oa,μb]
− eμa

n∗
[μa,ob]

p[μa,ob]
+ n∗

[oa,ob]

p[oa,ob]

)}
, (B24)

where

μ′ = μa, ν
′ = νa if

μa

μb
� νa

νb
,

μ′ = μb, ν
′ = νb if

μa

μb
>

νa

νb
. (B25)

According to Eqs. (B24), (B25), (B22), (B23), and (B2),
the lower bound of the observed value of the total number
of single-photon pairs in the Z basis sz

11 = OL(sz∗
11) could be

obtained.
(iii) nz and Ez: nz and Ez each represents the length of the

raw key without error correction and the bit error rate in the Z
basis, which could be easily calculated through [21]

nz = n[μa,μb] (B26)

and

Ez = m[μa,μb]

nz
, (B27)

where n[μa,μb] represents the total number of bits in the Z basis,
and m[μa,μb] represents the number of errors in the Z basis.

(iv) φ
z
11: φ

z
11 is the upper bound of the phase error rate in the

Z basis, which could be estimated from ex
11, the upper bound

of the bit error rate of single-photon pair in the X basis. It
could be expressed as [21]

ex
11 = t x

11

sx
11

, (B28)

in which t x
11 represents the upper bound of the observed value

of the number of single-photon pair errors of the X basis, and
sx

11 represents the lower bound of the observed value of the
number of single-photon pairs in the X basis.

The lower bound of the expected value of the number of
single-photon pairs in the X basis could be expressed as

sx∗
11 � e−2νa−2νb4p[2νa,2νb]

μaμb(μ′ − ν ′)

{
μaμbμ

′
(

eνa+νb
n∗

[νa,νb]

p[νa,νb]

−eνb
n∗

[oa,νb]

p[oa,νb]
− eνa

n∗
[νa,ob]

p[νa,ob]
+ n∗

[oa,ob]

p[oa,ob]

)

−νaνbν
′
(

eμa+μb
n∗

[μa,μb]

p[μa,μb]

−eμb
n∗

[oa,μb]

p[oa,μb]
− eμa

n∗
[μa,ob]

p[μa,ob]
+ n∗

[oa,ob]

p[oa,ob]

)}
. (B29)

The upper bound of the number of single-photon pair errors
of the X basis is

t x
11 � m[2νa,2νb] − m0

[2νa,2νb], (B30)

where

m0∗
[2νa,2νb] = e−2νa

p[2νa,2νb]

2p[oa, 2νb]
n∗

[oa,2νb] + e−2νb
p[2νa,2νb]

2p[2νa, ob]

× n∗
[2νa,ob] − e−2νa−2νb

p[2νa,2νb]

2p[oa, ob]
n∗

[oa,ob], (B31)

which represents the expected value of the lower bound of the
error bit number in the X basis given that at least one of Alice
and Bob sends a vacuum component.

Then we could get the upper bound of the bit error rate
of single-photon pair in the X basis from Eqs. (B28)–(B31)
and (B2).

Using the random sampling without a replacement theo-
rem, with a failure probability εe, we have the upper bound of
a single-photon pair phase error rate in the Z basis [21]:

φ
z
11 � ex

11 + γU
(
sz

11, sx
11, ex

11, εe
)
. (B32)

(v) n: Setting the length of signature n, the minimum length
of n that satisfies the security requirements, that is to say,
satisfies Eq. (B34), could be estimated with the calculated
values of the parameters above by using the random sampling
without replacement [58,65]. The parameters in Eq. (B34),
szn

0 , the lower bound of vacuum events in an n-bit a selected
key group, szn

11, the lower bound of single-photon pairs events
in the n-bit string, and φzn

11
, the upper bound of the phase error

rate of single-photon pairs in the n-bit string all need to satisfy
[58]

szn
0 � n

[
sz

0

/
nz − γU

(
n, nz − n, sz

0

/
nz, ε

)]
,

szn
11 � n

[
sz

11

/
nz − γU

(
n, nz − n, sz

11

/
nz, ε

)]
,

φ
zn
11 � φ

z
11 + γU

(
szn

11, sz
zz − szn

11, φ
z
11, ε

)
. (B33)

Then we have

Hn � szn
0 + szn

11

[
1 − H

(
φ

zn
11

)] − λEC, (B34)

which represents the total unknown information of the n-bit
string.
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APPENDIX C: SECURITY ANALYSIS

To disturb the authentication process, the attacker should
try to make a difference in the results of the verification of Bob
and Charlie [2]. Due to the existence of the leakage of infor-
mation during the distribution stage, we divide this analysis
into two parts. The first one takes the external attacker into
account and the second one focuses on the QDS participants,
mainly taking the internal attacker into account.

1. Attack from external attackers

Unlike quantum key distribution that generates keys with
perfect secrecy, in our protocol the keys are imperfectly secret.
Any possible attackers may obtain partial information on the
keys [58]. For the convenience of describing, we set the m-
bits document M, then we could obtain that Sig = h(M ) ⊕ r,
in which the function h represents the hash function and the
string r represents the Za in the description section. We could
suppose the existence of an external attacker Eve, who has the
ability to intercept and capture strings {Sig, M}, tamper with
it, and send it to the recipient, who will examine the signal he
received before accepting it.

Here we consider three types of attacks. The first one is to
tamper the message randomly and relies entirely on fortune.
The second one is to guess only pa. The third one is to guess
the keys from the captured signature.

a. Tampering randomly

We imagine a classical information X of n-bits, and the
attacker has access to a quantum system E whose state ρx

E
depends on X . The attacker Eve can use E to guess the string
X using an optimal strategy. We define Hn = Hmin(X |E )ρ as
the min-entropy of X and E , which can be estimated from
the distribution stage [58]. According to the definition of min-
entropy [61], we could get the probability of Eve correctly
guessing X :

Pguess(X |E ) = 2−Hmin(X |E )ρ = 2−Hn , (C1)

and the Hn could be estimated from

Hn � szn
0 + szn

11

[
1 − H

(
φ

zn
11

)] − λEC, (C2)

where f is the error correction efficiency, szn
0 is the lower

bound of vacuum events in the n-bit string, szn
11 is the lower

bound of single-photon pair events in the n-bit string, and
φzn

11
represents the upper bound of the phase error rate of

single-photon pairs in the n-bit string; λEC = n f H (Ez ) is the
information consumed in the error correction stage of this
string. All these parameters could be estimated from the dis-
tribution stage, which is introduced in Appendix B.

After capturing {M, Sig}, what Eve should do is to tamper
a new signal {M ′, Sig′} and send it to the recipient, which
will check that the signal satisfies Sig′ = h(M ′) ⊕ r before
accepting it. If the recipient accepts the {Sig′, M ′}, this attack
will be deemed successful. The core point of the tamper is to
make the Sig′ and M ′ meet Sig′ = h(M ′) ⊕ r, therefore what
the specific value of Sig′ or M ′ is really does not matter so
much. So, we can fix one of them and guess the other, and then
the unknown information needing to be guessed is reduced to
n bits. So, for the first type of attack, Hn is equal to n. The

success probability of this attack is

P1 = 2−n. (C3)

b. Guessing keys

From the discussion above, we could know that the essence
of attack is to guess the encryption method, in other words, the
hash function in our method. The LFSR-based Toeplitz hash
function we use can be expressed as

h(M ) = Hnm · M. (C4)

The crux of the function is the matrix Hnm, which is generated
using Ya and pa in the messaging stage. From Appendix A,
we could know that the attacker needs only to know pa, so
that Eve can easily generate a message m of m-bits which
satisfies h(m) = 0, and the only requirement m that needs to
meet is pa(x)|m(x), in which pa(x) and m(x) are polynomials
generated from pa and m. We could get the success probability
of this kind of attack [58],

P2 = m · 21−Hn = εLFSR. (C5)

We can obviously find that P2 = εLFSR � P1 in most
occasions.

c. Recovering keys from the signature

This type of attack means that the attacker will try to
recover the keys from the signature captured. To perform this
kind of attack, the attacker needs to guess Za and then perform
the recovering algorithm. This will obviously lead to a smaller
success probability compared to εLFSR [58].

2. Attack from internal attackers

In this section we will put our attention on the QDS par-
ticipants, considering the attackers from the internal, Alice
or Bob. We do not consider Charlie as the attacker because
he plays the role of notary. We divide this section into three
sections, each considering one type of attack or error.

a. Robustness

This part will mainly consider the failure probability of
the protocol when there are no attackers from the inside and
outside. In other words, the three parties—Alice, Bob, and
Charlie—are all truthful. Therefore, the failure only occurs
when Alice and Bob or Charlie share different keys after
distribution stage, which will happen if there are some er-
rors in the process of error correction or classical message
transmission. We denoted this probability εrob = 2εcor + 2ε′,
in which εcor and ε′ represent the error probability of error
correction and classical message transmission, respectively.

b. Repudiation

This kind of attack means that Alice wants to repudiate
the established signature which was accepted by Bob by mak-
ing it rejected by Charlie, the notary. To make it accepted
by Bob, there must be no error in distribution stage, so the
only scenario in which repudiation succeeds is when there are
errors existing in the process of the key exchange step. So the
success probability can be expressed as εrep = 2ε′.
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c. Forgery

In this attack, Bob will play the role of the attacker who
wants to tamper with the message sent from Alice and send
it to Charlie. Comparing this attack with external attacks, we
could find that this attack is equal to the external attack where
Bob plays the role of an external attacker. So we could get the
success probability [58]

εfor = m · 21−Hn . (C6)

From the discussion above, we see that the secu-
rity bound of the scheme could be expressed as ε =
max{εrob, εrep, εfor}.Above all, according to Eqs. (C6) and
(C2), the security bound ε increases linearly as the document
volume m increases, but decreases exponentially as the un-
known information of the potential attacker Hn increases.

APPENDIX D: SMOOTH MIN- AND MAX-ENTROPIES

The concept smooth min- and max-entropies is derived
from the concept of min- and max-entropies, which is defined
as below [61]:

Definition D 1. Min-/Max-entropy: Let ρ = ρAB be a bi-
partite density operator. The min-entropy of A conditioned on
B is defined by

Hmin(A|B) := −inf
σB

D∞(ρAB||idA ⊗ σB), (D1)

where the infimum ranges over all normalized density opera-
tors σB on subsystem B and where

D∞(τ ||τ ′) := inf{λ ∈ R : τ � 2λτ ′}. (D2)

The max-entropy is defined by

Hmax(A|B) := −Hmin(A|C), (D3)

where the min-entropy on the right-hand side is evaluated for
a purification ρABC of ρAB.

Subsequently, we elucidate the definition of the smooth
min- and max-entropies [61], which is derived from min- and
max-entropies for an optimal state ρ ′ in a ε-neighborhood of
ρ.

Definition D 2. Smooth Min-/Max-Entropy: Let ρ = ρAB

be a bipartite density operator and let ε � 0. The ε-smooth
min- and max-entropies of A conditioned on B are given by

H ε
min(A|B)ρ := sup

ρ ′
Hmin(A|B)ρ ′ , (D4)

H ε
max(A|B)ρ := inf

ρ ′
Hmax(A|B)ρ ′ , (D5)

where the supremum ranges over all density operators ρ ′ =
ρ ′

AB which are ε-close to ρ.
The smooth min- and max-entropies are closely related

to quantum information and cryptography, which can help
to analyze the length of the final key during the distribution
through the theorems below [61]:

Theorem D 1. Let X be a classical random variable and
let B be (possibly quantum-mechanical) side information. The
smooth min-entropy is closely related to randomness extrac-
tion, which can, in the context of cryptography, turn a (only
partially secure) raw key X into a fully secure key f (X ) which
is uniform and independent of the side information B [61].

The maximum number of uniform and independent bits
that can be extracted from X is directly given by the smooth
min-entropy of X . Let lε

extr (X |B) be the maximum length of
a bit string that can be computed from X such that f (X ) is
ε-close to a string which is perfectly uniform and independent
of the side information B. Then, the following connection
exists:

lε
extr (X |B) = H ε′

min(X |B) + O(log(1/ε)), (D6)

where ε′ ∈ [ 1
2ε, 2ε].

Theorem D 2. Considering a tripartite pure state |�ABC〉,
the smooth max-entropy is closely related to state merging,
which aims to redistribute the A-part to the system B by local
operations and classical communications (LOCC) between A
and B. Depending on the (reduced) state, this either consumes
or generates bipartite entanglement [61].

Let lε
merg(A|B)ρ be the minimal (maximal) number of ebits

of entanglement required (generated) by this process [the
distinction between consumed/generated entanglement is re-
flected by the sign of the quantity lε

merg(A|B)ρ], such that the
outcome is ε-close to the desired output. Then, the following
connection exists:

lε
merg(A|B)ρ = H ε′

max(A|B)ρ + O(log1/ε), (D7)

where ε′ ∈ [ 1
2ε, 2ε].

Supposing an eavesdropper Eve, we define Z as the raw key
and E as the information of Eve learned from Z before error
correction. We also define Z′ as the key after error correction
and E ′ as all information of Eve learned from Z after error
correction. Let H denote the maximum length of a bit string
that can be computed from Z and ε-secure from the side infor-
mation E ′, i.e., H ε

min(Z|E ′), according to Theorem D 1. And
we can easily get the expression of H ε

min(Z|E ′) in accordance
with Definitions D 1 and D 2, Theorems D 1 and D 2, and the
chain-rule inequality for smooth entropies [66]:

H � H ε
min(Z|E ) − H εcor

max(Z′|Z). (D8)

Denote H ε
min(Z|E ) as H ε

min and H εcor
max(Z′|Z) as H εcor

max, then
Eq. (D8) could be simplified into Eq. (2) in Sec. III.

Split Z into three parts: Z0, Z11, and Zrest, where Z0 is the
bits where Alice sent a vacuum state, Z11 is the bits where
both Alice and Bob sent a single photon, and Zrest is the rest
of bits. Using a chain-rule for smooth entropies [66], we could
get the expression

H ε
min(Z|E ) � H ε′+2εe+(ε̂+2ε̂′+ε̂′′ )

min (Z0Z11Zrest|E )

� sz
0 + H εe

min(Z11|Z0ZrestE ) − 2log2
2

ε′ε̂
, (D9)

where ε = ε′ + 2εe + (ε̂ + 2ε̂′ + ε̂′′).
Using the entropic uncertainty relation [67], we have

H εe
min(Z11|Z0ZrestE ) � sz

11 − H εe
max(X 11|X ′

11)

� sz
11

[
1 − H

(
φz

11

)]
. (D10)

According to Eqs. (D9) and (D10), we could get Eq. (3).
Furthermore, the amount of bit information consumed during
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the error correction step could be expressed as

H εcor
max(Z′|Z) = λEC+ log2

(
2

εcor

)
= nz f H (Ez )+ log2

(
2

εcor

)
,

(D11)

where f is the error correction efficiency. It can be rewritten
as Eq. (4).

According to Eqs. (D8)–(D11), we have

H = H ε
min(Z|E ′) � sz

0 + sz
11

[
1 − H

(
φz

11

)] − nz f H (Ez )

− 2log2

(
2

ε′ε̂

)
− log2

(
2

εcor

)
, (D12)

where εsec = 2(ε′ + 2εe + ε̂ + 2ε̂′ + ε̂′′). Then, we could fi-
nally get Eq. (6) in Sec. III.

APPENDIX E: SIMULATION DETAILS OF MDI-QDS

In the MDI-QDS [37], the KGP protocol used between
Alice, Bob, and Charlie is a four-intensity protocol [62].
We take the KGP between Alice and Bob as an example,
during which Alice and Bob send pulses of intensity ka(b) ∈
{μa(b), νa(b), ωa(b), oa(b)}. Here we denote the number and error
number of detection events where Alice selects ka and Bob
selects kb in the Z(X) basis as nz(x)

kakb
and mz(x)

kakb
. They can be

given by

nz
kakb

= N pka pkb (1 − pd )2e− kaηa+kbηb
2

{
pd · [I0(

√
kaηakbηb − (1 − pd )e− kaηa+kbηb

2 ] + [1 − (1 − pd )e− kaηa
2 ][1 − (1 − pd )e− kbηb

2 ]},
(E1)

nx
kakb

= N pka pkby
2
kakb

[
1 + 2y2

kakb
− 4ykakbI0

(√
kaηakbηb

2

)
+ I0(

√
kaηakbηb)

]
, (E2)

mz
kakb

= N pka pkb pd (1 − pd )2e− kaηa+kbηb
2 [I0(

√
kaηakbηb − (1 − pd )e− kaηa+kbηb

2 ], (E3)

mx
kakb

= N pka pkby
2
kakb

{
1 + y2

kakb
− 2ykakbI0

(√
kaηakbηb

2

)
+ ed [I0(

√
kaηakbηb) − 1]

}
, (E4)

where

ykakb = (1 − pd ) · e− ηd (ηaka+ηbkb )
2 , (E5)

and ed = 0.04.
By using the decoy-state analysis and the double-scanning

method [62], we can get the parameters of MDI-KGP as
follows:

nz∗
0 = max

{
e−μa pμa

poa

nz∗
oaμb

,
e−μb pμb

pob

nz∗
μboa

}
,

nz∗
11 = μaμbe−μa−μb pμa pμb

νaνbωaωb(ω′ − ν ′)
(P+∗ − P

−∗ + M̂
∗ − Ĥ

∗
),

t x∗
11 = pνa pνb

ωaωbω′eνa+νb

(
M̂ − Ĥ

2

)
,

t z∗
11 = μaμbe−μa−μb pμa pμb

νaνbe−νa−νb pνa pνb

· t x∗
11,

φ
z
11 = t x

11

nz
11

, Ez = mz
μaμb

nz
μaμb

, (E6)

in which

ω′ = ωa, ν
′ = νa if

ωa

ωb
� νa

νb
,

ω′ = ωb, ν
′ = νb if

ωa

ωb
>

νa

νb
, (E7)

and

P+∗ = ωaωbω
′eνa+νb

(
nx

νaνb
− mx

νaνb

)∗

pνa pνb

+ νaνbν
′eωa

nx∗
ωaob

pωa pob

+ νaνbν
′eωb

nx∗
oaωb

poa pωb

,

P−∗ = νaνbν
′eωa+ωb

nx∗
ωaωb

pωa pωb

+ νaνbν
′ nx∗

oaob

poa pob

,

M̂∗ = ωaωbω
′eνa+νb

mx∗
νaνb

pνa pνb

,

Ĥ∗ = ωaωbω
′
(

eνb
nx∗

oaνb

poa pνb

+ eνa
nx∗

νaob

pνa pob

− nx∗
oaob

poa pob

)
. (E8)

During the distribution, we scan (Ĥ , M̂ ) to make the shared
keys as secure as possible through the following program-
ming:

min R (E9)

such that Ĥ � Ĥ � Ĥ ,

M̂ � M̂ � M̂,

(E10)

where

R = 1

N

{
nz

0 + nz
11

[
1 − H

(
φ

z
11

)] − λEC

−log2
2

εcor
− 2log2

2

ε′ε̂
− 2log2

1

2εPA

}
(E11)

and

λEC = nz
μaμb

f H (Ez ). (E12)

Denote the total length of raw key nz
μaμb

as nz. Denote the
length of the signature as L and the document volume as m.
The signature rate per pulse pair could be given by

Rsig = nz

2Lm
, (E13)
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in which the length L is restricted by the security bound as
follows [37]:

P(honest abort) � 2e−(sa−Ez )2L, (E14)

P(repudiation) � 2e−( sa−sv
2 )2L, (E15)

P(forge) � 2e−(pE −sv )2L, (E16)

where

sa = Ez + pE − Ez

4
, (E17)

sv = Ez + 3(pE − Ez )

4
, (E18)

and pE could be derived from

c0 + c1
[
1 − H

(
φ

z
11

)] = H (pE ), (E19)

where c0 = nz
0/nz and c1 = nz

11/nz.
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